Use of Phosphoric Acid and Rice Hulk Ash as Lateritic Soil Stabilizers for Paving Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Mechanical Tests
2.2.2. Scanning Electron Microscopy
2.2.3. X-ray Diffraction
3. Results and Discussion
3.1. Resilient Modulus and Simple Compressive Strength
3.2. Electron Microscopy
3.3. X-ray Diffractograms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hicks, R.G.; Monismith, C. Factors influencing the resilient properties of granular materials. Transp. Res. Board 1971, 345, 5–31. [Google Scholar]
- Li, D.; Selig, E. Resilient modulus for fine-grained subgrade soils. J. Geotech. Eng. 1994, 120, 939–957. [Google Scholar] [CrossRef]
- De Carvalho, J.C.; Rezende, L.R.; Cardoso, F.B.F.; Lucena, L.C.F.L.; Guimarães, R.C.; Valencia, Y.G. Tropical soils for highway construction: Peculiarities and considerations. Transp. Geotech. 2015, 5, 3–19. [Google Scholar] [CrossRef]
- Medina, J.; Motta, L.M.G. Mecânica dos Pavimentos, 3rd ed.; Interciência: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- Tamakar, P.; Nazarian, S. Impact of Gradation and Moisture Content on Stiffness Parameters of Base Materials; University of Texas at El Paso: El Paso, TX, USA, 2016. [Google Scholar]
- Zhang, S.; Tang, C.; Hu, P.; Zhang, X.; Zhang, Z. Reversible and irreversible strain behavior of frozen aeolian soil under dynamic loading. Environ. Earth Sci. 2016, 75, 245. [Google Scholar] [CrossRef]
- Kodikara, J.; Islam, T.; Sounthararajah, A. Review of soil compaction: History and recent developments. Transp. Geotech. 2018, 17, 24–34. [Google Scholar] [CrossRef]
- Ingles, O.G.; Metcalf, J.B. Soil Stabilization: Principles and Practice; Butterworths: Melbourne, Australia, 1972. [Google Scholar]
- Yoder, E.J.; Witczak, M.W. Principles of Pavement Design; John Wiley & Sons Inc.: New York, NY, USA, 1975. [Google Scholar]
- Bilgen, G. Utilization of powdered glass in lime-stabilized clayey clayey soil with sea water. Environ. Earth Sci. 2020, 79, 437. [Google Scholar] [CrossRef]
- Eisazadeh, A.; Nur, H.; Kassim, K.A. Characterization of phosphoric acid- and lime-stabilized tropical lateritic clay. Environ. Earth Sci. 2010, 63, 1057–1066. [Google Scholar] [CrossRef]
- Kassim, K.A.; Hamir, R.; Kok, K.C. Modification and stabilization of Malaysian cohesive soils with lime. Geotech. Eng. 2005, 36, 123–132. [Google Scholar]
- Eisazadeh, A.; Nur, H.; Kassim, K.A. Cation Exchange capacity of phosphoric acid and lime stabilized montmorillonitic and kaolinitic soils. Geotech. Geol. Eng. 2002, 30, 1435–1440. [Google Scholar] [CrossRef]
- Behnood, A. Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transp. Geotech. 2018, 18, 14–32. [Google Scholar] [CrossRef]
- Jaffar, S.T.A.; Abid, M.M.; Zhan, S.Z.; Jafri, T.; Rehman, Z.U.; Tariq, M.A.U.R.; Ng, A.W.M. Evaluation of Conventional and Sustainable Modifiers to Improve the Stiffness Behavior of Weak Sub-Grade Soil. Sustainability 2022, 14, 2493. [Google Scholar] [CrossRef]
- Hatami, A.M.; Sabour, M.R.; Joshaghani, A. Research trends on ash stabilization in the pavement during 2002–2021. Environ. Sci. Pollut. Res. 2023, 30, 1611–1621. [Google Scholar] [CrossRef]
- Latifi, N.; Eisazadeh, A.; Marto, A. Strength behavior and microstructural characteristics of tropical laterite soil treated with sodium silicate-based liquid stabilizer. Environ. Earth Sci. 2014, 72, 91–98. [Google Scholar] [CrossRef]
