Impact of Dragon Fruit Waste in Microbial Fuel Cells to Generate Friendly Electric Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Single-Chamber Microbial Fuel Cells (scMFC)
2.2. Obtaining and Processing the Red Dragon Fruit Waste
2.3. Characterization of Microbial Fuel Cells
2.4. Isolation of Microorganisms from the Anode
2.5. Molecular Identification
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chavan, S.; Yadav, B.; Atmakuri, A.; Tyagi, R.D.; Wong, J.W.C.; Drogui, P. Bioconversion of Organic Wastes into Value-Added Products: A Review. Bioresour. Technol. 2022, 344, 126398. [Google Scholar] [CrossRef]
- Ranjbari, M.; Shams Esfandabadi, Z.; Quatraro, F.; Vatanparast, H.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. Biomass and Organic Waste Potentials towards Implementing Circular Bioeconomy Platforms: A Systematic Bibliometric Analysis. Fuel 2022, 318, 123585. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural Waste: Review of the Evolution, Approaches and Perspectives on Alternative Uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- Atinkut, H.B.; Yan, T.; Zhang, F.; Qin, S.; Gai, H.; Liu, Q. Cognition of Agriculture Waste and Payments for a Circular Agriculture Model in Central China. Sci. Rep. 2020, 10, 10826. [Google Scholar] [CrossRef] [PubMed]
- Kharola, S.; Ram, M.; Goyal, N.; Mangla, S.K.; Nautiyal, O.P.; Rawat, A.; Kazancoglu, Y.; Pant, D. Barriers to Organic Waste Management in a Circular Economy. J. Clean. Prod. 2022, 362, 132282. [Google Scholar] [CrossRef]
- Cremonez, P.A.; Teleken, J.G.; Weiser Meier, T.R.; Alves, H.J. Two-Stage Anaerobic Digestion in Agroindustrial Waste Treatment: A Review. J. Environ. Manag. 2021, 281, 111854. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, S.; Robles, I.; Ramirez, A.; Flórez, E.; Acelas, N. Mercury Removal from Wastewater Using Agroindustrial Waste Adsorbents. SN Appl. Sci. 2020, 2, 1029. [Google Scholar] [CrossRef]
- Beitel, S.M.; Coelho, L.F.; Contiero, J. Efficient Conversion of Agroindustrial Waste into D(-) Lactic Acid by Lactobacillus delbrueckii Using Fed-Batch Fermentation. BioMed Res. Int. 2020, 2020, 4194052. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, N.; Umesh, M.; Selvaraj, M.; Al-Shehri, B.M.; Chakraborty, P.; Duhan, L.; Sharma, S.; Pasrija, R.; Awasthi, M.K.; et al. Emerging Challenges for the Agro-Industrial Food Waste Utilization: A Review on Food Waste Biorefinery. Bioresour. Technol. 2022, 362, 127790. [Google Scholar] [CrossRef]
- Kandel, D.R.; Kim, H.-J.; Lim, J.-M.; Poudel, M.B.; Cho, M.; Kim, H.-W.; Oh, B.-T.; Nah, C.; Lee, S.H.; Dahal, B.; et al. Cold Plasma-Assisted Regeneration of Biochar for Dye Ad-sorption. Chemosphere 2022, 309, 136638. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lim, Y.J. On the Control Strategy to Improve the Salt Rejection of a Thin-Film Composite Reverse Osmosis Membrane. Appl. Sci. 2021, 11, 7619. [Google Scholar] [CrossRef]
- Mashkour, M.; Rahimnejad, M.; Raouf, F.; Navidjouy, N. A Review on the Application of Nanomaterials in Improving Microbial Fuel Cells. Biofuel Res. J. 2021, 8, 1400–1416. [Google Scholar] [CrossRef]
