From Web Catalogs to Google: A Retrospective Study of Web Search Engines Sustainable Development
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Web Catalogs and Search Engines
3.2. Search Engine Result Pages
3.2.1. Searchbox
3.2.2. Rich Snippets
3.2.3. Direct Answers
3.2.4. Knowledge Panel
3.2.5. Business Profile
3.2.6. Local Results on a Map
3.2.7. Search Extensions
3.2.8. Sponsored Search Results
3.3. Search Engine Optimization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jindal, V.; Bawa, S.; Batra, S. A Review of Ranking Approaches for Semantic Search on Web. Inf. Process. Manag. 2014, 50, 416–425. [Google Scholar] [CrossRef]
- Strawn, G.O. Leadership in Science and Technology: A Reference Handbook; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2012; ISBN 9781412976886. [Google Scholar]
- Perry, D.G.; Blumenthal, S.H.; Hinden, R.M. The ARPANET and the DARPA Internet. Libr. Hi Tech 1988, 6, 51–62. [Google Scholar] [CrossRef]
- O’Regan, G. Giants of Computing; Springer: London, UK, 2013; ISBN 978-1-4471-5339-9. [Google Scholar]
- Berners-Lee, T.; Groff, J.-F. WWW. ACM SIGBIO Newsl. 1992, 12, 37–40. [Google Scholar] [CrossRef]
- Tjondronegoro, D.; Spink, A. Web Search Engine Multimedia Functionality. Inf. Process. Manag. 2008, 44, 340–357. [Google Scholar] [CrossRef]
- Țichindelean, M.; Țichindelean, M.T.; Cetină, I.; Orzan, G. A Comparative Eye Tracking Study of Usability—Towards Sustainable Web Design. Sustainability 2021, 13, 10415. [Google Scholar] [CrossRef]
- Manganelli, M.; Soldati, A.; Martirano, L.; Ramakrishna, S. Strategies for Improving the Sustainability of Data Centers via Energy Mix, Energy Conservation, and Circular Energy. Sustainability 2021, 13, 6114. [Google Scholar] [CrossRef]
- Karyotakis, M.-A.; Antonopoulos, N. Web Communication: A Content Analysis of Green Hosting Companies. Sustainability 2021, 13, 495. [Google Scholar] [CrossRef]
- Seymour, T.; Frantsvog, D.; Kumar, S. History of Search Engines. Int. J. Manag. Inf. Syst. 2011, 15, 47. [Google Scholar] [CrossRef]
- Bharat, K.; Broder, A.; Henzinger, M.; Kumar, P.; Venkatasubramanian, S. The Connectivity Server: Fast Access to Linkage Information on the Web. Comput. Netw. ISDN Syst. 1998, 30, 469–477. [Google Scholar] [CrossRef]
- Beg, M.M.S. A Subjective Measure of Web Search Quality. Inf. Sci. 2005, 169, 365–381. [Google Scholar] [CrossRef]
- Duka, M. Ranking of Websites Created with the Use of ISOWQ Rank Algorithm. Inform. Autom. Pomiary Gospod. Ochr. Sr. 2020, 10, 16–19. [Google Scholar] [CrossRef]
- Dimopoulos, C.; Makris, C.; Panagis, Y.; Theodoridis, E.; Tsakalidis, A. A Web Page Usage Prediction Scheme Using Sequence Indexing and Clustering Techniques. Data Knowl. Eng. 2010, 69, 371–382. [Google Scholar] [CrossRef]
- Aiello, W.A. Algorithms and Models for the Web-Graph; Aiello, W., Broder, A., Janssen, J., Milios, E., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4936, ISBN 978-3-540-78807-2. [Google Scholar]