- Ogila, W.A.M. Effectiveness of fresh cement kiln dust as a soil stabilizer and stabilization mechanism of high swelling clays. Environ. Earth Sci. 2020, 80, 283. [Google Scholar] [CrossRef]
- Winterkorn, H.F. Soil stabilization with phosphorus compounds and additives. Highw. Res. Board Bull. 1962, 318, 1–13. [Google Scholar]
- Rodrigues, M.S.; Beraldo, A.L. Caracterização física e mecânica de argamassas à base de cimento Portland e cinza de casca de arroz industrial. Rev. Eng. Agrícola 2010, 302, 193–204. [Google Scholar] [CrossRef]
- Latifi, N.; Marto, A.; Eisazadeh, A. Strength and Physico-chemical Characteristics of Fly Ash–Bottom Ash Mixture. Arab. J. Sci. Eng. 2015, 40, 2447–2455. [Google Scholar] [CrossRef]
- Abu-Farsakh, M.; Dhakal, S.; Chen, Q. Laboratory characterization of cementitious treated/stabilized very weak subgrade soil under cyclic loading. Soils Found. 2015, 55, 504–516. [Google Scholar] [CrossRef]
- Elkady, T.; Al-Mahbashi, A.; Al-Shamrani, M. Resilient Modulus of Lime-Treated Expansive Subgrade. In Proceedings of the XV Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Argentinean Geotechnical Engineering Society, Buenos Aires, Argentina, 15–18 November 2015; pp. 1631–1638. [Google Scholar]
- Pires, G.M.; Specht, L.P.; Pinheiro, R.J.B.; Pereira, D.S.; Renz, E.D. Comportamento mecânico de material fresado após processo de estabilização granulométrica e química por meio da incorporação de cimento e cinza de casca de arroz moída. Rev. Matéria 2016, 21, 365–384. [Google Scholar] [CrossRef]
- Ikeagwuani, C.C.; Nwonu, D.C. Resilient Modulus of Lime-Bamboo Ash Stabilized Subgrade Soil with Different Compactive Energy. Geotech. Geol. Eng. 2019, 37, 3557–3565. [Google Scholar] [CrossRef]
- Nasiri, H.; Khayat, N.; Mirzababaei, M. Simple yet quick stabilization of clay using a waste by-product. Transp. Geotech. 2020, 28, 100531. [Google Scholar] [CrossRef]
- Rahman, I.U.; Raheel, M.; Ali Khawaja, M.W.; Khan, R.; Li, J.; Khan, A.; Khan, M.T. Characterization of engineering properties of weak subgrade soils with different pozzolanic & cementitious additives. Case Stud. Constr. Build. Mater. 2021, 15, e00676. [Google Scholar] [CrossRef]
- Tiwari, N.; Satyam, N. Coupling effect of pond ash and polypropylene fiber on strength and durability of expansive soil subgrades: An integrated experimental and machine learning approach. J. Rock Mech. Geotech. Eng. 2021, 13, 1101–1112. [Google Scholar] [CrossRef]
- Consoli, N.C.; Festugato, L.; Miguel, G.D.; Moreira, E.B.; Scheuermann Filho, H.C. Fatigue Life of Green Stabilized Fiber-Reinforced Sulfate-Rich Dispersive Soil. J. Mater. Civ. Eng. 2021, 33, 9. [Google Scholar] [CrossRef]
- Saldanha, R.B.; Rochas, C.G.; Caicedo, A.M.L.; Consoli, N.C. Technical and environmental performance of eggshell lime for soil stabilization. Constr. Build. Mater. 2021, 298, 123648. [Google Scholar] [CrossRef]
- Qamar, W.; Khan, A.H.; Rehman, Z.; Masoud, Z. Sustainable Application of Wool-Banana Bio-Composite Waste Material in Geotechnical Engineering for Enhancement of Elastoplastic Strain and Resilience of Subgrade Expansive Clays. Sustainability 2022, 14, 13215. [Google Scholar] [CrossRef]
- Companhia Nacional de Abastecimento—CONAB. Acompanhamento da safra brasileira. Décimo Levant. 2018, 10, 145. [Google Scholar]
- Rathan, R.R.; Banupriya, S.; Dharani, R. Stabilizations of soil using rice husk ash. Int. J. Comput. Eng. Res. 2016, 6, 43–50. [Google Scholar] [CrossRef]
