Why Is the Income Effect of Farmland Transfer Inconsistent between Transferred-Out and Transferred-In Households?
Abstract
:1. Introduction
2. Conceptual Framework
2.1. Impact of Farmland Transfer on Transferred-In and Transferred-Out Households without Constraints
2.2. Impact of Farmland Transfer on Transferred-In and Transferred-Out Households with Constraints
3. Data and Method
3.1. Data Source and Description
3.2. Variable Definition and Descriptive Statistics
3.3. Empirical Strategy
4. Empirical Results
4.1. Main Findings
4.2. Robustness Test
4.2.1. Using the Matching Sample to Re-Estimate the Effect of Land Transfer
4.2.2. Instrumented Results
4.3. External Constraints Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Transferred-Out | Transferred-In | Transfer | ||||
---|---|---|---|---|---|---|
Number | Proportion | Number | Proportion | Number | Proportion | |
2013 | 520 | 7.69% | 644 | 9.53% | 1164 | 17.22% |
2015 | 778 | 11.52% | 779 | 11.53% | 1557 | 23.05% |
2017 | 891 | 13.19% | 531 | 7.86% | 1422 | 21.05% |
Variable | Description | Mean | S.D. |
---|---|---|---|
Dependent variables | |||
lnAgriculture | Net income earned by households from agricultural production (CNY) | 4.539 | 5.641 |
lnManagement | Sum of income from agricultural production and business (CNY) | 5.244 | 5.797 |
lnProperty | Income earned by households from their own houses, farmlands, and other properties (CNY) | 2.410 | 2.949 |
lnTransfer | Sum of grain subsidies, machinery-purchase subsidies, and other transfer payments (CNY) | 6.153 | 3.288 |
lnWage | Net income earned by households working locally or in other locations (CNY) | 5.432 | 5.185 |
lnFamilyincome | Family net income. Sum of management, transfer, property, and wage incomes (CNY) | 9.197 | 3.786 |
Independent variables | |||
Transferred-out | =1 if the household transfers out the farmland; =0 otherwise | 0.108 | 0.311 |
Transferred-in | =1 if the household transfers in the farmland; =0 otherwise | 0.096 | 0.295 |
H_Gender | =1 if the household head is male; = 0otherwise | 0.876 | 0.329 |
H_Age | Age of the household head (years) | 53.849 | 12.629 |
H_Edu | Years of schooling of the household head (years) | 7.377 | 3.511 |
Familysize | Number of household members | 3.973 | 1.793 |
Labor | Number of household labor force | 2.778 | 1.451 |
Av_Age | Average age of household members (years) | 42.808 | 14.873 |
Av_Edu | Average years of schooling of the household members (years) | 7.306 | 2.995 |
Av_Farmland | Area of farmland per household member (mu) | 1.691 | 3.011 |
lnAsset | Household net asset (CNY) | 11.094 | 4.566 |
lnPce | Total household consumption (CNY) | 10.068 | 0.883 |
Additional variables | |||
H_Migrant | =1 if the household head is a migrant worker; =0 otherwise | 0.349 | 0.477 |
H_Agriculture | =1 if the household head engages in agricultural production; =0 otherwise | 0.550 | 0.498 |
H_Entrepreneurship | =1 if the household head starts a business; =0 otherwise | 0.102 | 0.302 |
F_Migrant | Number of migrant workers in household i | 0.937 | 1.036 |
F_Agriculture | Number of laborers engaged in agricultural production in household i | 1.327 | 1.165 |
Unmatched | Transferred-In | Non-Transfer | Bias % | Transferred-Out | Non-Transfer | Bias % | |
