Data Acquisition for Estimating Energy-Efficient Solar-Powered Sensor Node Performance for Usage in Industrial IoT
Abstract
:1. Introduction
2. Related Work
3. Architecture of Sensor Network for Solar Radiation Data Acquisition
4. Experiment
5. Results
5.1. Results of the Voltage Sensor Measurements
5.2. The Relation of the Other Sensor Values to the Voltage Sensor Measurements
5.3. The Summary of the Paper’s Contribution
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADAS | Automatic Data Acquisition Systems |
AI | Artificial Intelligence |
ANN | Artificial Neural Networks |
BP | Back Propagation |
CFL | Compact Fluorescent Light |
CNN | Convolutional Neural Network |
COM | Communication port |
CSV | Comma-Separated Values |
DB | Database |
DMM | Digital Multi Meter |
GIS | Geographic Information System |
GPU | Graphic Processing Unit |
I2C | Inter-Integrated Circuit; pronounced as “eye-squared-C”), also I2C or IIC |
IEEE | Institute of Electrical and Electronics Engineers |
IIoT | Industrial Internet of Things |
IP | Internet Protocol |
LCD | Liquid Crystal Display |
LED | Light-Emitting Diode |
LIDAR | LIght Detection And Ranging |
MCU | Micro Controller Unit |
ML | Machine Learning |
MQTT | MQ Telemetry Transport |
NoSQL | non-SQL/non-relational |
OLED | Organic Light Emitting Diode |
OSHW | Open-Source Hardware |
PC | Personal Computer |
PV | Photovoltaic |
RF | Random Forest |
RMSE | Root-mean-square error |
RNN | Recurrent Neural Network |
RTC | Real-Time Clock |
SD | Secure Digital |
SQL | Structured Query Language |
SVM | Support Vector Machine |
SPI | Serial Peripheral Interface |
TCP | Transmission Control Protocol |
UART | Universal Asynchronous Receiver-Transmitter |
USB | Universal Serial Bus |
UV | Ultraviolet |
Wi-Fi | Wireless Fidelity |
WSN | Wireless Sensor Networks |
Notations
Vexp | Voltage calculated with an exponential function. |
Vlog | Voltage calculated with a logarithmic function. |
Vpow | Voltage estimated with a power function. |
UV | Analog value 0–1023 of the UV sensor read |
R2 | or r2 (R-square), the coefficient of determination |
References
- Djordjevic, L.; Pekez, J.; Novakovic, B.; Bakator, M.; Djurdjev, M.; Cockalo, D.; Jovanovic, S. Increasing Energy Efficiency of Buildings in Serbia—A Case of an Urban Neighborhood. Sustainability 2023, 15, 6300. [Google Scholar] [CrossRef]
- Ašonja, A.; Vuković, V. The Potentials of Solar Energy in the Republic of Serbia: Current Situation, Possibilities and Barriers. App. Eng. Lett. 2018, 3, 90–97. [Google Scholar] [CrossRef]
- Varga, P.; Peto, J.; Franko, A.; Balla, D.; Haja, D.; Janky, F.; Soos, G.; Ficzere, D.; Maliosz, M.; Toka, L. 5G support for Industrial IoT Applications—Challenges, Solutions, and Research gaps. Sensors 2020, 20, 828. Available online: https://www.mdpi.com/1424-8220/20/3/828 (accessed on 14 March 2023). [CrossRef] [PubMed]
- Aljarboa, A.A.; Al-Mubaid, H. Smart Technology Systems for Sustainable Cities: A Review of the Literature. Sustain. Cities Soc. 2021, 74, 103188. [Google Scholar]
- Adekoya, A.A.; Mohd Zin, A.A.; Abdul-Malek, Z. Integration of solar energy in industrial internet of things (IIoT) for sustainable smart technology systems. Energies 2021, 14, 820. [Google Scholar]
- El Hammoumi, A.; Motahhir, S.; Chalh, A.; El Ghzizal, A.; Derouich, A. Low-cost virtual instrumentation of PV panel characteristics using Excel and Arduino in comparison with traditional instrumentation. Renew. Wind. Water Sol. 2018, 5, 3. [Google Scholar] [CrossRef]
- Mnati, M.J.; Van den Bossche, A.; Chisab, R.F. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application. Sensors 2017, 4, 872. [Google Scholar] [CrossRef]
- De la Cruz Severiche, M.Z.; Fernández, V.; Díaz, R. Low-Cost HEM with Arduino and Zigbee Technologies in the Energy Sector in Colombia. Energies 2022, 15, 3819. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Mahela, O.P.; Khan, B.; Kumar, A.; Agarwal, S.; Alhelou, H.H.; Bai, J. Development of arduino assisted data acquisition system for solar photovoltaic array characterization under partial shading conditions. Comput. Electr. Eng. 2021, 92, 107175. [Google Scholar] [CrossRef]