- Anupam, A.K.; Kumar, P.; Ransinchung, R.N. Effect of Fly Ash and Rice Husk Ash on Permanent Deformation Behavior of Subgrade Soil under Cyclic Triaxial Loading. Transp. Res. Procedia 2016, 17, 596–606. [Google Scholar] [CrossRef]
- Ojuri, O.O.; Adavi, A.A.; Oluwatuyi, O.E. Geotechnical and environmental evaluation of lime–cement stabilized soil–mine tailing mixtures for highway construction. Transp. Geotech. 2017, 10, 1–12. [Google Scholar] [CrossRef]
- Rahgozar, M.A.; Saberian, M.; Li, J. Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study. Transp. Geotech. 2018, 14, 52–60. [Google Scholar] [CrossRef]
- Behak, L.; Núñez, W.P. Mechanistic behavior under traffic load of a clayey silt modified with lime. Road Mater. Pavement Des. 2018, 19, 1072–1088. [Google Scholar] [CrossRef]
- Jittin, V.; Bahurudeen, A.; Ajinkya, S.D. Utilisation of rice husk ash for cleaner production of different construction products. J. Clean. Prod. 2020, 263, 121578. [Google Scholar] [CrossRef]
- Muñoz, Y.O.; Izzo, R.L.S.; Almeida, J.L.; Baldovino, J.A.; Rose, J.L. The role of rice husk ash, cement and polypropylene fibers on the mechanical behavior of a soil from Guabirotuba formation. Transp. Geotech. 2021, 31, 100673. [Google Scholar] [CrossRef]
- Basha, E.A.; Hashim, R.; Muntohar, A.S. Effect of the cement—rice husk ash on the plasticity and compaction of soil. Eletronic J. Geotech. Eng. 2003, 8, 1–8. [Google Scholar]
- Medina, J.; Guida, H.N. Stabilization of lateritic soils with phosphoric acid. Geotech. Geol. Eng. 1995, 13, 199–216. [Google Scholar] [CrossRef]
- Soliz, V.V.P. Estudo de Três Solos Estabilizados com Emulsão Asfáltica; Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Pascoal, P.T.; Sagrilo, A.V.; Baroni, M.; Specht, L.P.; Pereira, D.S. Evaluation of the influence of compaction energy on the resilient behavior of lateritic soil in the field and laboratory. Soils Rocks 2021, 44, 071321. [Google Scholar] [CrossRef]
- Nogami, J.S.; Villibor, D.F. Pavimentação de Baixo Custo Com SOLOS Lateríticos; Editora Villibor: São Paulo, Brazil, 1995. [Google Scholar]
- DNER-CLA 259; Classificação de Solos Tropicais para Finalidades Rodoviárias Utilizando Corpos-de-Prova Compactados em Equipamento Miniatura. Departamento Nacional de Estradas de Rodagem: Rio de Janeiro, Brazil, 1996.
- Della, V.P.; Kühn, I.; Hotza, D. Reciclagem de resíduos agro-industriais: Cinza de casca de arroz como fonte alternativa de sílica. Cerâmica Ind. 2005, 10, 22–25. [Google Scholar]
- Budny, J. Verificação do Potencial de Estabilização de um Solo Laterítico com o Uso de Ácido Fosfórico, Ácido Cítrico e Cinza de Casca de Arroz; Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- DNIT 134; ME Pavimentação—Solos—Determinação do Módulo de Resiliência—Método de Ensaio. Departamento Nacional de Infraestrutura de Transportes: Rio de Janeiro, Brazil, 2018.
- Freitas, J.E. Uso de Cinza da Casca de Arroz na Estabilização de Solos Para Uso em Pavimento Rodoviário; Universidade de Brasília: Brasília, Brazil, 2018. [Google Scholar]
- Behak, L.; Núñez, W.P. Caracterización de un material compuesto por suelo arenoso, cenizas de cáscara de arroz y cal potencialmente útil para su uso en pavimentación. Rev. Ing. Construcción 2008, 23, 34–41. [Google Scholar] [CrossRef]
- AASHTO T307-99; Determining the Resilient Modulus of Soils and Aggregate Materials. American Association of State Highway and Transportation Officials: Washington, WA, USA, 2017.