---|---|---|---|---|---|---|---|
Matched | Mean | Mean | |||||
H_Gender | U | 0.926 | 0.869 | 18.8 | 0.861 | 0.869 | −2.5 |
M | 0.926 | 0.931 | −1.6 | 0.860 | 0.855 | 1.6 | |
H_Age | U | 52.034 | 53.759 | −14.5 | 55.319 | 53.759 | 12.0 |
M | 52.053 | 52.246 | −1.6 | 55.317 | 55.533 | −1.7 | |
H_Edu | U | 7.222 | 7.381 | −4.7 | 7.670 | 7.381 | 8.1 |
M | 7.220 | 7.015 | 6.1 | 7.666 | 7.719 | −1.5 | |
FamilySize | U | 4.290 | 3.985 | 17.3 | 3.694 | 3.985 | −16.3 |
M | 4.289 | 4.330 | −2.3 | 3.699 | 3.664 | 1.9 | |
Labor | U | 3.087 | 2.781 | 22.3 | 2.530 | 2.781 | −16.9 |
M | 3.086 | 3.126 | −2.9 | 2.534 | 2.528 | 0.4 | |
Av_Age | U | 39.633 | 42.676 | −22.2 | 45.280 | 42.676 | 16.8 |
M | 39.644 | 39.668 | −0.2 | 45.227 | 45.582 | −2.3 | |
Av_Edu | U | 7.178 | 7.309 | −4.6 | 7.584 | 7.309 | 9.0 |
M | 7.176 | 7.048 | 4.4 | 7.587 | 7.679 | −3.0 | |
Av_Farmland | U | 2.475 | 1.304 | 36.1 | 2.211 | 1.304 | 29.4 |
M | 2.454 | 2.528 | −2.3 | 2.124 | 1.988 | 4.4 | |
lnAsset | U | 10.579 | 11.090 | −10.2 | 11.588 | 11.090 | 11.9 |
M | 10.593 | 10.530 | 1.3 | 11.585 | 11.579 | 0.1 | |
lnPce | U | 10.105 | 10.058 | 5.5 | 10.108 | 10.058 | 5.6 |
M | 10.104 | 10.070 | 4.1 | 10.109 | 10.137 | −3.2 |
References
- Ellis, F.; Freeman, H.A. Rural livelihoods and poverty reduction strategies in four African countries. J. Dev. Stud. 2004, 40, 1–30. [Google Scholar] [CrossRef]
- Haggblade, S.; Hazell, P.; Reardon, T. The rural non-farm economy: Prospects for growth and poverty reduction. World Dev. 2010, 38, 1429–1441. [Google Scholar] [CrossRef]
- Ricker-Gilbert, J.; Chamberlin, J.; Kanyamuka, J.; Jumbe, C.B.; Lunduka, R.; Kaiyatsa, S. How do informal farmland rental markets affect smallholders’ well-being? Evidence from a matched tenant–landlord survey in Malawi. Agric. Econ. 2019, 50, 595–613. [Google Scholar] [CrossRef]
- Kijima, Y.; Tabetando, R. Efficiency and equity of rural land markets and the impact on income: Evidence in Kenya and Uganda from 2003 to 2015. Land Use Policy 2020, 91, 104416. [Google Scholar] [CrossRef]
- Zhang, J.; Mishra, A.K.; Zhu, P.; Li, X. Land rental market and agricultural labor productivity in rural China: A mediation analysis. World Dev. 2020, 135, 105089. [Google Scholar] [CrossRef]
- Deininger, K.; Jin, S.; Xia, F.; Huang, J. Moving off the farm: Land institutions to facilitate structural transformation and agricultural productivity growth in China. World Dev. 2014, 59, 505–520. [Google Scholar] [CrossRef]
- Han, W.; Zhang, Z.; Zhang, X.; He, L. Farmland rental participation, agricultural productivity, and household income: Evidence from rural China. Land 2021, 10, 899. [Google Scholar] [CrossRef]
- Peng, K.; Yang, C.; Chen, Y. Land transfer in rural China: Incentives, influencing factors and income effects. Appl. Econ. 2020, 52, 5477–5490. [Google Scholar] [CrossRef]
- Jin, S.; Jayne, T.S. Land rental markets in Kenya: Implications for efficiency, equity, household income, and poverty. Land Econ. 2013, 89, 246–271. [Google Scholar] [CrossRef]
- Chari, A.; Liu, E.M.; Wang, S.Y.; Wang, Y. Property rights, land misallocation, and agricultural efficiency in China. Rev. Econ. Stud. 2021, 88, 1831–1862. [Google Scholar] [CrossRef]