- Do, M.H.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Varjani, S.; Kumar, M. Microbial Fuel Cell-Based Biosensor for Online Monitoring Wastewater Quality: A Critical Review. Sci. Total Environ. 2020, 712, 135612. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Cupa, C.; Hu, Y.; Xu, C.; Bassi, A. An Overview of Microbial Fuel Cell Usage in Wastewater Treatment, Resource Recovery and Energy Production. Sci. Total Environ. 2021, 754, 142429. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Guerrero-Barajas, C. Modern Trend of Anodes in Microbial Fuel Cells (MFCs): An Overview. Environ. Technol. Innov. 2021, 23, 101579. [Google Scholar] [CrossRef]
- Saba, B.; Khan, M.; Christy, A.D.; Kjellerup, B.V. Microbial Phyto-Power Systems—A Sustainable Integration of Phytoremediation and Microbial Fuel Cells. Bioelectrochemistry 2019, 127, 1–11. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Guerrero-Barajas, C.; Ibrahim, M.N.M.; Umar, K.; Yaakop, A.S. Local Fruit Wastes Driven Benthic Microbial Fuel Cell: A Sustainable Approach to Toxic Metal Removal and Bioelectricity Generation. Environ. Sci. Pollut. Res. Int. 2022, 29, 32913–32928. [Google Scholar] [CrossRef]
- Pandit, S.; Sharma, M.; Banerjee, S.; Kumar Nayak, B.; Das, D.; Khilari, S.; Prasad, R. Pretreatment of Cyanobacterial Biomass for the Production of Biofuel in Microbial Fuel Cells. Bioresour. Technol. 2023, 370, 128505. [Google Scholar] [CrossRef]
- Mukimin, A.; Vistanty, H. Low Carbon Development Based on Microbial Fuel Cells as Electrical Generation and Wastewater Treatment Unit. Renew. Energy Focus 2023, 44, 132–138. [Google Scholar] [CrossRef]
- Monge Pérez, J.E.; Loría-Coto, M.; Oreamuno-Fonseca, P. Efecto de un biol sobre las características del suelo y la producción de brotes en pitahaya (Hylocereus sp.). UNED Res. J. 2022, 14, e3836. [Google Scholar] [CrossRef]
- de Oliveira, M.M.T.; Albano-Machado, F.G.; Penha, D.M.; Pinho, M.M.; Natale, W.; de Miranda, M.R.A.; Moura, C.F.H.; Alves, R.E.; de Medeiros Corrêa, M.C. Shade Improves Growth, Photosynthetic Performance, Production and Postharvest Quality in Red Pitahaya (Hylocereus costaricensis). Sci. Hortic. 2021, 286, 110217. [Google Scholar] [CrossRef]
- Hossain, F.M.; Numan, S.M.; Akhtar, S. Cultivation, nutritional value, and health benefits of Dragon Fruit (Hylocereus spp.): A Review. Int. J. Hortic. Sci. Technol. 2021, 8, 259–269. [Google Scholar]
- Rojas-Flores, S.; De La Cruz-Noriega, M.; Nazario-Naveda, R.; Benites, S.M.; Delfín-Narciso, D.; Rojas-Villacorta, W.; Romero, C.V. Bioelectricity through Microbial Fuel Cells Using Avocado Waste. Energy Rep. 2022, 8, 376–382. [Google Scholar] [CrossRef]
- Rojas-Flores, S.; Nazario-Naveda, R.; Benites, S.M.; Gallozzo-Cardenas, M.; Delfín-Narciso, D.; Díaz, F. Use of Pineapple Waste as Fuel in Microbial Fuel Cell for the Generation of Bioelectricity. Molecules 2022, 27, 7389. [Google Scholar] [CrossRef] [PubMed]
- Din, M.I.; Iqbal, M.; Hussain, Z.; Khalid, R. Bioelectricity Generation from Waste Potatoes Using Single Chambered Microbial Fuel Cell. Energy Sources Part A Recovery Util. 2020, 42, 1–11. [Google Scholar] [CrossRef]
- Rojas-Flores, S.; De La Cruz-Noriega, M.; Nazario-Naveda, R.; Benites, S.M.; Delfín-Narciso, D.; Angelats-Silva, L.; Murga-Torres, E. Use of Banana Waste as a Source for Bioelectricity Generation. Processes 2022, 10, 942. [Google Scholar] [CrossRef]
