Prediction of Ship Trajectory in Nearby Port Waters Based on Attention Mechanism Model
Abstract
:1. Introduction
2. Background and Related Studies
2.1. Related Studies of the Trajectory Feature Extraction
2.2. Related Studies of the Trajectory Prediction Method
3. Methodology
3.1. Application of DBSCAN in Trajectory Clustering
- (1)
- Define the neighborhood.Select any trajectory in the trajectory set and define the neighborhood of trajectory as:
- (2)
- Determine the trajectory types.
- (A)
- Core trajectory: for the trajectory , if is full , then the trajectory is the core trajectory. In Equation (1), is the number of trajectories, wherein trajectory is doing so in the neighborhood, and is the density threshold when trajectory is doing so in the neighborhood;
- (B)
- Boundary trajectory: if is full and the trajectory is doing so within a similar threshold at a core trajectory, it is a boundary trajectory;
- (C)
- Noise trajectory: if is full and the trajectory is not doing so under the threshold of any core trajectory, it is a noise trajectory.
- (3)
- Traversing the trajectory set in the neighborhood of trajectory : If they are not assigned to a cluster, assign the cluster label of trajectory to them. If they are core trajectories, access their neighborhood trajectories in turn until there are no more core trajectories in the neighborhood. Repeat the above steps until all trajectories have cluster labels.
3.2. Feature Extraction
3.2.1. Framing in Trajectory
3.2.2. Hierarchical Clustering Based on the Trajectory Groups
- (a)
- Calculate the similarity between adjacent two frames of each trajectory.
- (b)
- Calculate the average similarity between two adjacent frames in the same frame area and save it in the similarity set . The specific is shown in Equation (3).
- (c)
- The two points with the minimum similarity in the set are averaged and merged into the same point, replacing the original point in the trajectory set;
- (d)
- Repeat steps a–c until the number of trajectory points converges to the target point .
3.3. Multi-Trajectory Prediction Based on an Attention Mechanism
4. Experiment
4.1. Data Description
4.2. Evaluation Indicators
4.3. The Result of the DBSCAN and Data Analysis
4.4. The Result of the Feature Extraction
4.4.1. The Result of the Framing
4.4.2. Analysis of the Feature Extraction Results
4.5. Prediction of the Trajectory
4.5.1. Comparative Analysis of the Multi-Trajectory Prediction Results
4.5.2. Comparison the Different Models on New Trajectories
4.5.3. Comparison of the Different Feature the Extraction Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- (1)
- Connect the trajectory to be processed with a straight line from end to end. Set this line as the initial simplified line;
- (2)
- Find the maximum distance metric from the simplified line ;
- (3)
- Compare with the thinning threshold. If , delete all the intermediate points on this curve. If , divide the curve into two parts;
- (4)
- Repeat the above steps until the distance metric from all points to the reduced line is less than threshold.
- (1)
- Calculate the Euclidean metric between two adjacent points. Save the to the similarity set ;
- (2)
- Find two points of the minimum Euclidean metric;
- (3)
- Take the average of two points of the minimum Euclidean metric in the set to replace the original point in the trajectory set;
- (4)
- Repeat steps (1)–(3) until the number of trajectory points converges to the target point .