- Lima, C.D.A.; Motta, L.M.G.; Aragão, F.T.S.; Guimarães, A.C.R. Mechanical characterization of fine-grained lateritic soils for mechanistic-empirical flexible pavement design. J. Test. Eval. 2020, 48, 1–17. [Google Scholar] [CrossRef]
- Lima, C.D.A.; Motta, L.M.G.; Aragão, F.T.S. A permanent deformation predictive model for fine tropical soils considering the effects of the compaction moisture content on material selection. Transp. Geotech. 2021, 28, 100534. [Google Scholar] [CrossRef]
- Zago, J.P.; Pinheiro, R.J.B.; Baroni, M.; Specht, L.P.; Delongui, L.; Sagrilo, A.V. Study of the permanent deformation of three soils employed in highway subgrades in the municipality of Santa Maria—RS, Brazil. Int. J. Pavement Res. Technol. 2020, 14, 729–739. [Google Scholar] [CrossRef]
- Rabab’ah, S.; Al Hattamleh, O.; Aldeeky, H.; Alfoul, B.A. Effect of glass fiber on the properties of expansive soil and its utilization as subgrade reinforcement in pavement applications. Case Stud. Constr. Build. Mater. 2021, 14, e00485. [Google Scholar] [CrossRef]
- Yaghoubi, E.; Yagouhbi, M.; Guerrieri, M.; Sudarsanan, N. Improving expansive clay subgrades using recycled glass: Resilient modulus characteristics and pavement performance. Constr. Build. Mater. 2021, 302, 124384. [Google Scholar] [CrossRef]
- Hassan, H.J.A.; Rasul, J.; Samin, M. Effects of Plastic Waste Materials on Geotechnical Properties of Clayey Soil. Transp. Infrastruct. Geotechnol. 2021, 8, 390–413. [Google Scholar] [CrossRef]
- Jibon, M.; Mishra, D.; Kassem, E. Laboratory characterization of fine-grained soils for pavement ME design implementation in Idaho. Transp. Geotech. 2021, 25, 100395. [Google Scholar] [CrossRef]
- Pezo, R.F.; Claros, G.; Hudson, W.R.; Stokoe, K.H. Development of Reliable Resiliente Modulus Test for Subgrade and Non-Granular Subbase Materials for Use in Routine Pavement Design; Research Report 1177-4F; Department of Transportation, University of Texas at Austin: Austin, TX, USA, 1992. [Google Scholar]
- NCHRP 1-37A; National Cooperative Highway Research Program—Guide for mechanistic-empirical design of new and rehabilitated pavement structures—Final Report. Transportation Research Board: Washington, WA, USA, 2004.
- ABNT NBR 12025; Solo-Cimento—Ensaio de Compressão Simples de Corpos de Prova Cilíndricos—Método de Ensaio. Associação Brasileira de Normas Técnicas: São Paulo, Brazil, 2012.
- Shen, J.; Liu, X.; Zhu, S.; Zhang, H.; Tan, J. Effects of calcinations parameters on the silica phase of original and leached rice husk ash. Mater. Lett. 2011, 65, 1179–1183. [Google Scholar] [CrossRef]
Physical Parameters | Chemical Analysis | ||
---|---|---|---|
% coarse sand (0.6–2.0 mm) | 0 | Cation exchange capacity | 1.8 |
% medium sand (0.2–0.6 mm) | 8 | Basic cations Ca/K/Mg (Cmolcdm3) | 0.3/0.02/ 0.4 |
% fine sand (0.06–0.2 mm) | 25 | ||