- Du, Y.; Li, C.; Hu, Q.; Li, X.; Chen, X. Ranking Webpages Using a Path Trust Knowledge Graph. Neurocomputing 2017, 269, 58–72. [Google Scholar] [CrossRef]
- Makkar, A.; Kumar, N. User Behavior Analysis-Based Smart Energy Management for Webpage Ranking: Learning Automata-Based Solution. Sustain. Comput. Inform. Syst. 2018, 20, 174–191. [Google Scholar] [CrossRef]
- Cho, J.; Garcia-Molina, H.; Page, L. Efficient Crawling through URL Ordering. Comput. Netw. ISDN Syst. 1998, 30, 161–172. [Google Scholar] [CrossRef]
- Suchacka, G.; Cabri, A.; Rovetta, S.; Masulli, F. Efficient On-the-Fly Web Bot Detection. Knowl.-Based Syst. 2021, 223, 107074. [Google Scholar] [CrossRef]
- Kumar, M.; Bindal, A.; Gautam, R.; Bhatia, R. Keyword Query Based Focused Web Crawler. Procedia Comput. Sci. 2018, 125, 584–590. [Google Scholar] [CrossRef]
- Bai, Q.; Xiong, G.; Zhao, Y.; He, L. Analysis and Detection of Bogus Behavior in Web Crawler Measurement. Procedia Comput. Sci. 2014, 31, 1084–1091. [Google Scholar] [CrossRef]
- Dikaiakos, M.D.; Stassopoulou, A.; Papageorgiou, L. An Investigation of Web Crawler Behavior: Characterization and Metrics. Comput. Commun. 2005, 28, 880–897. [Google Scholar] [CrossRef]
- Batzios, A.; Dimou, C.; Symeonidis, A.L.; Mitkas, P.A. BioCrawler: An Intelligent Crawler for the Semantic Web. Expert Syst. Appl. 2008, 35, 524–530. [Google Scholar] [CrossRef]
- Stevanovic, D.; An, A.; Vlajic, N. Feature Evaluation for Web Crawler Detection with Data Mining Techniques. Expert Syst. Appl. 2012, 39, 8707–8717. [Google Scholar] [CrossRef]
- Tanaka, T.; Niibori, H.; Li, S.; Nomura, S.; Kawashima, H.; Tsuda, K. Bot Detection Model Using User Agent and User Behavior for Web Log Analysis. Procedia Comput. Sci. 2020, 176, 1621–1625. [Google Scholar] [CrossRef]
- Chen, R.-C.; Hsieh, C.-H. Web Page Classification Based on a Support Vector Machine Using a Weighted Vote Schema. Expert Syst. Appl. 2006, 31, 427–435. [Google Scholar] [CrossRef]
- Buber, E.; Diri, B. Web Page Classification Using RNN. Procedia Comput. Sci. 2019, 154, 62–72. [Google Scholar] [CrossRef]
- Özel, S.A. A Web Page Classification System Based on a Genetic Algorithm Using Tagged-Terms as Features. Expert Syst. Appl. 2011, 38, 3407–3415. [Google Scholar] [CrossRef]
- Wilkinson, D.; Thelwall, M. Search Markets and Search Results: The Case of Bing. Libr. Inf. Sci. Res. 2013, 35, 318–325. [Google Scholar] [CrossRef]
- Van Couvering, E. The History of the Internet Search Engine: Navigational Media and the Traffic Commodity. In Web Search; Spink, A., Zimmer, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 177–206. [Google Scholar]
- Jiang, M.; Okamoto, K. National Identity, Ideological Apparatus, or Panopticon? A Case Study of the Chinese National Search Engine Jike. Policy Internet 2014, 6, 89–107. [Google Scholar] [CrossRef]
- Gao, R.; Shah, C. Toward Creating a Fairer Ranking in Search Engine Results. Inf. Process. Manag. 2020, 57, 102138. [Google Scholar] [CrossRef]