References
- Qian, L.; Zheng, Y.; Li, L.; Ma, Y.; Zhou, C.; Zhang, D. A New Method of Inland Water Ship Trajectory Prediction Based on Long Short-Term Memory Network Optimized by Genetic Algorithm. Appl. Sci. 2022, 12, 4073. [Google Scholar] [CrossRef]
- Park, J.; Jeong, J.; Park, Y. Ship Trajectory Prediction Based on Bi-LSTM Using Spectral-Clustered AIS Data. J. Mar. Sci. Eng. 2021, 9, 1037. [Google Scholar] [CrossRef]
- Best, R.; Norton, J. A new model and efficient tracker for a target with curvilinear motion. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 1030–1037. [Google Scholar] [CrossRef]
- Inoue, S.; Hirano, M.; Kijima, K.; Takashina, J. A practical calculation method of ship maneuvering motion. Int. Shipbuild. Prog. 1981, 28, 207–222. [Google Scholar] [CrossRef]
- Liu, J.; Shi, G.; Zhu, K. Vessel Trajectory Prediction Model Based on AIS Sensor Data and Adaptive Chaos Differential Evolution Support Vector Regression (ACDE-SVR). Appl. Sci. 2019, 9, 2983. [Google Scholar] [CrossRef]
- Contractor, S.; Roughan, M. Efficacy of Feedforward and LSTM Neural Networks at Predicting and Gap Filling Coastal Ocean Timeseries: Oxygen, Nutrients, and Temperature. Front. Mar. Sci. 2021, 8, 637759. [Google Scholar] [CrossRef]
- Gan, S.; Liang, S.; Li, K.; Deng, J.; Cheng, T. Ship Trajectory Prediction for Intelligent Traffic, Management using Clustering and ANN. In Proceedings of the Ukacc International Conference on Control IEEE, Belfast, UK, 31 August–2 September 2016. [Google Scholar]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Li, X.Y.; Zuo, Y.; Jiang, J. Application of Regression Analysis Using Broad Learning System for Time-Series Forecast of Ship Fuel Consumption. Sustainability 2023, 15, 380. [Google Scholar] [CrossRef]
- Ma, H.; Zuo, Y.; Li, T. Vessel Navigation Behavior Analysis and Multiple-Trajectory Prediction Model Based on AIS Data. J. Adv. Transp. 2022, 2022, 6622862. [Google Scholar] [CrossRef]
- Gao, D.; Zhu, Y.; Zhang, J.; He, Y.; Yan, K.; Yan, B. A novel MP-LSTM method for ship trajectory prediction based on AIS data. Ocean. Eng. 2021, 228, 108956. [Google Scholar] [CrossRef]
- Cho, K.; Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014. [Google Scholar]
- Han, P.; Wang, W.; Shi, Q.; Yang, J. Real-time short-term trajectory prediction based on GRU neural network. In Proceedings of the IEEE/AIAA 38th Digital Avionics Systems Conference, San Diego, CA, USA, 8–12 September 2019. [Google Scholar]
- Han, P.; Wang, W.; Shi, Q.; Yue, J. A combined online-learning model with K-means clustering and GRU neural networks for trajectory prediction. Ad Hoc Netw. 2021, 117, 102476. [Google Scholar] [CrossRef]
- Navarra, G.; Di Lorenzo, E.; Rykaczewski, R.; Capotondi, A. Predictability and empirical dynamics of fisheries time series in the North Pacific. Front. Mar. Sci. 2022, 9, 969319. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, G. A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition. Ocean. Eng. 2019, 172, 456–467. [Google Scholar] [CrossRef]
- Zhao, L.; Shi, G. A method for simplifying ship trajectory based on improved Douglas-Peucker algorithm. Ocean. Eng. 2018, 166, 37–46. [Google Scholar] [CrossRef]
