Modified Cuttlefish Swarm Optimization with Machine Learning-Based Sustainable Application of Solid Waste Management in IoT
Abstract
:1. Introduction
- An intelligent MCSOML-SWM technique composed of an SSD object detector, a MixNet-based feature extraction, an MCSO-based parameter tuning, and an SVM classifier is presented. To the best of our knowledge, the MCSOML-SWM model has never been presented in the literature.
- A novel MCSO algorithm is derived for hyperparameter tuning of the MixNet model.
- Hyperparameter optimization of the MixNet model using MCSO algorithm using cross-validation helps to boost the predictive outcome of the MCSOML-SWM model for unseen data.
2. The Proposed Model
2.1. Object Detection Using SSD Model
2.2. Feature Extraction
2.3. Waste Classification Using SVM Model
3. Performance Validation
4. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fayomi, G.U.; Mini, S.E.; Chisom, C.M.; Fayomi, O.S.I.; Udoye, N.E.; Agboola, O.; Oomole, D. Smart Waste Management for Smart City: Impact on Industrialization. IOP Conf. Ser. Earth Environ. Sci. 2021, 655, 012040. [Google Scholar] [CrossRef]
- Wani, A.; Khaliq, R. SDN-based intrusion detection system for IoT using deep learning classifier (IDSIoT-SDL). CAAI Trans. Intell. Technol. 2021, 6, 281–290. [Google Scholar] [CrossRef]
- Sheng, T.J.; Islam, M.S.; Misran, N.; Baharuddin, M.H.; Arshad, H.; Islam, R.; Chowdhury, M.E.H.; Rmili, H. An Internet of Things Based Smart Waste Management System Using LoRa and Tensorflow Deep Learning Model. IEEE Access 2020, 8, 148793–148811. [Google Scholar] [CrossRef]
- Verma, R.; Kumari, A.; Anand, A.; Yadavalli, V.S.S. Revisiting shift cipher technique for amplified data security. J. Comput. Cogn. Eng. 2022. [Google Scholar] [CrossRef]
- Dhelim, S.; Aung, N.; Kechadi, M.T.; Ning, H.; Chen, L.; Lakas, A. Trust2Vec: Large-Scale IoT Trust Management System Based on Signed Network Embeddings. IEEE Internet Things J. 2022, 10, 553–562. [Google Scholar] [CrossRef]
- Yuvaraj, N.; Praghash, K.; Raja, R.A.; Karthikeyan, T. An Investigation of Garbage Disposal Electric Vehicles (GDEVs) Integrated with Deep Neural Networking (DNN) and Intelligent Transportation System (ITS) in Smart City Management System (SCMS). Wirel. Pers. Commun. 2021, 123, 1733–1752. [Google Scholar] [CrossRef]
- Namasudra, S.; Crespo, R.G.; Kumar, S. Introduction to the special section on advances of machine learning in cybersecurity (VSI-mlsec). Comput. Electr. Eng. 2022, 100, 108048. [Google Scholar] [CrossRef]
- Al-Qudah, R.; Khamayseh, Y.; Aldwairi, M.; Khan, S. The Smart in Smart Cities: A Framework for Image Classification Using Deep Learning. Sensors 2022, 22, 4390. [Google Scholar] [CrossRef]
- Gutub, A. Boosting image watermarking authenticity spreading secrecy from counting-based secret-sharing. CAAI Trans. Intell. Technol. 2022. [Google Scholar] [CrossRef]
- Puli, M.S.; Singarapu Swetha, E.; Anuhya, A.; Reddy, J.S. Urban Street Cleanliness Assessment Using Mobile Edge Computing and Deep Learning. J. Algebraic Stat. 2019, 13, 547–552. [Google Scholar]
- Sarkar, S.; Saha, K.; Namasudra, S.; Roy, P. An efficient and time saving web service based android application. SSRG Int. J. Comput. Sci. Eng. (SSRG-IJCSE) 2015, 2, 18–21. [Google Scholar]
- Malviya, S.; Kumar, P.; Namasudra, S.; Tiwary, U.S. Experience Replay-based Deep Reinforcement Learning for Dialogue Management Optimisation. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2022. [Google Scholar] [CrossRef]
- Habibzadeh, H.; Kaptan, C.; Soyata, T.; Kantarci, B.; Boukerche, A. Smart City System Design: A Comprehensive Study of the Application and Data Planes. ACM Comput. Surv. 2020, 52, 1–38. [Google Scholar] [CrossRef]
- Chen, Z. Research on internet security situation awareness prediction technology based on improved RBF neural network algorithm. J. Comput. Cogn. Eng. 2022, 1, 103–108. [Google Scholar]