- Strzelecki, A. Eye-Tracking Studies of Web Search Engines: A Systematic Literature Review. Information 2020, 11, 300. [Google Scholar] [CrossRef]
- Lewandowski, D.; Kammerer, Y. Factors Influencing Viewing Behaviour on Search Engine Results Pages: A Review of Eye-Tracking Research. Behav. Inf. Technol. 2021, 40, 1485–1515. [Google Scholar] [CrossRef]
- Lee, M.; Kim, W.; Park, S. Searching and Ranking Method of Relevant Resources by User Intention on the Semantic Web. Expert Syst. Appl. 2012, 39, 4111–4121. [Google Scholar] [CrossRef]
- Sánchez, D.; Martínez-Sanahuja, L.; Batet, M. Survey and Evaluation of Web Search Engine Hit Counts as Research Tools in Computational Linguistics. Inf. Syst. 2018, 73, 50–60. [Google Scholar] [CrossRef]
- Fagroud, F.Z.; Ajallouda, L.; Ben Lahmar, E.H.; Toumi, H.; Achtaich, K.; Filali, S. El IOT Search Engines: Exploratory Data Analysis. Procedia Comput. Sci. 2020, 175, 572–577. [Google Scholar] [CrossRef]
- Derhami, V.; Khodadadian, E.; Ghasemzadeh, M.; Bidoki, A.M.Z. Applying Reinforcement Learning for Web Pages Ranking Algorithms. Appl. Soft Comput. 2013, 13, 1686–1692. [Google Scholar] [CrossRef]
- Li, H. Internet Tourism Resource Retrieval Using PageRank Search Ranking Algorithm. Complexity 2021, 2021, 5114802. [Google Scholar] [CrossRef]
- Jiang, M. Search Concentration, Bias, and Parochialism: A Comparative Study of Google, Baidu, and Jike’s Search Results from China. J. Commun. 2014, 64, 1088–1110. [Google Scholar] [CrossRef]
- Lehnert, W.G. Internet 101: A Beginners Guide to the Internet and the World Wide Web; Addison Wesley Longman: Boston, MA, USA, 1999. [Google Scholar]
- Dwivedi, N.; Joshi, L.; Gupta, N. Statistical Analysis of Search Engines (Google, Yahoo and Altavista) for Their Search Result. Int. J. Comput. Theory Eng. 2013, 5, 298–301. [Google Scholar] [CrossRef]
- Behnert, C.; Lewandowski, D. Ranking Search Results in Library Information Systems—Considering Ranking Approaches Adapted from Web Search Engines. J. Acad. Librariansh. 2015, 41, 725–735. [Google Scholar] [CrossRef]
- Strzelecki, A. Google Web and Image Search Visibility Data for Online Store. Data 2019, 4, 125. [Google Scholar] [CrossRef]
- Höchstötter, N.; Lewandowski, D. What Users See—Structures in Search Engine Results Pages. Inf. Sci. 2009, 179, 1796–1812. [Google Scholar] [CrossRef]
- Strzelecki, A.; Rutecka, P. The Snippets Taxonomy in Web Search Engines. In Perspectives in Business Informatics Research; Pańkowska, M., Sandkuhl, K., Eds.; Springer: Champagne, IL, USA, 2019; Volume 365, pp. 177–188. ISBN 978-3-030-31143-8. [Google Scholar]
- Strzelecki, A.; Rutecka, P. Direct Answers in Google Search Results. IEEE Access 2020, 8, 103642–103654. [Google Scholar] [CrossRef]
- Singhal, A. Official Google Blog: Introducing the Knowledge Graph: Things, Not Strings. Available online: https://www.blog.google/products/search/introducing-knowledge-graph-things-not/ (accessed on 30 April 2020).