- Tremouli, A.; Karydogiannis, I.; Pandis, P.K.; Papadopoulou, K.; Argirusis, C.; Stathopoulos, V.N.; Lyberatos, G. Bioelectricity Production from Fermentable Household Waste Extract Using a Single Chamber Microbial Fuel Cell. Energy Procedia 2019, 161, 2–9. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Mohamad Ibrahim, M.N.; Rodríguez-Couto, S.; Ahmad, A. Preparation, Characterization, and Application of Modified Carbonized Lignin as an Anode for Sustainable Microbial Fuel Cell. Process Saf. Environ. Prot. 2021, 155, 49–60. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Serrà, A.; Bhawani, S.A.; Ibrahim, M.N.M.; Khan, A.; Alorfi, H.S.; Asiri, A.M.; Hussein, M.A.; Khan, I.; Umar, K. Utilizing Biomass-Based Graphene Oxide-Polyaniline-Ag Electrodes in Microbial Fuel Cells to Boost Energy Generation and Heavy Metal Removal. Polymers 2022, 14, 845. [Google Scholar] [CrossRef]
- Gong, Z.; Xie, R.; Zhang, Y.; Wang, M.; Tan, T. Identification of Emerging Industrial Biotechnology Chassis Vibrio natriegens as a Novel High Salt-Tolerant and Feedstock Flexibility Electroactive Microorganism for Microbial Fuel Cell. Microorganisms 2023, 11, 490. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Srinivasan, S.; Jeevanantham, S.; Kamalesh, R.; Karishma, S. Sustainable Strategy on Microbial Fuel Cell to Treat the Wastewater for the Production of Green Energy. Chemosphere 2022, 290, 133295. [Google Scholar] [CrossRef] [PubMed]
- Stom, D.I.; Zhdanova, G.O.; Kalashnikova, O.B.; Bulaev, A.G.; Kashevskii, A.V.; Kupchinsky, A.B.; Vardanyan, N.S.; Ponamoreva, O.N.; Alferov, S.V.; Saksonov, M.N.; et al. Acidophilic Microorganisms Leptospirillum sp., Acidithiobacillus sp., Ferroplasma sp. As a Cathodic Bioagents in a MFC. Geomicrobiol. J. 2021, 38, 340–346. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, H.; Chen, J.; Wang, T.; Luo, H.; Chen, W.; Mo, Y.; Li, L.; An, X.; Zhang, X. Microbial Fuel Cell (MFC)-Based Biosensor for Combined Heavy Metals Monitoring and Associated Bioelectrochemical Process. Int. J. Hydrogen Energy 2022, 47, 21231–21240. [Google Scholar] [CrossRef]
- Lu, H.; Yu, Y.; Xi, H.; Wang, C.; Zhou, Y. Bacterial Response to Formaldehyde in an MFC Toxicity Sensor. Enzym. Microb. Technol. 2020, 140, 109565. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Zhang, Y.; Ma, N.; Wang, L.; Jiang, L.; Fang, Z.; Wang, Y.; Tan, X. The Parallel Electron Transfer Pathways of Biofilm and Self-Secreted Electron Shuttles in Gram-Positive Strain Rhodococcus pyridinivorans HR-1 Inoculated Microbial Fuel Cell. Bioresour. Technol. 2023, 369, 128514. [Google Scholar] [CrossRef]
- Hou, B.; Zhang, R.; Liu, X.; Li, Y.; Liu, P.; Lu, J. Study of Membrane Fouling Mechanism during the Phenol Degradation in Microbial Fuel Cell and Membrane Bioreactor Coupling System. Bioresour. Technol. 2021, 338, 125504. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Umar, K.; Parveen, T.; Ahmad, A.; Lokhat, D.; Setapar, S.H.M. A Glimpse into the Microbial Fuel Cells for Wastewater Treatment with Energy Generation. Desalin. Water Treat. 2021, 214, 379–389. [Google Scholar] [CrossRef]