- Gokulnath, C.B.; Shantharajah, S.P. An optimized feature selection based on genetic approach and support vector machine for heart disease. Clust. Comput. 2019, 22, 14777–14787. [Google Scholar] [CrossRef]
- Salama, K.M.; Abdelbar, A.M. Learning neural network structures with ant colony algorithms. Swarm Intell. 2015, 9, 229–265. [Google Scholar] [CrossRef]
- Yadav, N.; Yadav, A.; Kumar, M.; Kim, J.H. An efficient algorithm based on artificial neural networks and particle swarm optimization for solution of nonlinear Troesch’s problem. Neural Comput. Appl. 2017, 28, 171–178. [Google Scholar] [CrossRef]
- Alqahtani, F.; Al-Makhadmeh, Z.; Tolba, A.; Said, W. Internet of things-based urban waste management system for smart cities using a Cuckoo Search Algorithm. Clust. Comput. 2020, 23, 1769–1780. [Google Scholar] [CrossRef]
- Malik, M.; Sharma, S.; Uddin, M.; Chen, C.-L.; Wu, C.-M.; Soni, P.; Chaudhary, S. Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models. Sustainability 2022, 14, 7222. [Google Scholar] [CrossRef]
- Alsubaei, F.S.; Al-Wesabi, F.N.; Hilal, A.M. Deep Learning-Based Small Object Detection and Classification Model for Garbage Waste Management in Smart Cities and IoT Environment. Appl. Sci. 2022, 12, 2281. [Google Scholar] [CrossRef]
- Verma, V.; Gupta, D.; Gupta, S.; Uppal, M.; Anand, D.; Ortega-Mansilla, A.; Alharithi, F.S.; Almotiri, J.; Goyal, N. A Deep Learning-Based Intelligent Garbage Detection System Using an Unmanned Aerial Vehicle. Symmetry 2022, 14, 960. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, Z.; Wang, K.; Zou, H.; Xie, L. GarbageNet: A Unified Learning Framework for Robust Garbage Classification. IEEE Trans. Artif. Intell. 2021, 2, 372–380. [Google Scholar] [CrossRef]
- Kumar, A.S.; Buelaevanzalina, K. An efficient classification of kitchen waste using deep learning techniques. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 5751–5762. [Google Scholar]
- Kumar, S.; Yadav, D.; Gupta, H.; Verma, O.P.; Ansari, I.A.; Ahn, C.W. A Novel YOLOv3 Algorithm-Based Deep Learning Approach for Waste Segregation: Towards Smart Waste Management. Electronics 2020, 10, 14. [Google Scholar] [CrossRef]
- Wang, C.; Qin, J.; Qu, C.; Ran, X.; Liu, C.; Chen, B. A smart municipal waste management system based on deep-learning and Internet of Things. Waste Manag. 2021, 135, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Uganya, G.; Rajalakshmi, D.; Teekaraman, Y.; Kuppusamy, R.; Radhakrishnan, A. A Novel Strategy for Waste Prediction Using Machine Learning Algorithm with IoT Based Intelligent Waste Management System. Wirel. Commun. Mob. Comput. 2022, 2022, 2063372. [Google Scholar] [CrossRef]
- Kumar, A.; Zhang, Z.J.; Lyu, H. Object detection in real time based on improved single shot multi-box detector algorithm. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 204. [Google Scholar] [CrossRef]
- Amrutha, E.; Arivazhagan, S.; Jebarani, W.S.L. MixNet: A Robust Mixture of Convolutional Neural Networks as Feature Extractors to Detect Stego Images Created by Content-Adaptive Steganography. Neural Process. Lett. 2022, 54, 853–870. [Google Scholar] [CrossRef]
- Pattnaik, S.; Sahu, P.K. Adaptive Neuro-Fuzzy Inference System-Particle swarm optimization-based clustering approach and hybrid Moth-flame cuttlefish optimization algorithm for efficient routing in wireless sensor network. Int. J. Commun. Syst. 2021, 34, e4783. [Google Scholar] [CrossRef]
- Devikanniga, D.; Ramu, A.; Haldorai, A. Efficient Diagnosis of Liver Disease using Support Vector Machine Optimized with Crows Search Algorithm. EAI Endorsed Trans. Energy Web 2018, 20, 164177. [Google Scholar] [CrossRef]
- Trashnet. Available online: https://awesomeopensource.com/project/garythung/trashnet (accessed on 16 November 2022).
