Phytochemical Analysis of the Aerial Parts of Campanula pelviformis Lam. (Campanulaceae): Documenting the Dietary Value of a Local Endemic Plant of Crete (Greece) Traditionally Used as Wild Edible Green
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Collection, Botanical Identification
2.2. General Experimental Procedures
2.3. Extraction, Isolation and Identification of Secondary Metabolites
2.4. Inductively Coupled Plasma-Optical Emission Spectrometry Analysis
2.5. Examination of the Nutrient Content of Plant Material
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Psaroudaki, A.; Dimitropoulakis, P.; Constantinidis, T.; Katsiotis, A.; Skaracis, G. Ten indigenous edible plants and their participation in the diet of the inhabitants of Eastern Crete nowadays. Cult. Agric. Food Environ. 2012, 34, 172–177. [Google Scholar] [CrossRef]
- Psaroudaki, A. Native Greens and Vegetables of Eastern Crete, 1st ed.; Publication of the Municipality of Siteia: Siteia-Crete, Greece, 2018. [Google Scholar]
- Vardavas, C.I.; Majchrzak, D.; Wagner, K.H.; Elmadfa, I.; Kafatos, A. Lipid concentrations of wild edible greens in Crete. Food Chem. 2006, 99, 822–834. [Google Scholar] [CrossRef]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef]
- Ranfa, A.; Bodesmo, M. An Ethnobotanical investigation of traditional knowledge and uses of edible wild plants in the Umbria Region, Central Italy. J. Appl. Bot. Food Qual. 2017, 90, 246–258. [Google Scholar] [CrossRef]
- Karik, U.; Eryigitz, T.; Tunçtürk, R.; Tunçtürk, M. The mineral and nutrient contents of some edible wild plants grown in rural environment of Eastern Anatolia, Turkey. Fresenius Environ. Bull. 2018, 27, 9076–9082. [Google Scholar]
- Taskin, T.; Bitis, L. In vitro antioxidant activity of eight wild edible plants in Bursa province of Turkey. Farmacia 2016, 64, 706–711. [Google Scholar]
- Redzic, S.J. Wild Edible Plants and Their Traditional Use in the Human Nutrition in Bosnia-Herzegovina. Ecol. Food Nutr. 2006, 45, 189–232. [Google Scholar] [CrossRef]
- Targan, Ş.; Yelboğa, E.; Cittan, M. Macro and trace element contents of some wild plants consumed as vegetable in Manisa District. Turkey. J. Turkish Chem. Soc. 2018, 5, 751–762. [Google Scholar] [CrossRef]
- Fomina, T.; Kukushkina, T. Flowers of Campanula species as a source of biologically active substances. BIO Web Conf. 2021, 38, 00033. [Google Scholar] [CrossRef]
- Libiad, M.; Khabbach, A.; El Haissoufi, M.; Anestis, I.; Lamchouri, F.; Bourgou, S.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Greveniotis, V.; Tsiripidis, I.; et al. Agro-Alimentary Potential of the Neglected and Underutilized Local Endemic Plants of Crete (Greece), Rif-Mediterranean Coast of Morocco and Tunisia: Perspectives and Challenges. Plants 2021, 10, 1770. [Google Scholar] [CrossRef] [PubMed]
- Bourgou, S.; Ben Haj Jilani, I.; Karous, O.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Libiad, M.; Khabbach, A.; El Haissoufi, M.; Lamchouri, F.; Greveniotis, V.; et al. Medicinal-Cosmetic Potential of the Local Endemic Plants of Crete (Greece), Northern Morocco and Tunisia: Priorities for Conservation and Sustainable Exploitation of Neglected and Underutilized Phytogenetic Resources. Biology 2021, 10, 1344. [Google Scholar] [CrossRef]