- Lee, H. Viewing Local Organization Data from Google My Business. In Hands On With Google® Data Studio; Wiley: Hoboken, NJ, USA, 2020; pp. 173–219. [Google Scholar]
- Durica, M.; Svabova, L. Improvement of Company Marketing Strategy Based on Google Search Results Analysis. Procedia Econ. Financ. 2015, 26, 454–460. [Google Scholar] [CrossRef]
- Ciepłuch, B.; Jacob, R.; Mooney, P.; Winstanley, A.C. Comparison of the accuracy of OpenStreetMap for Ireland with Google Maps and Bing Maps. In Proceedings of the Ninth International Symposium on Spatial Accuracy Assessment in Natural Resuorces and Enviromental Sciences, Leicester, UK, 20–23 July 2010; p. 337. [Google Scholar]
- Jansen, B.J.; Mullen, T. Sponsored Search: An Overview of the Concept, History, and Technology. Int. J. Electron. Bus. 2008, 6, 114–171. [Google Scholar] [CrossRef]
- Etro, F. Advertising and Search Engines. A Model of Leadership in Search Advertising. Res. Econ. 2013, 67, 25–38. [Google Scholar] [CrossRef]
- Asdemir, K.; Kumar, N.; Jacob, V.S. Pricing Models for Online Advertising: CPM vs. CPC. Inf. Syst. Res. 2012, 23, 804–822. [Google Scholar] [CrossRef]
- Lewandowski, D.; Sünkler, S.; Yagci, N. The Influence of Search Engine Optimization on Google’s Results. In Proceedings of the 13th ACM Web Science Conference 2021, Virtual, 21–25 June 2021; ACM: New York, NY, USA, 2021; pp. 12–20. [Google Scholar]
- Nagpal, M.; Petersen, J.A. Keyword Selection Strategies in Search Engine Optimization: How Relevant Is Relevance? J. Retail. 2021, 97, 746–763. [Google Scholar] [CrossRef]
- Vállez, M.; Ventura, A. Analysis of the SEO Visibility of University Libraries and How They Impact the Web Visibility of Their Universities. J. Acad. Librariansh. 2020, 46, 102171. [Google Scholar] [CrossRef]
- Hora, A. Characterizing Top Ranked Code Examples in Google. J. Syst. Softw. 2021, 178, 110971. [Google Scholar] [CrossRef]
- Ferraz, R. Exploring Web Attributes Related to Image Accessibility and Their Impact on Search Engine Indexing. Procedia Comput. Sci. 2015, 67, 171–184. [Google Scholar] [CrossRef]
- Xiang, Z.; Gretzel, U. Role of Social Media in Online Travel Information Search. Tour. Manag. 2010, 31, 179–188. [Google Scholar] [CrossRef]
- Mavridis, T.; Symeonidis, A.L. Semantic Analysis of Web Documents for the Generation of Optimal Content. Eng. Appl. Artif. Intell. 2014, 35, 114–130. [Google Scholar] [CrossRef]
- Shipley, T.G.; Bowker, A. Investigating Websites and Webpages. In Investigating Internet Crimes; Elsevier: Amsterdam, The Netherlands, 2014; pp. 293–314. [Google Scholar]
- Abdou, M.; AbdelGaber, S.; Farhan, M. A Semi-Automated Framework for Semantically Annotating Web Content. Futur. Gener. Comput. Syst. 2018, 81, 94–102. [Google Scholar] [CrossRef]
- Egri, G.; Bayrak, C. The Role of Search Engine Optimization on Keeping the User on the Site. Procedia Comput. Sci. 2014, 36, 335–342. [Google Scholar] [CrossRef]
- Konidaris, A.; Koustoumpardi, E. The Importance of Search Engine Optimization for Tourism Websites. In Innovative Approaches to Tourism and Leisure; Katsoni, V., Velander, K., Eds.; Springer: Cham, Switzerland, 2018; pp. 205–218. [Google Scholar]
- Centeno, V.L.; Kloos, C.D.; Fisteus, J.A.; Álvarez, L.Á. Web Accessibility Evaluation Tools: A Survey and Some Improvements. Electron. Notes Theor. Comput. Sci. 2006, 157, 87–100. [Google Scholar] [CrossRef]
- Zhang, S.; Cabage, N. Search Engine Optimization: Comparison of Link Building and Social Sharing. J. Comput. Inf. Syst. 2017, 57, 148–159. [Google Scholar] [CrossRef]
- Veglis, A.; Giomelakis, D. Search Engine Optimization. Futur. Internet 2019, 12, 6. [Google Scholar] [CrossRef]