- Chen, C. Untitled land, occupational choice, and agricultural productivity. Am. Econ. J. Macroecon. 2017, 9, 91–121. [Google Scholar] [CrossRef]
- Restuccia, D.; Rogerson, R. The causes and costs of misallocation. J. Econ. Perspect. 2017, 31, 151–174. [Google Scholar] [CrossRef]
- Adamopoulos, T.; Restuccia, D. Land reform and productivity: A quantitative analysis with micro data. Am. Econ. J. Macroecon. 2020, 12, 1–39. [Google Scholar] [CrossRef]
- Adamopoulos, T.; Brandt, L.; Leight, J.; Restuccia, D. Misallocation, selection, and productivity: A quantitative analysis with panel data from China. Econometrica 2022, 90, 1261–1282. [Google Scholar] [CrossRef]
- Gao, X.; Shi, X.; Fang, S. Property rights and misallocation: Evidence from land certification in China. World Dev. 2021, 147, 105632. [Google Scholar] [CrossRef]
- Li, R.; Li, Q.; Lv, X.; Zhu, X. The land rental of Chinese rural households and its welfare effects. China Econ. Rev. 2019, 54, 204–217. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Tran, V.T.; Nguyen, T.T.; Grote, U. Farming efficiency, cropland rental market and income effect: Evidence from panel data for rural Central Vietnam. Eur. Rev. Agric. Econ. 2021, 48, 207–248. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, S.; Heerink, N.; Qu, F.; Kuyvenhoven, A. How do land rental markets affect household income? Evidence from rural Jiangsu, PR China. Land Use Policy 2018, 74, 151–165. [Google Scholar] [CrossRef]
- Geng, N.; Gao, Z.; Sun, C.; Wang, M. How do farmland rental markets affect farmers’ income? Evidence from a matched renting-in and renting-out household survey in Northeast China. PLoS ONE 2021, 16, e0256590. [Google Scholar] [CrossRef]
- Chamberlin, J.; Ricker-Gilbert, J. Participation in rural land rental markets in Sub-Saharan Africa: Who benefits and by how much? Evidence from Malawi and Zambia. Am. J. Agric. Econ. 2016, 98, 1507–1528. [Google Scholar] [CrossRef]
- Chavas, J.P.; Shi, G.; Meng, X. Land rental market and rural household efficiency in China. Environ. Dev. Econ. 2021, 27, 103–119. [Google Scholar] [CrossRef]
- Zhao, X. Land and labor allocation under communal tenure: Theory and evidence from China. J. Dev. Econ. 2020, 147, 102526. [Google Scholar] [CrossRef]
- De Janvry, A.; Emerick, K.; Gonzalez-Navarro, M.; Sadoulet, E. Delinking land rights from land use: Certification and migration in Mexico. Am. Econ. Rev. 2015, 105, 3125–3149. [Google Scholar] [CrossRef]
- Gao, L.; Sun, D.; Ma, C. The impact of farmland transfers on agricultural investment in China: A perspective of transaction cost economics. China World Econ. 2019, 27, 93–109. [Google Scholar] [CrossRef]
- Min, S.; Waibel, H.; Huang, J. Smallholder participation in the land rental market in a mountainous region of Southern China: Impact of population aging, land tenure security and ethnicity. Land Use Policy 2017, 68, 625–637. [Google Scholar] [CrossRef]
- Su, B.; Li, Y.; Li, L.; Wang, Y. How does nonfarm employment stability influence farmers’ farmland transfer decisions? Implications for China’s land use policy. Land Use Policy 2018, 74, 66–72. [Google Scholar] [CrossRef]