- Krigas, N.; Tsoktouridis, G.; Anestis, I.; Khabbach, A.; Libiad, M.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Lamchouri, F.; Tsiripidis, I.; Tsiafouli, M.A.; et al. Exploring the Potential of Neglected Local Endemic Plants of Three Mediterranean Regions in the Ornamental Sector: Value Chain Feasibility and Readiness Timescale for Their Sustainable Exploitation. Sustainability 2021, 13, 2539. [Google Scholar] [CrossRef]
- Strid, A.; Tan, K. Flora Hellenica. Vol. 1; Koeltz Scientific Books: Königstein, Germany, 1997. [Google Scholar]
- Strid, A.; Tan, K. Flora Hellenica. Vol. 2; Gantner Verlag: Ruggell, Liechtenstein, 2002. [Google Scholar]
- Turland, N.J.; Chilton, L. Flora of the Cretan Area; Press, R.J., Ed.; The Natural History Museum London: London, UK, 1993; pp. 70–252. [Google Scholar]
- Shivraj, H.N.; Khobragade, C.N.N. Determination of nutritive value and mineral elements of some important medicinal plants from Western part of India. J. Med. Plants. 2009, 8, 79–88. [Google Scholar]
- Xie, M.; Liu, J.; Yan, Z.; Li, X.; Yang, X.; Jin, H.; Suc, A.; Qin, B. Bio-guided isolation of plant growth regulators from allelopathic plant-Codonopsis pilosula: Phyto-selective activities and mechanisms. RSC Adv. 2018, 8, 13649–13655. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Murakami, T.; Kishi, A.; Sakurama, T.; Matsuda, H.; Nomura, M.; Matsuda, H.; Kubo, M. Novel indole S,O-bisdesmoside, calanthoside, the precursor glycoside of tryptanthrin, indirubin, and isatin, with increasing skin blood flow promoting effects, from two Calanthe species (Orchidaceae). Chem. Pharm. Bull. 1998, 46, 886–888. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.X.; Ma, W.G.; Wei, H.X.; Zhang, L.X. Glycosides from Wahlenbergia marginata. Phytochemistry 1998, 48, 1245–1250. [Google Scholar] [CrossRef]
- Ni, J.C.; Shi, J.T.; Tan, Q.W.; Chen, Q.J. Two new compounds from the fruit of Ailanthus altissima. Nat. Prod. Res. 2019, 33, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Tsiftsoglou, O.S.; Lazari, D.; Stefanakis, M.K.; Kokkalou, E. Flavonoids and phenolic acids from the aerial parts of Alyssum alyssoides L. (Brassicaceae). Biochem. Syst. Ecol. 2019, 83, 51–53. [Google Scholar] [CrossRef]
- Pardede, A.; Adfa, M.; Kusnanda, A.J.; Ninomiya, M.; Koketsu, M. Flavonoid rutinosides from Cinnamomum parthenoxylon leaves and their hepatoprotective and antioxidant activity. Med. Chem. Res. 2017, 26, 2074–2079. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Shimada, H.; Saka, M.; Yoshizumi, S.; Yamahara, J.; Matsuda, H. Medicinal Foodstuffs. V Moroheya (1): Absolute stereostructures of corchoionosides A, B and C, histamine inhibitors from the leaves of Vietnamese Corchorus olitorius L. (Tiliaceae). Chem. Pharm. Bull. 1997, 45, 464–469. [Google Scholar] [CrossRef]
- Cuendet, M.; Potterat, O.; Hostettmann, K. Flavonoids and phenylpropanoid derivatives from Campanula barbata. Phytochemistry 2001, 56, 631–636. [Google Scholar] [CrossRef]
- Teslov, L.S.; Koretskaya, L.N.; Tsareva, G.I. Phenolic compounds of Campanula rotundifolia and C. persicifolia. Chem. Nat. Compd. 1983, 19, 367. [Google Scholar] [CrossRef]
- Teslov, L.S. Flavonoid glycosides of Campanula persicifolia. Chem. Nat. Compd. 1990, 26, 223. [Google Scholar] [CrossRef]
- Touafek, O.; Kabouche, Z.; Brouard, I.; Bermejo, J.B. Flavonoids of Campanula alata and their antioxidant activity. Chem. Nat. Compd. 2011, 46, 968–970. [Google Scholar] [CrossRef]