- Noruzi, A. A Study of HTML Title Tag Creation Behavior of Academic Web Sites. J. Acad. Librariansh. 2007, 33, 501–506. [Google Scholar] [CrossRef]
- Craven, T.C. Variations in Use of Meta Tag Descriptions by Web Pages in Different Languages. Inf. Process. Manag. 2004, 40, 479–493. [Google Scholar] [CrossRef]
- Pérez-Montoro, M.; Codina, L. The Essentials of Search Engine Optimization. In Navigation Design and SEO for Content-Intensive Websites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 109–124. [Google Scholar]
- Pérez-Montoro, M.; Codina, L. SEO for Content-Intensive Sites. In Navigation Design and SEO for Content-Intensive Websites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 125–137. [Google Scholar]
- Yalçın, N.; Köse, U. What Is Search Engine Optimization: SEO? Procedia-Soc. Behav. Sci. 2010, 9, 487–493. [Google Scholar] [CrossRef]
- Choudhari, K.; Bhalla, V.K. Video Search Engine Optimization Using Keyword and Feature Analysis. Procedia Comput. Sci. 2015, 58, 691–697. [Google Scholar] [CrossRef]
- Killoran, J.B. How to Use Search Engine Optimization Techniques to Increase Website Visibility. IEEE Trans. Prof. Commun. 2013, 56, 50–66. [Google Scholar] [CrossRef]
- Pérez-Montoro, M.; Codina, L. Mobile Web and SEO. In Navigation Design and SEO for Content-Intensive Websites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 139–151. [Google Scholar]
- Ismail, A.; Kuppusamy, K.S. Web Accessibility Investigation and Identification of Major Issues of Higher Education Websites with Statistical Measures: A Case Study of College Websites. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 901–911. [Google Scholar] [CrossRef]
- Ganapathy, A. Friendly URLs in the CMS and Power of Global Ranking with Crawlers with Added Security. Eng. Int. 2017, 5, 87–96. [Google Scholar] [CrossRef]
- Ismail, A.; Abdallah, F. A Survey on Search Engine Optimization (SEO). Int. J. Comput. Commun. Instrum. Eng. 2017, 4, 61–67. [Google Scholar] [CrossRef]
- Erdmann, A.; Ponzoa, J.M. Digital Inbound Marketing: Measuring the Economic Performance of Grocery e-Commerce in Europe and the USA. Technol. Forecast. Soc. Chang. 2021, 162, 120373. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, S.; Boguñá, M.; Flammini, A.; Menczer, F. Approximating PageRank from In-Degree. In Algorithms and Models for the Web-Graph; Aiello, W., Broder, A., Janssen, J., Milios, E., Eds.; LNCS; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4936, pp. 59–71. [Google Scholar]
- Jeong, O.-R.; Oh, J.; Kim, D.-J.; Lyu, H.; Kim, W. Determining the Titles of Web Pages Using Anchor Text and Link Analysis. Expert Syst. Appl. 2014, 41, 4322–4329. [Google Scholar] [CrossRef]
- Ziakis, C.; Vlachopoulou, M.; Kyrkoudis, T.; Karagkiozidou, M. Important Factors for Improving Google Search Rank. Futur. Internet 2019, 11, 32. [Google Scholar] [CrossRef]
- Kim, D.W.; Yan, P.; Zhang, J. Detecting Fake Anti-Virus Software Distribution Webpages. Comput. Secur. 2015, 49, 95–106. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Y.; Tan, J.; Zhou, B. Detection of Malicious Web Pages Based on Hybrid Analysis. J. Inf. Secur. Appl. 2017, 35, 68–74. [Google Scholar] [CrossRef]
- Wright, C. Auditing Web-Based Applications. In The IT Regulatory and Standards Compliance Handbook; Elsevier: Amsterdam, The Netherlands, 2008; pp. 515–560. [Google Scholar]
- Bello, R.-W.; Otobo, F.N. Conversion of Website Users to Customers-The Black Hat SEO Technique. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2018, 8, 29. [Google Scholar] [CrossRef]