- Zhu, Y.; Zuo, Y.; Li, T. Modeling of ship fuel consumption based on multisource and heterogeneous data: Case study of passenger ship. J. Mar. Sci. Eng. 2021, 9, 273. [Google Scholar] [CrossRef]
- Nguyen, D.; Chan, L.; Ali, M. Vessel trajectory prediction using sequence-to-sequence models over spatial grid. In Proceedings of the ACM International Conference on Distributed and Event-based Systems, Hamilton, New Zealand, 25–29 June 2018. [Google Scholar]
- Qin, W.; Tang, J.; Lu, C.; Lao, S. Trajectory prediction based on long short-term memory network and Kalman filter using hurricanes as an example. Comput. Geosci. 2021, 25, 1005–1023. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.; Koutník, J.; Steunebrink, B.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Cuong, T.N.; You, S.S.; Long, L.N.B.; Kim, H.S. Seaport Resilience Analysis and Throughput Forecast Using a Deep Learning Approach: A Case Study of Busan Port. Sustainability 2022, 14, 13985. [Google Scholar] [CrossRef]
- Xu, Z.; Zeng, W.; Chu, X.; Cao, P. Multi-aircraft trajectory collaborative prediction based on social long short-term memory network. Aerospace 2021, 8, 115. [Google Scholar] [CrossRef]
- Hao, P.; Li, S.; Yu, C.; Wu, G. A Prediction Model of Significant Wave Height in the South China Sea Based on Attention Mechanism. Front. Mar. Sci. 2022, 9, 895212. [Google Scholar] [CrossRef]
- Jozefowicz, R.; Zaremba, W.; Sutskever, I. An Empirical Exploration of Recurrent Network Architectures. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015. [Google Scholar]
- Suo, Y.; Chen, W.; Claramunt, C.; Yang, S. A Ship Trajectory Prediction Framework Based on a Recurrent Neural Network. Sensors 2020, 20, 5133. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, J.; Yang, H.; Cho, I.S. An AIS data-driven approach to analyze the pattern of ship trajectories in ports using the DBSCAN algorithm. Appl. Sci. 2021, 11, 799. [Google Scholar] [CrossRef]
- Pan, S.; Yin, J. Extracting Shipping Route Patterns by Trajectory Clustering Model Based on Automatic Identification System Data. Sustainability 2018, 10, 2327. [Google Scholar]
- Choi, W.; Cho, J.; Lee, S.; Jung, Y. Fast Constrained Dynamic Time Warping for Similarity Measure of Time Series Data. IEEE Access 2020, 8, 222841–222858. [Google Scholar] [CrossRef]
- Yan, J.; Peng, Z.; Yin, H.; Wang, J.; Wang, X.; Shen, Y.; Stechele, W.; Cremers, D. Trajectory prediction for intelligent vehicles using spatial-attention mechanism. IET Intell. Transp. Syst. 2020, 14, 1855–1863. [Google Scholar] [CrossRef]
- Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent Models of Visual Attention. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.; Bengio, Y. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015. [Google Scholar]
- Bao, K.; Bi, J.; Gao, M.; Sun, Y.; Zhang, X.; Zhang, W. An Improved Ship Trajectory Prediction Based on AIS Data Using MHA-BiGRU. J. Mar. Sci. Eng. 2022, 10, 804. [Google Scholar] [CrossRef]