- Dumlu, M.U.; Gurkan, E.; Tuzlaci, E. Chemical composition and antioxidant activity of Campanula alliariifolia. Nat. Prod. Res. 2008, 22, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Dzhumyrko, S.F. Rutin from Campanula oblongifolia. Chem. Nat. Compd. 1970, 6, 655. [Google Scholar] [CrossRef]
- Lin, T.C.; Ando, M.; Lin, F.L.; Ishimaru, K. Polyacetylenes in hairy root cultures of Campanula lactiflora. J. Chin. Pharm. Sci. 2002, 54, 53–56. [Google Scholar]
- Tanaka, N.; Matsuura, E.; Terahara, N.; Ishimaru, K. Secondary metabolites in transformed root cultures of Campanula glomerata. J. Plant Physiol. 1999, 155, 251–254. [Google Scholar] [CrossRef]
- Tada, H.; Nakashima, T.; Kunitake, H.; Mori, K.; Tanaka, M.; Ishimaru, K. Polyacetylenes in Hairy Root Cultures of Campanula medium L. J. Plant Physiol. 1996, 147, 617–619. [Google Scholar] [CrossRef]
- Qi, Y.; Choi, S.-I.; Son, S.-R.; Han, H.-S.; Ahn, H.S.; Shin, Y.-K.; Lee, S.H.; Lee, K.-T.; Kwon, H.C.; Jang, D.S. Chemical Constituents of the Leaves of Campanula takesimana (Korean Bellflower) and Their Inhibitory Effects on LPS-induced PGE2 Production. Plants 2020, 9, 1232. [Google Scholar] [CrossRef] [PubMed]
- Mutha, R.E.; Tatiya, A.U.; Surana, S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Futur. J. Pharm. Sci. 2021, 7, 25. [Google Scholar] [CrossRef]
- Ishimaru, K.; Yonemitsu, H.; Shimomura, K. Lobetyolin and lobetyol from hairy root culture of Lobelia inflata. Phytochemistry 1991, 30, 2255–2257. [Google Scholar] [CrossRef]
- Ishimaru, K.; Osabe, M.; Yan, L.; Fujioka, T.; Mihashi, K.; Tanaka, N. Polyacetylene glycosides from Pratia nummularia cultures. Phytochemistry 2003, 62, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.P.; Liu, Y.F.; Guo, Q.L.; Shi, J.G. C14-polyacetylenol glycosides from the roots of Codonopsis pilosula. J. Asian Nat. Prod. Res. 2015, 17, 1166–1179. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, L.; Wang, M.; Wang, Z.; Li, F. Two new polyacetylene glycosides from the roots of Codonopsis tangshen Oliv. Nat. Prod. Res. 2016, 30, 2338–2343. [Google Scholar] [CrossRef]
- Mei, R.Q.; Lu, Q.; Hu, Y.F.; Liu, H.Y.; Bao, F.K.; Zhang, Y.; Cheng, Y.X. Three new polyyne (=polyacetylene) glucosides from the edible roots of Codonopsis cordifolioidea. Helv. Chim. Acta 2008, 91, 90–96. [Google Scholar] [CrossRef]
- Kim, H.J.; Son, C.D.; Kim, H.J.; Choi, K.; Oh, S.H.; Kang, S.H. The chemotaxonomic classification of Korean Campanulaceae based on triterpene, sterol, and polyacetylene contents. Biochem. Syst. Ecol. 2017, 74, 11–18. [Google Scholar] [CrossRef]
- Bailly, C. Anticancer Properties of lobetyolin, an essential component of radix Codonopsis (Dangshen). Nat. Prod. Bioprospect. 2021, 11, 143–153. [Google Scholar] [CrossRef]
- He, W.; Tao, W.; Zhang, F.; Jie, Q.; He, Y.; Zhu, W.; Tan, J.; Shen, W.; Li, L.; Yang, Y.; et al. Lobetyolin induces apoptosis of colon cancer cells by inhibiting glutamine metabolism. J. Cell Mol. Med. 2020, 24, 3359–3369. [Google Scholar] [CrossRef]
- Yoon, I.S.; Cho, S.S. Effects of lobetyolin on xanthine oxidase activity in vitro and in vivo: Weak and mixed inhibition. Nat. Prod. Res. 2021, 35, 1667–1670. [Google Scholar] [CrossRef]
- Li, M.; Li, B.; Hou, Y.; Tian, Y.; Chen, L.; Liu, S.; Zhang, N.; Dong, J. Anti-inflammatory effects of chemical components from Ginkgo biloba L. male flowers on lipopolysaccharide-stimulated RAW264.7 macrophages. Phytother Res. 2019, 33, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Teslov, L.S.; Podushkin, V.Y. Flavonoids of Campanula maleeviim. Chem. Nat. Compd. 1988, 24, 255. [Google Scholar] [CrossRef]