- Aguilar-Støen, M.; Taylor, M.; Castellanos, E. Agriculture, land tenure and international migration in rural Guatemala. J. Agrar. Chang. 2016, 16, 123–144. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, W.; Zhou, W.; Zhang, X.; Zuo, J. The effect on poverty alleviation and income increase of rural land consolidation in different models: A China study. Land Use Policy 2020, 99, 104989. [Google Scholar] [CrossRef]
- D’Agostino, R.B., Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat. Med. 1998, 17, 2265–2281. [Google Scholar] [CrossRef]
- Tabellini, M. Gifts of the immigrants, woes of the natives: Lessons from the age of mass migration. Rev. Econ. Stud. 2020, 87, 454–486. [Google Scholar] [CrossRef]
- Démurger, S.; Xu, H. Return migrants: The rise of new entrepreneurs in rural China. World Dev. 2011, 39, 1847–1861. [Google Scholar] [CrossRef]
- Kung, J.K.S. Off-farm labor markets and the emergence of land rental markets in rural China. J. Comp. Econ. 2002, 30, 395–414. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Mi, Y. Land titling and internal migration: Evidence from China. Land Use Policy 2021, 111, 105763. [Google Scholar] [CrossRef]
- Beveren, I.V. Total factor productivity estimation: A practical review. J. Econ. Surv. 2012, 26, 98–128. [Google Scholar] [CrossRef]
- Guirkinger, C.; Boucher, S.R. Credit constraints and productivity in Peruvian agriculture. Agric. Econ. 2008, 39, 295–308. [Google Scholar] [CrossRef]
- Chand, R.; Prasanna, P.A.L.; Singh, A. Farm size and productivity: Understanding the strengths of smallholders and improving their livelihoods. Econ. Political Wkly. 2011, 46, 5–11. [Google Scholar]
- Shita, A.; Kumar, N.; Singh, S. The impact of technology adoption on agricultural productivity in Ethiopia: ARDL approach. Indian J. Econ. Bus. 2019, 19, 255–262. [Google Scholar]
- Foster, A.D.; Mark, R.R. Is There Surplus Labour in Rural India? Centre Discussion Paper No 991; Economic Growth Centre, Yale University: New Haven, CT, USA, 2010. [Google Scholar]
- Thapa, G.; Gaiha, R. Smallholder farming in Asia and the Pacific: Challenges and opportunities. IFAD Conf. New Dir. Smallhold. Agric. 2011, 24, 25. [Google Scholar]
- Amha, W.; Peck, D. Agricultural Finance in Ethiopia: Diagnostic and Recommendation; A Draft Report Submitted to Bill and Melinda Gates Foundation (BMGF); AEMFI: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Amha, W. Meeting the financial needs of smallholder farmers in Ethiopia. In African Smallholders. Food Crops, Markets and Policy; CABI: Wallingford, UK, 2011; pp. 156–188. [Google Scholar]
- Khandker, S.R.; Koolwal, G.B. Does Institutional Finance Matter for Agriculture? Evidence Using Panel Data from Uganda; Bank Policy Research Working Paper No. 6942; World Bank: Wahington, DC, USA, 2014; Available online: https://ssrn.com/abstract=2458730 (accessed on 25 January 2023).
- Dong, F.; Featherstone, A.M. Technical and scale efficiencies for chinese rural credit cooperatives: A bootstrapping approach in data envelopment analysis. J. Chin. Econ. Bus. Stud. 2006, 4, 57–75. [Google Scholar] [CrossRef]
- Yu, C. Entrepreneurship and Credit Constraints: Evidence from Rural Households in China. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=53899fe074aecac2b9b8d246de6fd4496c0ea8fb (accessed on 25 January 2023).