- Chen, X.; Wei, C.; Zhou, G.; Wu, H.; Wang, Z.; Biancardo, S. Automatic Identification System (AIS) Data Supported Ship Trajectory Prediction and Analysis via a Deep Learning Model. J. Mar. Sci. Eng. 2022, 10, 1314. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, J.; Zhang, Q.; Liu, Y.; Yuan, Y.; Li, Z. Prediction and optimization of fuel consumption for inland ships considering real-time status and environmental factors. Ocean. Eng. 2021, 221, 108530. [Google Scholar] [CrossRef]
- Chen, X.; Ling, J.; Yang, Y.; Zheng, H.; Xiong, P.; Postolache, O.; Xiong, Y. Ship trajectory reconstruction from AIS sensory data via data quality control and prediction. Math. Probl. Eng. 2020, 2020, 7191296. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, X.; Yao, W.; Jin, C.; Hu, Y. Bidirectional Data-Driven Trajectory Prediction for Intelligent Maritime Traffic. IEEE Trans. Intell. Transp. Syst. 2022, 24, 1773–1785. [Google Scholar] [CrossRef]
- Tang, J.; Liu, L.; Wu, J.; Zhou, J.; Xiang, Y. Trajectory clustering method based on spatial-temporal properties for mobile social networks. J. Intell. Inf. Syst. 2020, 56, 73–95. [Google Scholar] [CrossRef]
Direction of Movement | Trajectory Type | Quantity | Ratio (%) |
---|---|---|---|
Departure | Type D1 | 87 | 24.93 |
Type D2 | 19 | 5.44 | |
Type D3 | 192 | 55.01 | |
Type D4 | 43 | 12.32 | |
Noise | 8 | 2.29 | |
Arrival | Type A1 | 85 | 25.45 |
Type A2 | 19 | 5.69 | |
Type A3 | 181 | 54.19 | |
Type A4 | 40 | 11.98 | |
Noise | 9 | 2.69 |
Direction of Movement | Silhouette Coefficient | |
---|---|---|
DBSCAN | K-Medoids | |
Departure | 0.881 | −0.0417 |
Arrival | 0.872 | −0.0667 |
Degree | Departure | Arrival | ||||||
---|---|---|---|---|---|---|---|---|
Type D1 | Type D2 | Type D3 | Type D4 | Type A1 | Type A2 | Type A3 | Type A4 | |
0.005 | 119.83 | 40.31 | 55.47 | 48.98 | 106.56 | 55.10 | 79.14 | 43.35 |
0.010 | 48.41 | 11.23 | 30.67 | 1.21 | 30.22 | 4.40 | 39.03 | 3.99 |
0.015 | 30.15 | 0.23 | 4.90 | 0.23 | 8.67 | 0.37 | 6.06 | 0.20 |
0.020 | 10.75 | 0.00 | 0.00 | 0.00 | 4.02 | 0.00 | 0.34 | 0.00 |
0.025 | 3.66 | 0.00 | 0.00 | 0.04 | 1.63 | 0.00 | 0.00 | 0.14 |
0.030 | 0.63 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 |
0.035 | 0.00 | 0.06 | 0.14 | 0.00 | 0.13 | 0.21 | 0.24 | 0.00 |
0.040 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.04 | 0.00 |
0.045 | 0.24 | 0.25 | 0.25 | 0.00 | 0.07 | 0.25 | 0.34 | 0.00 |
0.050 | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.00 | 0.01 | 0.00 |
0.055 | 0.00 | 0.25 | 0.25 | 0.00 | 0.21 | 0.25 | 0.25 | 0.00 |
0.060 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 |
0.065 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
0.070 | 0.00 | 0.06 | 0.14 | 0.00 | 0.18 | 0.21 | 0.21 | 0.00 |
0.075 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
0.080 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.02 | 0.00 |
0.085 | 0.00 | 0.15 | 0.20 | 0.13 | 0.00 | 0.00 | 0.23 | 0.24 |
0.090 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 |
0.095 | 0.09 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.03 | 0.00 |
0.100 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Direction of Movement | Trajectory Type | Frame Length (Degree) | Trajectory Number |
---|---|---|---|
Departure | Type D1 | 0.035 | 17 |
Type D2 | 0.020 | 21 | |
Type D3 | 0.020 | 21 | |