- Shawky, E.; Nada, A.A.; Ibrahim, R.S. Potential role of medicinal plants and their constituents in the mitigation of Sars-Cov-2: Identifying related therapeutic targets using network pharmacology and molecular docking analyses. RSC Adv. 2020, 10, 27961–27983. [Google Scholar] [CrossRef]
- Das, P.; Majumder, R.; Mandal, M.; Basak, P. In-silico approach for identification of effective and stable inhibitors for Covid-19 main protease (Mpro) from flavonoid based phytochemical constituents of Calendula officinalis. J. Biomol. Struct. Dyn. 2021, 39, 6265–6280. [Google Scholar] [CrossRef] [PubMed]
- Al-Zahrani, A.A. Rutin as a promising inhibitor of main protease and other protein targets of COVID-19: In Silico Study. Nat. Prod. Commun. 2020, 15, 1934578X20953951. [Google Scholar] [CrossRef]
- Bhowmik, D.; Nandi, R.; Jagadeesan, R.; Kumar, N.; Prakash, A.; Kumar, D. Identification of potential inhibitors against Sars-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect. Genet. Evol. 2020, 84, 104451. [Google Scholar] [CrossRef]
- Shivanika, C.; Kumar, S.D.; Ragunathan, V.; Tiwari, P.; Sumitha, A.; Devi, P.B. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the Sars-Cov-2 main-protease. J. Biomol. Struct. Dyn. 2020, 83, 585–611. [Google Scholar] [CrossRef]
- Luthar, Z.; Germ, M.; Likar, M.; Golob, A.; Vogel-Mikuš, K.; Pongrac, P.; Kušar, A.; Pravst, I.; Kreft, I. Breeding Buckwheat for increased levels of rutin, quercetin and other bioactive compounds with potential antiviral effects. Plants 2020, 9, 1638. [Google Scholar] [CrossRef] [PubMed]
- Gullon, B.; Lu-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct. 2015, 6, 1399–1417. [Google Scholar] [CrossRef]
- Dar, M.A.; Tabassum, N. Rutin- potent natural thrombolytic agent. Int. Curr. Pharm. J. 2012, 1, 431–435. [Google Scholar] [CrossRef]
- Patel, D.K. Medicinal importance, pharmacological activities and analytical aspects of a flavonoid glycoside ‘Nicotiflorin’ in the medicine. Drug Metab. Bioanal. Lett. Former. 2022, 15, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Teslov, L.S.; Blinova, K.F. Phenolic compounds of Campanula glomerata. Chem. Nat. Compd. 1974, 10, 392. [Google Scholar] [CrossRef]
- Teslov, L.S. Phenolic compounds of the above-ground part of Campanula rapunculoides L. Rastit’ Resur. 1996, 32, 87–92. [Google Scholar]
- Rao, A.S. Isolation, absolute configuration and bioactivities of megastigmanes or C13 isonorterpinoide. Chem. Int. 2017, 3, 69–91. [Google Scholar] [CrossRef]
- He, J.Y.; Ma, N.; Zhu, S.; Komatsu, K.; Li, Z.Y.; Fu, W.M. The genus Codonopsis (Campanulaceae): A review of phytochemistry, bioactivity and quality control. J Nat. Med. 2015, 69, 1–21. [Google Scholar] [CrossRef]
- Radha Kumar, M.; Puri, S.; Pundir, A.; Bangar, S.P.; Changan, S.; Choudhary, P.; Parameswari, E.; Alhariri, A.; Samota, M.K.; Damale, R.D.; et al. Evaluation of Nutritional, Phytochemical, and Mineral Composition of Selected Medicinal Plants for Therapeutic Uses from Cold Desert of Western Himalaya. Plants 2021, 10, 1429. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants—A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar] [CrossRef]
- Siddiqui, K.; Bawazeer, N.; Joy, S.S. Variation in macro and trace elements in progression of type 2 diabetes. Sci. World J. 2014, 2014, 461591. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Dietary reference values for nutrients: Summary report. EFSA Support. Publ. 2017, 14, e15121. [Google Scholar] [CrossRef]