% silt (2 µm–0.6 mm) | 26 | Saturation-Al/Bases (%) | 55.6/9.2 |
% clay (% 2 µm) | 41 | Organic matter (%) | 0.20 |
Specific weight (kN/m3) | 27.8 | pH | 5.8 |
Liquidity limit (%) | 55 | X-ray Fluorescence—ED XRF | |
Plasticity limit (%) | 44 | Fe2O3 | 36.88 |
Plasticity index (%) | 11 | SiO2 | 32.45 |
Classification | Al2O3 | 22.38 | |
AASHTO classification | A-7-6 | TiO2 | 4.72 |
USCS classification | MH | P2O5 | 0.99 |
MCT classification | LG’ | Others | 2.58 |
Condition | Compaction Energy | Nomenclature Adopted | MDD (kg/m3) | OMC (%) |
---|---|---|---|---|
Reference soil | Intermediate | Soil-IE | 1625 | 25.60 |
Modified | Soil-ME | 1652 | 22.60 | |
Soil + 3% H3PO4 | Intermediate | S3-IE | 1683 | 22.49 |
Modified | S3-ME | 1729 | 21.67 | |
Soil + 1% H3PO4 + 5% RHA | Intermediate | S15-IE | 1581 | 27.15 |
Modified | S15-ME | 1657 | 24.19 | |
Soil + 3% H3PO4 + 5% RHA | Intermediate | S35-IE | 1585 | 27.22 |
Modified | S35-ME | 1644 | 24.72 | |
Soil + 3% H3PO4 + 10% RHA | Intermediate | S310-IE | 1504 | 27.17 |
Modified | S310-ME | 1605 | 25.17 |
Model | Equation |
---|---|
Pezo et al. [59] | |
NCHRP 1-37A [60] |
Condition | Curing Age | Model | k1 | k2 | k3 | R2 | Average RM (MPa) |
---|---|---|---|---|---|---|---|
Soil-IE | 0 | Compound | 739.2 | 0.34 | 0.00 | 0.90 | 287 |
Universal | 688.64 | 0.52 | −4.71 | 0.93 | 271 | ||
Soil-ME | 0 | Compound | 1640.16 | 0.43 | 0.08 | 0.93 | 340 |
Universal | 1185.26 | 0.65 | −0.55 | 0.94 | 349 | ||
S3-IE | 7 | Compound | 2323.70 | 0.50 | 0.12 | 0.96 | 465 |
Universal | 1141.95 | 0.72 | −1.43 | 0.97 | 459 | ||
28 | Compound | 2494.14 | 0.53 | 0.10 | 0.96 | 475 | |
Universal | 1204.53 | 0.74 | −1.57 | 0.95 | 470 | ||
S3-ME | 7 | Compound | 2407.38 | 0.51 | 0.09 | 0.99 | 493 |
Universal | 1158.79 | 0.67 | −1.33 | 0.97 | 494 | ||
28 | Compound | 2574.28 | 0.53 | 0.08 | 0.99 | 523 | |
Universal | 1285.39 | 0.69 | −1.63 | 0.97 | 525 | ||
S15-IE | 7 | Compound | 608.35 | 0.42 | −0.05 | 0.86 | 209 |
Universal | 479.78 | 0.54 | −2.92 | 0.84 | 209 | ||
28 | Compound | 957.30 | 0.48 | 0.00 | 0.91 | 260 | |
Universal | 751.09 | 0.70 | −3.69 | 0.94 | 260 | ||
56 | Compound | 1431.56 | 0.54 | 0.05 | 0.93 | 297 | |
Universal | 897.20 | 0.79 | −3.10 | 0.95 | 296 | ||
91 | Compound | 1948.12 | 0.60 | 0.08 | 0.96 | 324 | |
Universal | 1025.78 | 0.86 | −2.77 | 0.96 | 323 | ||
S15-ME | 7 | Compound | 1633.51 | 0.53 | 0.11 | 0.98 | 305 |
Universal | 762.06 | 0.73 | −1.42 | 0.97 | 304 | ||
28 | Compound | 1755.25 | 0.49 | 0.17 | 0.92 | 326 | |
Universal | 664.17 | 0.63 | 0.20 | 0.92 | 333 | ||
56 | Compound | 2652.11 | 0.62 | 0.17 | 0.95 | 352 | |
Universal | 983.21 | 0.86 | −1.21 | 0.94 | 352 | ||
91 | Compound | 2943.89 | 0.65 | 0.15 | 0.94 | 376 | |
Universal | 1153.21 | 0.91 | −1.76 | 0.95 | 376 | ||
S35-IE | 7 | Compound | 1506.25 | 0.55 | 0.11 | 0.93 | 265 |