- Ruiz, S.G.; Calderita, L.V.; Hidalgo-Paniagua, A.; Rubio, J.P.B. Measuring Smoothness as a Factor for Efficient and Socially Accepted Robot Motion. Sensors 2020, 23, 6822. [Google Scholar] [CrossRef]
- Lambert, J.; Monahan, R.; Casey, K. Power Consumption Profiling of a Lightweight Development Board: Sensing with the INA219 and Teensy 4.0 Microcontroller. Electronics 2020, 10, 775. [Google Scholar] [CrossRef]
- Jabbar, W.A.; Annathurai, S.; Rahim, T.A.A.; Fauzi, M.F.M. Smart energy meter based on a long-range wide-area network for a stand-alone photovoltaic system. Expert Syst. Appl. 2022, 197, 116703. [Google Scholar] [CrossRef]
- Melo, G.C.G.D.; Torres, I.C.; Araújo, Í.B.Q.d.; Brito, D.B.; Barboza, E.d.A. A Low-Cost IoT System for Real-Time Monitoring of Climatic Variables and Photovoltaic Generation for Smart Grid Application. Sensors 2021, 21, 3293. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Salgado, C.; Aguila-Leon, J.; Chiñas-Palacios, C.; Hurtado-Perez, E. Low-cost web-based Supervisory Control and Data Acquisition system for a microgrid testbed: A case study in design and implementation for academic and research applications. Heliyon 2019, 5, e02474. [Google Scholar] [CrossRef] [PubMed]
- Viciana, E.; Alcayde, A.; Montoya, F.G.; Baños, R.; Arrabal-Campos, F.M.; Zapata-Sierra, A.; Manzano-Agugliaro, F. Open Zmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer. Sustainability 2018, 10, 4038. [Google Scholar] [CrossRef]
- Portalo, J.M.; González, I.; Calderón, A.J. Monitoring System for Tracking a PV Generator in an Experimental Smart Microgrid: An Open-Source Solution. Sustainability 2021, 13, 8182. [Google Scholar] [CrossRef]
- Gimeno-Sales, F.J.; Orts-Grau, S.; Escribá-Aparisi, A.; González-Altozano, P.; Balbastre-Peralta, I.; Martínez-Márquez, C.I.; Gasque, M.; Seguí-Chilet, S. PV Monitoring System for a Water Pumping Scheme with a Lithium-Ion Battery Using Free Open-Source Software and IoT Technologies. Sustainability 2020, 12, 10651. [Google Scholar] [CrossRef]
- Paredes-Parra, J.M.; Mateo-Aroca, A.; Silvente-Niñirola, G.; Bueso, M.C.; Molina-García, Á. PV Module Monitoring System Based on Low-Cost Solutions: Wireless Raspberry Application and Assessment. Energies 2018, 11, 3051. [Google Scholar] [CrossRef]
- Pereira, R.I.S.; Dupont, I.M.; Carvalho, P.C.M.; Jucá, S.C.S. IoT embedded Linux system based on Raspberry Pi applied to real-time cloud monitoring of a decentralized photovoltaic plant. Measurement 2018, 114, 286–297. [Google Scholar] [CrossRef]
- Pereira, R.I.S.; Jucá, S.C.S.; Carvalho, P.C.M. IoT embedded systems network and sensors signal conditioning applied to decentralized photovoltaic plants. Measurement 2019, 142, 195–212. [Google Scholar] [CrossRef]
- García, E.; Ponluisa, N.; Quiles, E.; Zotovic-Stanisic, R.; Gutiérrez, S.C. Solar Panels String Predictive and Parametric Fault Diagnosis Using Low-Cost Sensors. Sensors 2022, 22, 332. [Google Scholar] [CrossRef] [PubMed]
- Mallahi, F.A.; Mohamed, M.; Shaker, Y.O. Integration of Solar Energy Supply on Smart Distribution Board Based on IoT System. Designs 2022, 6, 118. [Google Scholar] [CrossRef]
- Panagopoulos, O.; Argiriou, A.A. Low-Cost Data Acquisition System for Solar Thermal Collectors. Electronics 2022, 11, 934. [Google Scholar] [CrossRef]
- Ninsawat, S.; Hossain, M.D. Identifying Potential Area and Financial Prospects of Rooftop Solar Photovoltaics (PV). Sustainability 2016, 8, 1068. [Google Scholar] [CrossRef]
- Sakti, A.D.; Ihsan, K.T.N.; Anggraini, T.S.; Shabrina, Z.; Sasongko, N.A.; Fachrizal, R.; Aziz, M.; Aryal, J.; Yuliarto, B.; Hadi, P.O.; et al. Multi-Criteria Assessment for City-Wide Rooftop Solar PV Deployment: A Case Study of Bandung, Indonesia. Remote Sens. 2022, 14, 2796. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Wu, B.; Chen, L.; Mao, W.; Zhao, F.; Wu, J.; Wu, J.; Yu, B. Estimating Roof Solar Energy Potential in the Downtown Area Using a GPU-Accelerated Solar Radiation Model and Airborne LiDAR Data. Remote Sens. 2015, 7, 17212–17233. [Google Scholar] [CrossRef]