- Segundo, R.-F.; De La Cruz-Noriega, M.; Milly Otiniano, N.; Benites, S.M.; Esparza, M.; Nazario-Naveda, R. Use of Onion Waste as Fuel for the Generation of Bioelectricity. Molecules 2022, 27, 625. [Google Scholar] [CrossRef] [PubMed]
- Iigatani, R.; Ito, T.; Watanabe, F.; Nagamine, M.; Suzuki, Y.; Inoue, K. Electricity Generation from Sweet Potato-Shochu Waste Using Microbial Fuel Cells. J. Biosci. Bioeng. 2019, 128, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Barua, E.; Hossain, M.S.; Shaha, M.; Islam, E.; Zohora, F.T.; Protity, A.T.; Mukharjee, S.K.; Sarker, P.K.; Salimullah, M.; Hashem, A. Generation of Electricity Using Microbial Fuel Cell (MFC) from Sludge. Banglad. J. Microbiol. 2019, 35, 23–26. [Google Scholar] [CrossRef]
- Parkash, A. Potential of Biomass for Electricity Generation Using Environment-Friendly MFC Anand Parkash. J. Bioprocess. Biotech. 2018, 8, 314. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Nakashima, K.; Kato, M.; Inoue, K.; Okazaki, F.; Soyama, H.; Kawasaki, S. Electricity Generation from Rice Bran by a Microbial Fuel Cell and the Influence of Hydrodynamic Cavitation Pretreatment. ACS Omega 2018, 3, 15267–15271. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.N.A.; Faizal, M.M.M.; Tajarudin, H.A.; Shoparwe, N.F.; Makhtar, M.M.Z. Effect of Different Yeast Extract Concentration in Membrane-Less Microbial Fuel Cell (ML-MFC) for Electricity Generation Using Food Waste as Carbon Sources. J. Phys. Conf. Ser. 2021, 2129, 012098. [Google Scholar] [CrossRef]
- Javed, M.M.; Nisar, M.A.; Ahmad, M.U. Effect of NaCl and PH on Bioelectricity Production from Vegetable Waste Extract Supplemented with Cane Molasses in Dual Chamber Microbial Fuel Cell. Pak. J. Zool. 2021, 54, 247–254. [Google Scholar] [CrossRef]
- Rojas-Flores, S.; Pérez-Delgado, O.; Nazario-Naveda, R.; Rojales-Alfaro, H.; Benites, S.M.; De La Cruz-Noriega, M.; Otiniano, N.M. Potential Use of Papaya Waste as a Fuel for Bioelectricity Generation. Processes 2021, 9, 1799. [Google Scholar] [CrossRef]
- Igboamalu, T.E.; Bezuidenhout, N.; Matsena, M.T.; Chirwa, E.M.N. Microbial Fuel Cell Power Output and Growth: Effect of PH on Anaerobic Microbe Consortium. Chem. Eng. Trans. 2019, 76, 1381–1386. [Google Scholar] [CrossRef]
- Bensaida, K.; Maamoun, I.; Eljamal, R.; Falyouna, O.; Sugihara, Y.; Eljamal, O. New Insight for Electricity Amplification in Microbial Fuel Cells (MFCs) Applying Magnesium Hydroxide Coated Iron Nanoparticles. Energy Convers. Manag. 2021, 249, 114877. [Google Scholar] [CrossRef]
- Stefanova, A.; Angelov, A.; Bratkova, S.; Genova, P.; Asst, C.; Nikolova, K. Influence of Electrical Conductivity and Temperature in a Microbial Fuel Cell for Treatment of Mining Waste Water. An. Univ. Constantin Brâncuşi Din Târgu Jiu Ser. Ing. 2018, 3, 18–24. [Google Scholar]
- Santoro, C.; Kodali, M.; Shamoon, N.; Serov, A.; Soavi, F.; Merino-Jimenez, I.; Gajda, I.; Greenman, J.; Ieropoulos, I.; Atanassov, P. Increased Power Generation in Supercapacitive Microbial Fuel Cell Stack Using Fe-N-C Cathode Catalyst. J. Power Sources 2019, 412, 416–424. [Google Scholar] [CrossRef]
- Segundo, R.-F.; De La Cruz-Noriega, M.; Nazario-Naveda, R.; Benites, S.M.; Delfín-Narciso, D.; Angelats-Silva, L.; Díaz, F. Golden Berry Waste for Electricity Generation. Fermentation 2022, 8, 256. [Google Scholar] [CrossRef]