Universal | 655.78 | 0.73 | −1.23 | 0.91 | 265 | ||
28 | Compound | 1679.36 | 0.51 | 0.14 | 0.95 | 313 | |
Universal | 768.59 | 0.72 | −1.24 | 0.95 | 314 | ||
56 | Compound | 2339.51 | 0.62 | 0.14 | 0.96 | 327 | |
Universal | 970.83 | 0.87 | −1.77 | 0.95 | 329 | ||
91 | Compound | 2785.62 | 0.63 | 0.16 | 0.94 | 362 | |
Universal | 1089.52 | 0.93 | −1.65 | 0.93 | 352 | ||
S35-ME | 7 | Compound | 2056.53 | 0.62 | 0.07 | 0.96 | 333 |
Universal | 1129.76 | 0.90 | −3.18 | 0.96 | 332 | ||
28 | Compound | 3215.45 | 0.72 | 0.10 | 0.97 | 381 | |
Universal | 1563.81 | 1.07 | −3.58 | 0.98 | 378 | ||
56 | Compound | 3771.49 | 0.73 | 0.11 | 0.97 | 417 | |
Universal | 1715.25 | 1.09 | −3.39 | 0.97 | 414 | ||
91 | Compound | 3968.75 | 0.73 | 0.14 | 0.98 | 423 | |
Universal | 1576.53 | 1.08 | −2.93 | 0.98 | 399 | ||
S310-IE | 7 | Compound | 1261.34 | 0.49 | 0.12 | 0.85 | 258 |
Universal | 571.73 | 0.67 | −0.97 | 0.89 | 251 | ||
28 | Compound | 1187.18 | 0.45 | 0.15 | 0.97 | 256 | |
Universal | 534.73 | 0.62 | −0.52 | 0.97 | 255 | ||
56 | Compound | 1312.62 | 0.45 | 0.12 | 0.95 | 298 | |
Universal | 602.36 | 0.58 | −0.52 | 0.94 | 300 | ||
91 | Compound | 1658.49 | 0.51 | 0.12 | 0.97 | 319 | |
Universal | 710.73 | 0.66 | −0.74 | 0.95 | 321 | ||
S310-ME | 7 | Compound | 1788.00 | 0.58 | 0.09 | 0.97 | 303 |
Universal | 915.27 | 0.84 | −2.48 | 0.96 | 301 | ||
28 | Compound | 2150.45 | 0.60 | 0.15 | 0.99 | 312 | |
Universal | 890.87 | 0.85 | −1.58 | 0.98 | 312 | ||
56 | Compound | 2584.05 | 0.66 | 0.16 | 0.99 | 320 | |
Universal | 1005.63 | 0.93 | −1.83 | 0.98 | 320 | ||
91 | Compound | 2719.99 | 0.64 | 0.17 | 0.98 | 339 | |
Universal | 1055.12 | 0.93 | −1.74 | 0.98 | 338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.M.d.S.e.; Pascoal, P.T.; Baroni, M.; Vargas, A.S.d.; Budny, J.; Specht, L.P. Use of Phosphoric Acid and Rice Hulk Ash as Lateritic Soil Stabilizers for Paving Applications. Sustainability 2023, 15, 7160. https://doi.org/10.3390/su15097160
Silva AMdSe, Pascoal PT, Baroni M, Vargas ASd, Budny J, Specht LP. Use of Phosphoric Acid and Rice Hulk Ash as Lateritic Soil Stabilizers for Paving Applications. Sustainability. 2023; 15(9):7160. https://doi.org/10.3390/su15097160
Chicago/Turabian StyleSilva, Angelo Magno dos Santos e, Paula Taiane Pascoal, Magnos Baroni, Alexandre Silva de Vargas, Jaelson Budny, and Luciano Pivoto Specht. 2023. "Use of Phosphoric Acid and Rice Hulk Ash as Lateritic Soil Stabilizers for Paving Applications" Sustainability 15, no. 9: 7160. https://doi.org/10.3390/su15097160
APA StyleSilva, A. M. d. S. e., Pascoal, P. T., Baroni, M., Vargas, A. S. d., Budny, J., & Specht, L. P. (2023). Use of Phosphoric Acid and Rice Hulk Ash as Lateritic Soil Stabilizers for Paving Applications. Sustainability, 15(9), 7160. https://doi.org/10.3390/su15097160