- Aswani, R.; Kar, A.K.; Ilavarasan, P.V.; Dwivedi, Y.K. Search Engine Marketing Is Not All Gold: Insights from Twitter and SEOClerks. Int. J. Inf. Manag. 2018, 38, 107–116. [Google Scholar] [CrossRef]
- Schultheiß, S.; Lewandowski, D. “Outside the Industry, Nobody Knows What We Do” SEO as Seen by Search Engine Optimizers and Content Providers. J. Doc. 2020, 77, 542–557. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, Z.; Councill, I.G.; Giles, C.L. Determining Bias to Search Engines from Robots.Txt. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’07), Fremont, CA, USA, 2–5 November 2007; IEEE: New York, NY, USA; pp. 149–155. [Google Scholar]
- Tomič, A.; Šupín, M. Increasing Website Traffic of Woodworking Company Using Digital Marketing Methods. Acta Fac. Xylologiae Zvolen 2019, 61, 153–161. [Google Scholar]
- Wijaya, D.; Daniawan, B.; Gunawan, Y. Search Engine Optimization (SEO) As A Promotional Media On Google Search. bit-Tech 2021, 4, 31–39. [Google Scholar] [CrossRef]
- Nen, M.; Popa, V.; Scurtu, A. The Computer Management—SEO Audit. Rev. Int. Comp. Manag. 2017, 18, 297–307. [Google Scholar]
- Gek, D.; Kukartsev, V.; Tynchenko, V.; Bondarev, A.; Pokushko, M.; Dalisova, N. The Problem of SEO Promotion for the Organization’s Web Representation. SHS Web Conf. 2019, 69, 00122. [Google Scholar] [CrossRef]
- Moreno, L.; Martinez, P. Overlapping Factors in Search Engine Optimization and Web Accessibility. Online Inf. Rev. 2013, 37, 564–580. [Google Scholar] [CrossRef]
- Shenoy, A.; Prabhu, A. SEO Hub: Utilities and Toolsets. In Introducing SEO; Apress: Berkeley, CA, USA, 2016; pp. 103–117. [Google Scholar]
- Katumba, S.; Coetzee, S. Employing Search Engine Optimization (SEO) Techniques for Improving the Discovery of Geospatial Resources on the Web. ISPRS Int. J. Geo-Inf. 2017, 6, 284. [Google Scholar] [CrossRef]
- Gregurec, I.; Grd, P. Search Engine Optimization (SEO): Website Analysis of Selected Faculties in Croatia. In Proceedings of Central European Conference on Information and Intelligent Systems, Varaždin, Croatia, 19–21 September 2012; Hunjak, T., Lovrenčić, S., Tomičić, I., Eds.; Faculty of Organization and Informatics Varaždin, University of Zagreb: Zagreb, Croatia, 2012; pp. 211–218. [Google Scholar]
- Vankov, N. Significance, Role and Principles of Website SEO for Digital Entrepreneurship—The Battle for the Top Google Rankings. In The International Entrepreneurship: Trends, Challenges, Achievements, Proceedings of the Eighth International Conference, Varna, Bulgaria, 6–9 June 2017; Todorov, K., Kolarov, K., Eds.; Bulgarian Association for Management Development and Entrepreneurship: Sofia, Bulgaria, 2017; pp. 192–209. [Google Scholar]
- Evans, M.P. Analysing Google Rankings through Search Engine Optimization Data. Internet Res. 2007, 17, 21–37. [Google Scholar] [CrossRef]
- Weiqing, C.; Yangyang, H.; Qiaofeng, Y.; Jiajia, C. Measuring Web Page Complexity by Analyzing TCP Flows and HTTP Headers. J. China Univ. Posts Telecommun. 2017, 24, 1–13. [Google Scholar] [CrossRef]
- Lee, H. Using Google Search Console for Audience Insights. In Hands on with Google® Data Studio; Wiley: Hoboken, NJ, USA, 2020; pp. 135–171. [Google Scholar]
- Palos-Sanchez, P.; Martin-Velicia, F.; Saura, J.R. Complexity in the Acceptance of Sustainable Search Engines on the Internet: An Analysis of Unobserved Heterogeneity with FIMIX-PLS. Complexity 2018, 2018, 6561417. [Google Scholar] [CrossRef]
- Reyes-Menendez, A.; Saura, J.R.; Palos-Sanchez, P.R.; Alvarez-Garcia, J. Understanding User Behavioral Intention to Adopt a Search Engine That Promotes Sustainable Water Management. Symmetry 2018, 10, 584. [Google Scholar] [CrossRef]