- Rojas-Flores, S.; Nazario-Naveda, R.; De La Cruz Noriega, M.; Benites, S.M.; Otiniano, N.M.; Rodriguez-Yupanqui, M.; Valdiviezo-Dominguez, F.; Rojas-Villacorta, W. Generación De Bioelectricidad Mediante Desechos De Uvas. In Proceedings of the 19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and Trends in Technology and Skills for Sustainable Social Development” “Leveraging Emerging Technologies to Construct the Future”, Online, 19–23 July 2021. [Google Scholar]
- Wang, J.; Huo, Y.; Wang, Y.; Zhao, H.; Li, K.; Liu, L.; Shi, Y. Grading Detection of “Red Fuji” Apple in Luochuan Based on Machine Vision and near-Infrared Spectroscopy. PLoS ONE 2022, 17, e0271352. [Google Scholar] [CrossRef]
- Hassanpour, H. Image Quality Enhancement Using Pixel-Wise Gamma Correction via Svm Classifier. Int. J. Eng. 2011, 24, 301–312. [Google Scholar] [CrossRef]
- Ali, J.; Wang, L.; Waseem, H.; Djellabi, R.; Oladoja, N.A.; Pan, G. FeS@ RGO Nanocomposites as Electrocatalysts for Enhanced Chromium Removal and Clean Energy Generation by Microbial Fuel Cell. Chem. Eng. J. 2020, 384, 123335. [Google Scholar] [CrossRef]
- Ullah, Z.; Zeshan, S. Effect of Substrate Type and Concentration on the Performance of a Double Chamber Microbial Fuel Cell. Water Sci. Technol. 2020, 81, 1336–1344. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, M.; Ahmad, A.; Das, S.; Ghangrekar, M.M. Metal Organic Frameworks as Emergent Oxy-Gen-Reducing Cathode Catalysts for Microbial Fuel Cells: A Review. Int. J. Environ. Sci. Technol. 2021, 19, 1–22. [Google Scholar]
- Koo, B.; Jung, S.P. Improvement of Air Cathode Performance in Microbial Fuel Cells by Using Catalysts Made by Binding Metal-Organic Framework and Activated Carbon through Ultrasonication and Solution Precipitation. Chem. Eng. J. 2021, 424, 130388. [Google Scholar] [CrossRef]
- Kebaili, H.; Kameche, M.; Innocent, C.; Ziane, F.Z.; Sabeur, S.A.; Sahraoui, T.; Ouis, M.; Zerrouki, A.; Charef, M.A. Treatment of Fruit Waste Leachate Using Microbial Fuel Cell: Preservation of Agricultural Environment. Sheng Tai Xue Bao 2021, 41, 97–105. [Google Scholar] [CrossRef]
- Gautam, R.; Nayak, J.K.; Talapatra, K.N.; Ghosh, U.K. Assessment of Different Organic Substrates for Bio-Electricity and Bio-Hydrogen Generation in an Integrated Bio-Electrochemical System. Mater. Today 2021, 6, 223. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Bin Abu Bakar, M.A.; Kim, H.-C.; Ahmad, A.; Alshammari, M.B.; Yaakop, A.S. Oxidation of Food Waste as an Organic Substrate in a Single Chamber Microbial Fuel Cell to Remove the Pollutant with Energy Generation. Sustain. Energy Technol. Assess. 2022, 52, 102282. [Google Scholar] [CrossRef]
- Azizul Moqsud, M. Bioelectricity from Organic Solid Waste. In Strategies of Sustainable Solid Waste Management [Working Title]; Saleh, H.M., Ed.; IntechOpen: London, UK, 2021. [Google Scholar]
- Idrovo Yulan, C.G. Análisis de Flavonoides En Ilex Guayusa Loes. (Guayusa) y Cáscaras de Hylocereus undatus (Pitahaya Roja) con Técnicas Instrumentales para Su Posible Aplicación en Productos Farmacéuticos; Universidad Politécnica Salesiana: Quenca, Equador, 2022; Available online: http://dspace.ups.edu.ec/handle/123456789/23666 (accessed on 20 March 2023).