- Luo, M. Rural financial services: The supply and demand situation, issues and strategies. Rural Financ. Credit. Infrastruct. China 2004, 354–360. [Google Scholar]
- Ali, D.A.; Deininger, K.; Duponchel, M. Credit Constraints, Agricultural Productivity, and Rural Nonfarm Participation: Evidence from Rwanda; World Bank Policy Research Working Paper 6769; World Bank: Wahington, DC, USA, 2014; Available online: https://ssrn.com/abstract=2392081 (accessed on 25 January 2023).
- Olagunju, F.I.; Salimonu, K.K. Effect of Adoption Pattern of Fertilizer Technology on Small Scale Farmer’s Productivity in Boluwaduro Local Government. World Rural Obs. 2010, 2, 23–33. [Google Scholar]
- Paul Martin Dontsop, N.; Diagne, A.; Victor Olusegun, O.; Vivian, O. Impact of improved rice technology (NERICA varieties) on income and poverty among rice farming households in Nigeria: A local average treatment effect (LATE) approach. Q. J. Int. Agric. 2011, 50, 267–291. [Google Scholar]
- Adofu, I.; Shaibu, S.O.; Yakubu, S. The economic impact of improved agricultural technology on cassava productivity in Kogi State of Nigeria. Int. J. Food Agric. Econ. (IJFAEC) 2013, 1, 63–74. [Google Scholar]
- Khatun, M.F.; Haider, M.Z. Impact of technology adoption on agricultural productivity. J. Agric. Crops 2016, 2, 87–93. [Google Scholar]
Var | Non-Transfer Households (A) | Transferred-Out Households (B) | Transferred-In Households (C) | Differences in Means (A–B) | Differences in Means (A–C) |
---|---|---|---|---|---|
lnAgriculture | 4.4609 | 3.2992 | 6.2698 | 1.1617 *** | −1.8088 *** |
lnManagement | 5.1452 | 4.4487 | 6.5036 | 0.6966 *** | −1.3584 *** |
lnProperty | 2.0777 | 3.7362 | 1.8385 | −1.6585 *** | 0.2393 *** |
lnTransfer | 6.0581 | 6.3157 | 6.2467 | −0.2577 *** | −0.1886 *** |
lnWage | 5.4827 | 5.8259 | 4.8035 | −0.3432 *** | 0.6793 *** |
lnFamilyincome | 9.1686 | 9.5648 | 8.8430 | −0.3962 *** | 0.3256 *** |
H_Gender | 0.8694 | 0.8565 | 0.9217 | 0.0129 ** | −0.0523 *** |
H_Age | 53.7594 | 55.4405 | 52.2113 | −1.6811 *** | 1.5481 *** |
H_Edu | 7.3813 | 7.5340 | 7.1741 | −0.1527 ** | 0.2072 *** |
Familysize | 3.9848 | 3.6981 | 4.2646 | 0.2868 *** | −0.2798 *** |
Labor | 2.7813 | 2.5310 | 3.0638 | 0.2503 *** | −0.2825 *** |
Av_Age | 42.6758 | 45.4622 | 40.0256 | −2.7864 *** | 2.6502 *** |
Av_Edu | 7.3088 | 7.4486 | 7.1275 | −0.1398 *** | 0.1813 *** |
Av_Farmland | 1.3041 | 2.0467 | 2.4520 | −0.7426 *** | −1.1478 *** |
lnAsset | 11.0896 | 11.4745 | 10.6516 | −0.3849 *** | 0.4379 *** |
lnPce | 10.0582 | 10.0835 | 10.0823 | −0.0253 | −0.0242 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
lnAgriculture | lnManagement | lnTransfer | lnProperty | lnWage | lnFamilyincome | |