Element | Wavelength | r | LOD (ppm) | LOQ (ppm) | μg/g |
---|---|---|---|---|---|
Al | 396.152 | 0.999989 | 0.002117 | 0.007058 | 82.0503 ± 1.1724 |
As | 189.042 | 0.999999 | 0.002967 | 0.009891 | 0 |
B | 249.773 | 0.999874 | 0.00068 | 0.002266 | 18.6060 ± 0.2760 |
Ba | 455.403 | 0.999849 | 0.000066 | 0.00022 | 77.6779 ± 0.7084 |
Be | 313.042 | 0.999961 | 0.000024 | 0.000081 | 0.0049 ± 0 |
Ca | 396.847 | 0.999714 | 0.000444 | 0.001379 | 13,472.0594 ± 90.3673 |
Cd | 228.802 | 0.999995 | 0.000172 | 0.000574 | 0.0244 ± 0.0024 |
Co | 238.892 | 0.999563 | 0.00103 | 0.003432 | 0.2345 ± 0 |
Cr | 284.325 | 0.999888 | 0.000899 | 0.002997 | 0.3737 ± 0.0412 |
Cu | 324.754 | 0.999936 | 0.000691 | 0.002302 | 12.4358 ± 0.1050 |
Fe | 238.204 | 0.999444 | 0.000667 | 0.002222 | 128.4372 ± 0.5862 |
K | 766.49 | 0.999999 | 0.097327 | 0.324424 | 19,563.5843 ± 90.3799 |
Mg | 279.553 | 0.999996 | 0.00038 | 0.001265 | 1959.0454 ± 22.2286 |
Mn | 259.373 | 0.999526 | 0.000161 | 0.000535 | 23.1470 ± 0.3053 |
Na | 588.995 | 0.999974 | 0.000641 | 0.002136 | 163.2456 ± 1.5144 |
Ni | 231.604 | 0.999983 | 0.000444 | 0.001481 | 6.7956 ± 0.0049 |
P | 213.618 | 0.999997 | 0.004244 | 0.014147 | 2559.9496 ± 7.3281 |
Pb | 216.999 | 0.999985 | 0.008144 | 0.027146 | 0.8867 ± 0.1392 |
Si | 251.611 | 0.999456 | 0.001711 | 0.005702 | 6.0506 ± 0.0390 |
Zn | 202.54 | 0.999963 | 0.000116 | 0.000386 | 45.9228 ± 0.2442 |
Nutrient Content | % |
---|---|
Ash content | 7.92 |
NDF As | 39.94 |
ADF As | 21.15 |
Moisture content | 12.53 |
Crude fat | 2.46 |
Crude protein | 12.90 |
Crude carbohydrate | 64.19 |
Crude fiber | 15.65 |
Nutritive 330.5 cal/100 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiftsoglou, O.S.; Lagogiannis, G.; Psaroudaki, A.; Vantsioti, A.; Mitić, M.N.; Mrmošanin, J.M.; Lazari, D. Phytochemical Analysis of the Aerial Parts of Campanula pelviformis Lam. (Campanulaceae): Documenting the Dietary Value of a Local Endemic Plant of Crete (Greece) Traditionally Used as Wild Edible Green. Sustainability 2023, 15, 7404. https://doi.org/10.3390/su15097404
Tsiftsoglou OS, Lagogiannis G, Psaroudaki A, Vantsioti A, Mitić MN, Mrmošanin JM, Lazari D. Phytochemical Analysis of the Aerial Parts of Campanula pelviformis Lam. (Campanulaceae): Documenting the Dietary Value of a Local Endemic Plant of Crete (Greece) Traditionally Used as Wild Edible Green. Sustainability. 2023; 15(9):7404. https://doi.org/10.3390/su15097404
Chicago/Turabian StyleTsiftsoglou, Olga S., George Lagogiannis, Antonia Psaroudaki, Aikaterina Vantsioti, Milan N. Mitić, Jelena M. Mrmošanin, and Diamanto Lazari. 2023. "Phytochemical Analysis of the Aerial Parts of Campanula pelviformis Lam. (Campanulaceae): Documenting the Dietary Value of a Local Endemic Plant of Crete (Greece) Traditionally Used as Wild Edible Green" Sustainability 15, no. 9: 7404. https://doi.org/10.3390/su15097404
APA StyleTsiftsoglou, O. S., Lagogiannis, G., Psaroudaki, A., Vantsioti, A., Mitić, M. N., Mrmošanin, J. M., & Lazari, D. (2023). Phytochemical Analysis of the Aerial Parts of Campanula pelviformis Lam. (Campanulaceae): Documenting the Dietary Value of a Local Endemic Plant of Crete (Greece) Traditionally Used as Wild Edible Green. Sustainability, 15(9), 7404. https://doi.org/10.3390/su15097404