- Pires, I.V.; Sakurai, Y.C.N.; Ferreira, N.R.; Moreira, S.G.C.; da Cruz Rodrigues, A.M.; da Silva, L.H.M. Elaboration and Characterization of Natural Deep Eutectic Solvents (NADESs): Application in the Extraction of Phenolic Compounds from Pitaya. Molecules 2022, 27, 8310. [Google Scholar] [CrossRef]
- Dai, X.; Thi Hong Nhung, N.; Hamza, M.F.; Guo, Y.; Chen, L.; He, C.; Ning, S.; Wei, Y.; Dodbiba, G.; Fujita, T. Selective Adsorption and Recovery of Scandium from Red Mud Leachate by Using Phosphoric Acid Pre-Treated Pitaya Peel Biochar. Sep. Purif. Technol. 2022, 292, 121043. [Google Scholar] [CrossRef]
- Azlim, N.A.; Mohammadi Nafchi, A.; Oladzadabbasabadi, N.; Ariffin, F.; Ghalambor, P.; Jafarzadeh, S.; Al-Hassan, A.A. Fabrication and Characterization of a PH-Sensitive Intelligent Film Incorporating Dragon Fruit Skin Extract. Food Sci. Nutr. 2022, 10, 597–608. [Google Scholar] [CrossRef]
- Harimurti, N.; Nasikin, M.; Mulia, K. Water-in-Oil-in-Water Nanoemulsions Containing Temulawak (Curcuma xanthorriza Roxb) and Red Dragon Fruit (Hylocereus polyrhizus) Extracts. Molecules 2021, 26, 196. [Google Scholar] [CrossRef] [PubMed]
- Summons, R.E.; Welander, P.V.; Gold, D.A. Lipid Biomarkers: Molecular Tools for Illuminating the History of Microbial Life. Nat. Rev. Microbiol. 2022, 20, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Kamilari, E.; Stanton, C.; Reen, F.J.; Ross, R.P. Uncovering the Biotechnological Importance of Geotrichum candidum. Foods 2023, 12, 1124. [Google Scholar] [CrossRef]
- Maldonado, R.R. A Review on Geotrichum Lipases: Production, Purification, Immobilization and Applications. Chem. Biochem. Eng. Q. 2017, 30, 439–454. [Google Scholar] [CrossRef]
- Gad, A.M.; Suleiman, W.B.; El-Sheikh, H.H.; Elmezayen, H.A.; Beltagy, E.A. Characterization of Cellulase from Geotrichum candidum Strain Gad1 Approaching Bioethanol Production. Arab. J. Sci. Eng. 2022, 47, 6837–6850. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Rafatullah, M.; Chua, Y.S.; Ahmad, A.; Umar, K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. Materials 2020, 13, 2078. [Google Scholar] [CrossRef]
- Yong, Y.Y.; Dykes, G.; Lee, S.M.; Choo, W.S. Comparative Study of Betacyanin Profile and Antimicrobial Activity of Red Pitahaya (Hylocereus polyrhizus) and Red Spinach (Amaranthus dubius). Plant Foods Hum. Nutr. 2017, 72, 41–47. [Google Scholar] [CrossRef]
- Temak, Y.; Cholke, P.; Mule, A.; Shingade, A.; Narote, S.; Kagde, A.; Lagad, R.; Sake, V. In Vivo and In-Vitro Evaluation of Antimicrobial Activity of Peel Extracts of Red Dragon Fruit (Hylocereus polyrhizus). Res. J. Pharmacogn. Phytochem. 2019, 11, 23. [Google Scholar] [CrossRef]
- Permana, D.; Rosdianti, D.; Ishmayana, S.; Rachman, S.D.; Putra, H.E.; Rahayuningwulan, D.; Hariyadi, H.R. Preliminary Investigation of Electricity Production Using Dual Chamber Microbial Fuel Cell (DCMFC) with Saccharomyces cerevisiae as Biocatalyst and Methylene Blue as an Electron Mediator. Procedia Chem. 2015, 17, 36–43. [Google Scholar] [CrossRef]
- Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Zinovicius, A.; Ramanavicius, A. Baker’s Yeast-Based Microbial Fuel Cell Mediated by 2-Methyl-1,4-Naphthoquinone. Membranes 2021, 11, 182. [Google Scholar] [CrossRef]
- Rozene, J.; Morkvenaite-Vilkonciene, I.; Bruzaite, I.; Dzedzickis, A.; Ramanavicius, A. Yeast-Based Microbial Biofuel Cell Mediated by 9,10-Phenantrenequinone. Electrochim. Acta 2021, 373, 137918. [Google Scholar] [CrossRef]
- Verma, M.; Mishra, V. Recent Trends in Upgrading the Performance of Yeast as Electrode Biocatalyst in Microbial Fuel Cells. Chemosphere 2021, 284, 131383. [Google Scholar] [CrossRef]
- Hassan, R.Y.A.; Bilitewski, U. Direct Electrochemical Determination of Candida albicans Activity. Biosens. Bioelectron. 2013, 49, 192–198. [Google Scholar] [CrossRef]
- Prasad, D.; Arun, S.; Murugesan, M.; Padmanaban, S.; Satyanarayanan, R.S.; Berchmans, S.; Yegnaraman, V. Direct Electron Transfer with Yeast Cells and Construction of a Mediatorless Microbial Fuel Cell. Biosens. Bioelectron. 2007, 22, 2604–2610. [Google Scholar] [CrossRef]
- Adegunloye, D.V.; Olotu, T.M. Generating Electricity Using Microbial Fuel Cell Powered by Benthic Mud Collected from Two Locations in Akure, Nigeria. Eur. Sci. J. 2017, 13, 242. [Google Scholar] [CrossRef]
Organic Waste | Identified Species | bp | Identity (%) | Access Number | Lineage |
---|---|---|---|---|---|
Pitahaya | Geotrichum candidum | 243 | 99.59 | MK381259.1 | cellular organisms; Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomycota; saccharomyceta; Saccharomycotina; Saccharomycetes; Saccharomycetales; Dipodascaceae; Geotrichum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segundo, R.-F.; Benites, S.M.; De La Cruz-Noriega, M.; Vives-Garnique, J.; Otiniano, N.M.; Rojas-Villacorta, W.; Gallozzo-Cardenas, M.; Delfín-Narciso, D.; Díaz, F. Impact of Dragon Fruit Waste in Microbial Fuel Cells to Generate Friendly Electric Energy. Sustainability 2023, 15, 7316. https://doi.org/10.3390/su15097316
Segundo R-F, Benites SM, De La Cruz-Noriega M, Vives-Garnique J, Otiniano NM, Rojas-Villacorta W, Gallozzo-Cardenas M, Delfín-Narciso D, Díaz F. Impact of Dragon Fruit Waste in Microbial Fuel Cells to Generate Friendly Electric Energy. Sustainability. 2023; 15(9):7316. https://doi.org/10.3390/su15097316
Chicago/Turabian StyleSegundo, Rojas-Flores, Santiago M. Benites, Magaly De La Cruz-Noriega, Juan Vives-Garnique, Nélida Milly Otiniano, Walter Rojas-Villacorta, Moisés Gallozzo-Cardenas, Daniel Delfín-Narciso, and Félix Díaz. 2023. "Impact of Dragon Fruit Waste in Microbial Fuel Cells to Generate Friendly Electric Energy" Sustainability 15, no. 9: 7316. https://doi.org/10.3390/su15097316