Transferred-out | −1.519 *** | −0.990 *** | −0.050 | 2.131 *** | 0.740 *** | 0.409 *** |
(0.126) | (0.138) | (0.076) | (0.111) | (0.130) | (0.068) | |
H_Gender | 0.78 *** | 0.822 *** | −0.332 *** | 0.034 | −0.113 | −0.013 |
(0.110) | (0.145) | (0.091) | (0.089) | (0.115) | (0.097) | |
H_Age | 0.014 ** | −0.001 | 0.027 *** | −0.006 ** | −0.013 ** | 0.007 * |
(0.005) | (0.006) | (0.003) | (0.003) | (0.006) | (0.004) | |
H_Edu | −0.015 | −0.006 | 0.057 *** | 0.047 *** | −0.033 * | 0.021 |
(0.022) | (0.024) | (0.011) | (0.012) | (0.020) | (0.014) | |
FamilySize | 0.113 ** | 0.093 * | 0.605 *** | −0.059 ** | 0.034 | 0.111 *** |
(0.046) | (0.051) | (0.036) | (0.024) | (0.056) | (0.035) | |
Labor | 0.358 *** | 0.294 *** | −0.538 *** | 0.001 | 0.946 *** | 0.186 *** |
(0.054) | (0.063) | (0.040) | (0.027) | (0.052) | (0.045) | |
Av_Age | 0.007 | 0.007 | 0.056 *** | 0.006 ** | −0.051 *** | 0.003 |
(0.006) | (0.006) | (0.003) | (0.003) | (0.006) | (0.004) | |
Av_Edu | −0.103 *** | −0.043 | −0.039 ** | 0.092 *** | 0.245 *** | 0.076 *** |
(0.025) | (0.028) | (0.017) | (0.014) | (0.027) | (0.014) | |
Av_Farmland | 0.218 *** | 0.156 *** | 0.054 *** | 0.015 | −0.109 *** | −0.016 |
(0.044) | (0.031) | (0.015) | (0.013) | (0.029) | (0.013) | |
lnAsset | 0.032 *** | 0.076 *** | 0.009 | 0.097 *** | 0.030 *** | 0.044 *** |
(0.012) | (0.012) | (0.006) | (0.006) | (0.009) | (0.009) | |
lnPce | −0.014 | 0.494 *** | 0.321 *** | 0.567 *** | 0.052 | 0.386 *** |
(0.071) | (0.060) | (0.045) | (0.048) | (0.062) | (0.045) | |
Year FE | Y | Y | Y | Y | Y | Y |
Region FE | Y | Y | Y | Y | Y | Y |
Observations | 14,997 | 14,997 | 14,997 | 14,997 | 14,997 | 14,997 |
R-squared | 0.172 | 0.129 | 0.18 | 0.267 | 0.288 | 0.101 |
F-value | 39.77 | 32,87 | 119.36 | 103.28 | 300.85 | 67.87 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
lnAgriculture | lnManagement | lnTransfer | lnProperty | lnWage | lnFamilyincome | |
Transferred-in | 0.956 *** | 0.640 *** | 0.194 *** | 0.047 | −0.897 *** | −0.529 *** |
(0.153) | (0.150) | (0.068) | (0.065) | (0.126) | (0.102) | |
H_Gender | 0.797 *** | 0.712 *** | −0.315 *** | −0.018 | −0.004 | 0.015 |
(0.124) | (0.149) | (0.088) | (0.091) | (0.126) | (0.099) | |
H_Age | 0.010 * | −0.001 | 0.027 *** | −0.010 *** | −0.008 | 0.010 ** |
(0.006) | (0.006) | (0.003) | (0.003) | (0.006) | (0.004) | |
H_Edu | −0.002 | 0.000 | 0.062 *** | 0.029 *** | −0.031 | 0.021 |
(0.024) | (0.025) | (0.013) | (0.011) | (0.02) | (0.016) | |
FamilySize | 0.117 ** | 0.103 ** | 0.562 *** | −0.044 ** | 0.000 | 0.087 ** |
(0.049) | (0.052) | (0.034) | (0.022) | (0.051) | (0.035) | |
Labor | 0.281 *** | 0.208 *** | −0.466 *** | −0.026 | 1.02 *** | 0.173 *** |
(0.060) | (0.066) | (0.039) | (0.028) | (0.055) | (0.051) | |