Class | No. of Samples |
---|---|
Glass | 501 |
Paper | 594 |
Plastic | 482 |
Cardboard | 403 |
Trash | 137 |
Metal | 410 |
Total Number of Samples | 2527 |
Epoch-200 | |||||
---|---|---|---|---|---|
Labels | |||||
Glass | 98.54 | 94.62 | 98.20 | 96.38 | 93.01 |
Paper | 97.74 | 95.43 | 94.95 | 95.19 | 90.82 |
Plastic | 98.42 | 95.29 | 96.47 | 95.88 | 92.08 |
Cardboard | 98.73 | 96.96 | 95.04 | 95.99 | 92.29 |
Trash | 98.54 | 91.67 | 80.29 | 85.60 | 74.83 |
Metal | 98.54 | 95.16 | 95.85 | 95.50 | 91.40 |
Average | 98.42 | 94.85 | 93.47 | 94.09 | 89.07 |
Epoch-400 | |||||
---|---|---|---|---|---|
Labels | |||||
Glass | 99.25 | 97.07 | 99.20 | 98.12 | 96.32 |
Paper | 99.13 | 98.81 | 97.47 | 98.14 | 96.34 |
Plastic | 99.37 | 97.94 | 98.76 | 98.35 | 96.75 |
Cardboard | 99.41 | 98.02 | 98.26 | 98.14 | 96.35 |
Trash | 99.49 | 97.69 | 92.70 | 95.13 | 90.71 |
Metal | 99.41 | 98.29 | 98.05 | 98.17 | 96.40 |
Average | 99.34 | 97.97 | 97.41 | 97.67 | 95.48 |
Epoch-600 | |||||
---|---|---|---|---|---|
Labels | |||||
Glass | 98.73 | 95.36 | 98.40 | 96.86 | 93.90 |
Paper | 97.90 | 95.77 | 95.29 | 95.53 | 91.44 |
Plastic | 98.73 | 95.92 | 97.51 | 96.71 | 93.63 |
Cardboard | 98.93 | 96.77 | 96.53 | 96.65 | 93.51 |
Trash | 98.50 | 96.26 | 75.18 | 84.43 | 73.05 |
Metal | 98.42 | 94.05 | 96.34 | 95.18 | 90.80 |
Average | 98.54 | 95.69 | 93.21 | 94.22 | 89.39 |
Epoch-800 | |||||
---|---|---|---|---|---|
Labels | |||||
Glass | 98.85 | 95.38 | 99.00 | 97.16 | 94.48 |
Paper | 97.78 | 96.38 | 94.11 | 95.23 | 90.89 |
Plastic | 98.73 | 96.11 | 97.30 | 96.70 | 93.61 |
Cardboard | 98.85 | 96.98 | 95.78 | 96.38 | 93.01 |
Trash | 98.65 | 93.28 | 81.02 | 86.72 | 76.55 |
Metal | 98.58 | 94.31 | 97.07 | 95.67 | 91.71 |
Average | 98.58 | 95.41 | 94.05 | 94.64 | 90.04 |
Epoch-1000 | |||||
---|---|---|---|---|---|
Labels | |||||
Glass | 98.93 | 95.75 | 99.00 | 97.35 | 94.84 |
Paper | 97.98 | 95.48 | 95.96 | 95.72 | 91.79 |
Plastic | 98.77 | 96.30 | 97.30 | 96.80 | 93.80 |
Cardboard | 98.93 | 97.47 | 95.78 | 96.62 | 93.46 |
Trash | 98.77 | 94.92 | 81.75 | 87.84 | 78.32 |
Metal | 98.69 | 95.86 | 96.10 | 95.98 | 92.27 |
Average | 98.68 | 95.96 | 94.32 | 95.05 | 90.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Duhayyim, M. Modified Cuttlefish Swarm Optimization with Machine Learning-Based Sustainable Application of Solid Waste Management in IoT. Sustainability 2023, 15, 7321. https://doi.org/10.3390/su15097321
Al Duhayyim M. Modified Cuttlefish Swarm Optimization with Machine Learning-Based Sustainable Application of Solid Waste Management in IoT. Sustainability. 2023; 15(9):7321. https://doi.org/10.3390/su15097321
Chicago/Turabian StyleAl Duhayyim, Mesfer. 2023. "Modified Cuttlefish Swarm Optimization with Machine Learning-Based Sustainable Application of Solid Waste Management in IoT" Sustainability 15, no. 9: 7321. https://doi.org/10.3390/su15097321
APA StyleAl Duhayyim, M. (2023). Modified Cuttlefish Swarm Optimization with Machine Learning-Based Sustainable Application of Solid Waste Management in IoT. Sustainability, 15(9), 7321. https://doi.org/10.3390/su15097321