Type D4 | 0.020 | 20 | |
Arrival | Type A1 | 0.030 | 19 |
Type A2 | 0.020 | 20 | |
Type A3 | 0.025 | 17 | |
Type A4 | 0.020 | 18 |
Simplified Rate | Departure | Arrival | ||||
---|---|---|---|---|---|---|
GHC | HC | DP | GHC | HC | DP | |
3.2% | 16.31 | 17.83 | 19.00 | 15.90 | 16.54 | 12.70 |
3.7% | 14.80 | 15.64 | 19.91 | 14.83 | 14.76 | 22.36 |
4.2% | 12.18 | 12.82 | 10.64 | 13.62 | 12.78 | 8.45 |
4.7% | 12.77 | 11.01 | 17.49 | 10.39 | 12.07 | 13.26 |
5.2% | 10.17 | 10.96 | 7.17 | 11.12 | 11.59 | 6.37 |
5.7% | 11.44 | 10.59 | 10.07 | 11.94 | 10.28 | 12.40 |
6.2% | 8.61 | 9.10 | 5.58 | 10.43 | 9.99 | 3.44 |
6.7% | 7.91 | 9.04 | 7.01 | 9.17 | 9.55 | 6.41 |
7.2% | 8.62 | 8.85 | 4.65 | 8.65 | 9.89 | 4.64 |
7.7% | 7.79 | 9.29 | 3.48 | 10.72 | 9.09 | 2.18 |
8.2% | 9.14 | 9.00 | 1.75 | 9.76 | 10.47 | 1.38 |
8.7% | 8.51 | 9.53 | 1.51 | 12.03 | 12.75 | 1.99 |
9.2% | 8.47 | 9.44 | 2.82 | 12.57 | 12.35 | 2.27 |
9.7% | 9.30 | 8.95 | 1.09 | 6.05 | 11.61 | 1.19 |
10.2% | 11.70 | 8.83 | 1.21 | 8.15 | 10.97 | 1.44 |
Data Set Partitioning | Ratio | Sample Size | |
---|---|---|---|
Departure | Arrival | ||
Training set | 70% | 3580 | 4322 |
Test set | 20% | 1023 | 1235 |
Validation set | 10% | 512 | 618 |
Total | 100% | 5115 | 6175 |
Direction of Movement | Type | Category | Indicators | ||
---|---|---|---|---|---|
MAE | RMSE | R2 | |||
Departure | Type D1 | Longitude | 0.0272 | 0.0566 | 0.8686 |
Latitude | 0.0050 | 0.0068 | 0.7570 | ||
Type D2 | Longitude | 0.0086 | 0.0165 | 0.8528 | |
Latitude | 0.0232 | 0.0453 | 0.8696 | ||
Type D3 | Longitude | 0.0281 | 0.0508 | 0.8657 | |
Latitude | 0.0187 | 0.0405 | 0.8638 | ||
Type D4 | Longitude | 0.0153 | 0.0266 | 0.7272 | |
Latitude | 0.0221 | 0.0515 | 0.8532 | ||
Arrival | Type A1 | Longitude | 0.0112 | 0.0147 | 0.9910 |
Latitude | 0.0038 | 0.0051 | 0.9211 | ||
Type A2 | Longitude | 0.0085 | 0.0117 | 0.9382 | |
Latitude | 0.0081 | 0.0097 | 0.9933 | ||
Type A3 | Longitude | 0.0040 | 0.0051 | 0.9828 | |
Latitude | 0.0084 | 0.0107 | 0.9920 | ||
Type A4 | Longitude | 0.0122 | 0.0151 | 0.9865 | |
Latitude | 0.0066 | 0.0082 | 0.9928 |
Model | Hyperparameter Setting |
---|---|
LSTM | Number of Hidden Layers = 2 Number of Neurons = 10,080 Activation Function = tanh Batch Size = 4 Departure Time Steps = 7, Arrival Time Steps = 5 Dropout = 0.1 |
GRU | Number of Hidden Layers = 2 Number of Neurons = 10,080 Activation Function = tanh Batch Size = 4 Departure Time Steps = 4, Arrival Time Steps = 4 Dropout = 0.1 |
BiLSTM | Number of Hidden Layers = 2 Number of Neurons = 10,080 Activation Function = tanh Batch Size = 4 Departure Time Steps = 9, Arrival Time Steps = 9 Dropout = 0.1 |
BiGRU | Number of Hidden Layers = 2 Number of Neurons = 10,080 Activation Function = sigmoid Batch Size = 4 Departure Time Steps = 6, Arrival Time Steps = 5 Dropout = 0.1 |
Direction of Movement | Type | Category | Method | ||||
---|---|---|---|---|---|---|---|
TRM | LSTM | GRU | BiLSTM | BiGRU | |||
Departure | Type D1 | Longitude | 0.0272 | 0.0321 | 0.0363 | 0.0305 | 0.0337 |
Latitude | 0.0050 | 0.0067 | 0.0068 | 0.0072 | 0.0063 | ||
Type D2 | Longitude | 0.0086 | 0.0082 | 0.0100 | 0.0094 | 0.0091 | |