Av_Age | 0.005 | 0.003 | 0.055 *** | 0.008 *** | −0.043 *** | 0.000 |
(0.006) | (0.007) | (0.003) | (0.003) | (0.006) | (0.004) | |
Av_Edu | −0.085 *** | −0.021 | −0.05 *** | 0.106 *** | 0.252 *** | 0.081 *** |
(0.027) | (0.030) | (0.018) | (0.013) | (0.025) | (0.018) | |
Av_Farmland | 0.229 *** | 0.179 *** | 0.064 *** | 0.001 | −0.136 *** | −0.017 |
(0.051) | (0.040) | (0.021) | (0.012) | (0.034) | (0.016) | |
lnAsset | 0.043 *** | 0.074 *** | 0.011 * | 0.089 *** | 0.038 *** | 0.048 *** |
(0.012) | (0.012) | (0.006) | (0.005) | (0.009) | (0.010) | |
lnPce | 0.034 | 0.438 *** | 0.341 *** | 0.588 *** | 0.100 | 0.392 *** |
(0.076) | (0.066) | (0.048) | (0.052) | (0.065) | (0.053) | |
Year FE | Y | Y | Y | Y | Y | Y |
Region FE | Y | Y | Y | Y | Y | Y |
Observations | 15,093 | 15,093 | 15,093 | 15,093 | 15,093 | 15,093 |
R-squared | 0.165 | 0.134 | 0.179 | 0.222 | 0.269 | 0.09 |
F-value | 19.75 | 25.64 | 96.74 | 54.06 | 274.27 | 49.75 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
lnAgriculture | lnManagement | lnTransfer | lnProperty | lnWage | lnFamilyincome | |
Transferred-in Households | ||||||
t − 4 | 0.372 | 0.162 | 0.209 | 0.183 | 0.222 | 0.02 |
(0.312) | (0.307) | (0.183) | (0.177) | (0.339) | (0.215) | |
t − 2 | ||||||
t | 0.874 *** | 0.646 *** | 0.263 *** | 0.005 | −0.619 *** | −0.237 * |
(0.179) | (0.177) | (0.088) | (0.068) | (0.135) | (0.136) | |
t + 2 | 0.917 *** | 0.586 *** | −0.047 | 0.064 | −0.731 *** | −0.743 *** |
(0.223) | (0.223) | (0.106) | (0.076) | (0.154) | (0.176) | |
t + 4 | 0.636 ** | 0.388 | 0.407 *** | 0.149 | −0.856 *** | −0.43 ** |
(0.261) | (0.261) | (0.11) | (0.103) | (0.207) | (0.168) | |
Transferred-out Households | ||||||
t − 4 | −0.314 | −0.053 | −0.071 | 0.154 | 0.557 *** | 0.267 ** |
(0.202) | (0.207) | (0.143) | (0.126) | (0.216) | (0.113) | |
t − 2 | ||||||
t | −1.316 *** | −0.909 *** | 0.041 | 2.679 *** | 0.584 *** | 0.465 *** |
(0.128) | (0.142) | (0.085) | (0.085) | (0.119) | (0.078) | |
t + 2 | −1.155 *** | −0.705 *** | −0.037 | 1.341 *** | 0.357 ** | 0.35 *** |
(0.157) | (0.178) | (0.107) | (0.102) | (0.14) | (0.1) | |
t + 4 | −1.76 *** | −1.305 *** | −0.052 | 1.026 *** | 0.775 *** | 0.019 |
(0.209) | (0.233) | (0.135) | (0.149) | (0.188) | (0.129) | |
Covariates | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y |
Region FE | Y | Y | Y | Y | Y | Y |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
lnAgriculture | lnManagement | lnTransfer | lnProperty | lnWage | lnFamilyincome | |
Transferred-out | −1.396 *** | −0.904 *** | −0.109 | 2.243 *** | 0.621 *** | 0.352 *** |
(0.155) | (0.168) | (0.093) | (0.086) | (0.137) | (0.099) | |
Transferred-in | 0.683 *** | 0.474 *** | 0.107 | 0.056 | −0.707 *** | −0.543 *** |