- Confetto, M.G.; Covucci, C. “Sustainability-Contents SEO”: A Semantic Algorithm to Improve the Quality Rating of Sustainability Web Contents. TQM J. 2020, 33, 295–317. [Google Scholar] [CrossRef]
- Roumeliotis, K.I.; Tselikas, N.D.; Nasiopoulos, D.K. Airlines’ Sustainability Study Based on Search Engine Optimization Techniques and Technologies. Sustainability 2022, 14, 11225. [Google Scholar] [CrossRef]
- Thoppilan, R.; De Freitas, D.; Hall, J.; Shazeer, N.; Kulshreshtha, A.; Cheng, H.-T.; Jin, A.; Bos, T.; Baker, L.; Du, Y.; et al. LaMDA: Language Models for Dialog Applications. arXiv 2022, arXiv:2201.08239. [Google Scholar] [CrossRef]
- Adiwardana, D.; Luong, M.-T.; So, D.R.; Hall, J.; Fiedel, N.; Thoppilan, R.; Yang, Z.; Kulshreshtha, A.; Nemade, G.; Lu, Y.; et al. Towards a Human-like Open-Domain Chatbot. arXiv 2020, arXiv:2001.09977. [Google Scholar] [CrossRef]
Element | Description |
---|---|
Content structure | Editing of articles; category descriptions; offers; or products [61] |
Website structure | Modification of navigation elements; internal linking [62]; structured data [63] |
Technical layer | The speed at which a webpage is displayed in a browser [64]; the speed of downloading content by web robots; SSL encryption [65]; adaptation to mobile devices |
User experience and trust | Adaptation of the site in accordance with the WCAG standard [66]; clarity and originality of content; number and placement of ads |
Link building | The number and quality of hyperlinks leading to the website from other sites [67] |
Element | Description |
---|---|
TITLE element | The title of a webpage is crucial because it helps users quickly evaluate the content and relevance of a result [69]. |
Meta description tag | The description or summary of a webpage is part of search engine results [70]. |
Headers H1 to Hx | Headers make it easier for the reader to get an idea of the subject matter and hierarchy of the content presented [71]. |
Keywords | Keywords in the text, keyword selection, and density of occurrence [72]. |
Attribute ALT | The ALT attribute describes graphic elements; this information is used by indexing robots and screen-reader software to help blind users understand the content of images [73]. |
Video | A detailed description of video files to make them easier to find [74]. |
Internal linking structure | Internal linking makes it easier to navigate the website [75]. |
HTML standards | HTML code adapted for mobile devices [76], compliant with W3C standards [77]. |
Friendly URLs | Friendly URLs are usually addresses that include keywords and are short, simple, and easy to read [78]. |
Page speed | Webpage display speed in web browsers [79]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duka, M.; Sikora, M.; Strzelecki, A. From Web Catalogs to Google: A Retrospective Study of Web Search Engines Sustainable Development. Sustainability 2023, 15, 6768. https://doi.org/10.3390/su15086768
Duka M, Sikora M, Strzelecki A. From Web Catalogs to Google: A Retrospective Study of Web Search Engines Sustainable Development. Sustainability. 2023; 15(8):6768. https://doi.org/10.3390/su15086768
Chicago/Turabian StyleDuka, Mariusz, Marek Sikora, and Artur Strzelecki. 2023. "From Web Catalogs to Google: A Retrospective Study of Web Search Engines Sustainable Development" Sustainability 15, no. 8: 6768. https://doi.org/10.3390/su15086768
APA StyleDuka, M., Sikora, M., & Strzelecki, A. (2023). From Web Catalogs to Google: A Retrospective Study of Web Search Engines Sustainable Development. Sustainability, 15(8), 6768. https://doi.org/10.3390/su15086768