Latitude | 0.0232 | 0.0282 | 0.0289 | 0.0264 | 0.0273 | ||
Type D3 | Longitude | 0.0281 | 0.0309 | 0.0318 | 0.0295 | 0.0328 | |
Latitude | 0.0187 | 0.0229 | 0.0243 | 0.0241 | 0.0271 | ||
Type D4 | Longitude | 0.0153 | 0.0155 | 0.0156 | 0.0156 | 0.0158 | |
Latitude | 0.0221 | 0.0246 | 0.0258 | 0.0255 | 0.0284 | ||
Arrival | Type A1 | Longitude | 0.0112 | 0.0308 | 0.0329 | 0.0254 | 0.0287 |
Latitude | 0.0038 | 0.0074 | 0.0072 | 0.0070 | 0.0066 | ||
Type A2 | Longitude | 0.0085 | 0.0126 | 0.0108 | 0.0110 | 0.0117 | |
Latitude | 0.0081 | 0.0249 | 0.0241 | 0.0188 | 0.0211 | ||
Type A3 | Longitude | 0.0040 | 0.0075 | 0.0078 | 0.0071 | 0.0072 | |
Latitude | 0.0084 | 0.0222 | 0.0228 | 0.0190 | 0.0199 | ||
Type A4 | Longitude | 0.0122 | 0.0250 | 0.0250 | 0.0153 | 0.0206 | |
Latitude | 0.0066 | 0.1990 | 0.1920 | 0.0176 | 0.0179 |
Model | Category | Type | |
---|---|---|---|
Departure | Arrival | ||
LSTM | Longitude | 0.0554 0.0695 | 0.0992 0.0889 |
Latitude | |||
GRU | Longitude | 0.0603 | 0.1005 |
Latitude | 0.0747 | 0.0996 | |
BiLSTM | Longitude | 0.0712 | 0.0998 |
Latitude | 0.0728 | 0.0882 | |
BiGRU | Longitude | 0.0591 | 0.0980 |
Latitude | 0.0701 | 0.0849 | |
TRM | Longitude | 0.0523 | 0.0954 |
Latitude | 0.0692 | 0.0829 |
Model | Category | Type | |
---|---|---|---|
Departure | Arrival | ||
DP-LSTM | Longitude | 0.0570 | 0.1012 |
Latitude | 0.0795 | 0.0961 | |
HC-LSTM | Longitude | 0.0583 | 0.1336 |
Latitude | 0.0758 | 0.1225 | |
GHC-LSTM | Longitude | 0.0554 | 0.0992 |
Latitude | 0.0695 | 0.0889 | |
DP-GRU | Longitude | 0.0619 | 0.1018 |
Latitude | 0.0765 | 0.1085 | |
HC-GRU | Longitude | 0.0662 | 0.1424 |
Latitude | 0.0753 | 0.1404 | |
GHC-GRU | Longitude | 0.0603 | 0.1005 |
Latitude | 0.0747 | 0.0996 | |
DP-BiLSTM | Longitude | 0.0836 | 0.1014 |
Latitude | 0.0788 | 0.0933 | |
HC-BiLSTM | Longitude | 0.0994 | 0.1068 |
Latitude | 0.0850 | 0.0991 | |
GHC-BiLSTM | Longitude | 0.0712 | 0.0998 |
Latitude | 0.0728 | 0.0882 | |
DP-BiGRU | Longitude | 0.0785 | 0.1204 |
Latitude | 0.0913 | 0.0854 | |
HC-BiGRU | Longitude | 0.1016 | 0.0985 |
Latitude | 0.0913 | 0.1090 | |
GHC-BiGRU | Longitude | 0.0591 | 0.0980 |
Latitude | 0.0701 | 0.0849 | |
DP-TRM | Longitude | 0.0782 | 0.1079 |
Latitude | 0.0957 | 0.0917 | |
HC-TRM | Longitude | 0.0562 | 0.1140 |
Latitude | 0.0990 | 0.1066 | |
GHC-TRM | Longitude | 0.0523 | 0.0954 |
Latitude | 0.0692 | 0.0829 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Zuo, Y. Prediction of Ship Trajectory in Nearby Port Waters Based on Attention Mechanism Model. Sustainability 2023, 15, 7435. https://doi.org/10.3390/su15097435
Jiang J, Zuo Y. Prediction of Ship Trajectory in Nearby Port Waters Based on Attention Mechanism Model. Sustainability. 2023; 15(9):7435. https://doi.org/10.3390/su15097435
Chicago/Turabian StyleJiang, Junhao, and Yi Zuo. 2023. "Prediction of Ship Trajectory in Nearby Port Waters Based on Attention Mechanism Model" Sustainability 15, no. 9: 7435. https://doi.org/10.3390/su15097435
APA StyleJiang, J., & Zuo, Y. (2023). Prediction of Ship Trajectory in Nearby Port Waters Based on Attention Mechanism Model. Sustainability, 15(9), 7435. https://doi.org/10.3390/su15097435