(0.168) | (0.170) | (0.089) | (0.073) | (0.142) | (0.125) | |
Covariates | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y |
Region FE | Y | Y | Y | Y | Y | Y |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
lnAgriculture | lnManagement | lnTransfer | lnProperty | lnWage | lnFamilyincome | |
Panel A: Second-Stage Results | ||||||
Transferred-out | −2.622 *** | −0.796 | −0.664 | 3.538 *** | 1.522 ** | 0.674 * |
(0.795) | (0.840) | (0.473) | (0.467) | (0.67) | (0.386) | |
Transferred-in | 4.282 *** | 3.243 *** | 1.026 ** | −761 ** | −2.434 *** | −0.134 |
(0.997) | (0.941) | (0.439) | (0.377) | (0.698) | (0.54) | |
Panel B: First-Stage Results | ||||||
Transferred-out | Transferred-in | |||||
Percentage | −1.104 *** | −1.499 *** | ||||
(0.145) | (0.167) | |||||
K-P F Value | 58.196 | 80.263 | ||||
Covariates | Y | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y | Y |
Region FE | Y | Y | Y | Y | Y | Y |
Panel A. Relevant regression results | ||||||
(1) | (2) | (3) | (4) | (5) | ||
TFP | TFP | TFP | TFP | Credit Constraints | ||
Transferred-in | −0.015 | 0.066 *** | ||||
(0.025) | (0.012) | |||||
Transferred-in * hills | −0.017 | |||||
(0.040) | ||||||
Transferred-in * plains | 0.002 | |||||
(0.042) | ||||||
Transferred-in * others | −0.065 | |||||
(0.065) | ||||||
Covariates | Y | Y | Y | Y | Y | |
Year FE | Y | Y | Y | Y | Y | |
Region FE | Y | Y | Y | Y | Y | |
Panel B. Descriptive statistics of the cultivation scale | ||||||
Cultivation Scale (Non-transfer) | Cultivation Scale (Transferred-in) | |||||
Mean | Median | Maximum | Mean | Median | Maximum | |
2013 | 7.520 | 5.000 | 315.000 | 29.084 | 14.000 | 580.000 |
2015 | 7.609 | 5.000 | 315.000 | 27.543 | 12.000 | 455.000 |
2017 | 7.769 | 5.000 | 315.000 | 28.813 | 12.500 | 500.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, L.; Cheng, S.; Chen, D.; Li, Y. Why Is the Income Effect of Farmland Transfer Inconsistent between Transferred-Out and Transferred-In Households? Sustainability 2023, 15, 7379. https://doi.org/10.3390/su15097379
Ke L, Cheng S, Chen D, Li Y. Why Is the Income Effect of Farmland Transfer Inconsistent between Transferred-Out and Transferred-In Households? Sustainability. 2023; 15(9):7379. https://doi.org/10.3390/su15097379
Chicago/Turabian StyleKe, Lian, Shan Cheng, Diqiang Chen, and Ying Li. 2023. "Why Is the Income Effect of Farmland Transfer Inconsistent between Transferred-Out and Transferred-In Households?" Sustainability 15, no. 9: 7379. https://doi.org/10.3390/su15097379
APA StyleKe, L., Cheng, S., Chen, D., & Li, Y. (2023). Why Is the Income Effect of Farmland Transfer Inconsistent between Transferred-Out and Transferred-In Households? Sustainability, 15(9), 7379. https://doi.org/10.3390/su15097379