- Zhu, R.; Wong, M.S.; You, L.; Santi, P.; Nichol, J.; Ho, H.C.; Lu, L.; Ratti, C. The effect of urban morphology on the solar capacity of three-dimensional cities. Renew. Energy 2020, 153, 1111–1126. [Google Scholar] [CrossRef]
- Huang, Z.; Mendis, T.; Xu, S. Urban solar utilization potential mapping via deep learning technology: A case study of Wuhan, China. Appl. Energy 2019, 250, 283–291. [Google Scholar] [CrossRef]
- Brito, M.C.; Redweik, P.; Catita, C.; Freitas, S.; Santos, M. 3D Solar Potential in the Urban Environment: A Case Study in Lisbon. Energies 2019, 12, 3457. [Google Scholar] [CrossRef]
- Kosovic, I.N.; Mastelic, T.; Ivankovic, D. Using Artificial Intelligence on environmental data from Internet of Things for estimating solar radiation: Comprehensive analysis. J. Clean. Prod. 2020, 266, 121489. [Google Scholar] [CrossRef]
- Alassery, F.; Alzahrani, A.; Khan, A.I.; Irshad, K.; Islam, S. An artificial intelligence-based solar radiation prophesy model for green energy utilization in energy management system. Sustain. Energy Technol. Assess. 2022, 52, 102060. [Google Scholar] [CrossRef]
- Du, B.; Lund, P.D.; Wang, J. Improving the accuracy of predicting the performance of solar collectors through clustering analysis with artificial neural network models. Energy Rep. 2022, 8, 3970–3981. [Google Scholar] [CrossRef]
- Pang, Z.; Niu, F.; O’Neill, Z. Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons. Renew. Energy 2020, 156, 279–289. [Google Scholar] [CrossRef]
- Wu, J.; Qin, W.; Wang, L.; Hu, B.; Song, Y.; Zhang, M. Mapping clear-sky surface solar ultraviolet radiation in China at 1 km spatial resolution using Machine Learning technique and Google Earth Engine. Atmospheric Environ. 2022, 286, 119219. [Google Scholar] [CrossRef]
- Núñez-Reyes, A.; Ruiz-Moreno, S. Spatial Estimation of Solar Radiation Using Geostatistics and Machine Learning Techniques. IFAC-Papers 2020, 53, 3216–3222. [Google Scholar] [CrossRef]
- Dobrilovic, D.; Brtka, V.; Stojanov, Z.; Jotanovic, G.; Perakovic, D.; Jausevac, G.A. Model for Working Environment Monitoring in Smart Manufacturing. Appl. Sci. 2021, 11, 2850. [Google Scholar] [CrossRef]
- Dobrilovic, D.; Malic, M.; Malic, D.; Sladojevic, S.; Dalibor, D.; Milan, M.; Dušan, M.; Srđan, S. Analyses and optimization of Lee propagation model for LoRa 868 MHz network deployments in urban areas. J. Eng. Manag. Compet. 2017, 7, 55–62. [Google Scholar] [CrossRef]
- Dobrilović, D.; Brtka, V.; Jotanović, G.; Stojanov, Ž.; Jauševac, G.; Malić, M. The urban traffic noise monitoring system based on LoRaWAN technology. Wirel. Networks 2022, 28, 441–458. [Google Scholar] [CrossRef]
- Flammini, F.; Gaglione, A.; Tokody, D.; Dobrilovic, D. LoRa WAN Roaming for Intelligent Shipment Tracking. In Proceedings of the 2020 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), Dubai, United Arab Emirates, 12–16 December 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Dobrilović, D.; Petrović, D.; Malić, M. Usability of open-source hardware based platform for indoor positioning systems. J. Eng. Manag. Compet. 2018, 8, 113–120. [Google Scholar] [CrossRef]
- Malik, P.K.; Sharma, R.; Singh, R.; Gehlot, A.; Satapathy, S.C.; Alnumay, W.S.; Pelusi, D.; Ghosh, U.; Nayak, J. Industrial Internet of Things and its Applications in Industry 4.0: State of The Art. Comput. Commun. 2021, 166, 125–139. [Google Scholar] [CrossRef]
- Iftikhar, S.; Gill, S.S.; Song, C.; Xu, M.; Aslanpour, M.S.; Toosi, A.N.; Du, J.; Wu, H.; Ghosh, S.; Chowdhury, D.; et al. AI-based fog and edge computing: A systematic review, taxonomy and future directions. Internet Things 2023, 21, 100674. [Google Scholar] [CrossRef]
- Firouzi, F.; Farahani, B.; Marinšek, A. The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things (IoT). Inf. Syst. 2022, 107, 101840. [Google Scholar] [CrossRef]
- Gill, S.S.; Xu, M.; Ottaviani, C.; Patros, P.; Bahsoon, R.; Shaghaghi, A.; Golec, M.; Stankovski, V.; Wu, H.; Abraham, A.; et al. AI for next generation computing: Emerging trends and future directions. Internet Things 2022, 19, 100514. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 21 April 2023).
Ref. No. | Dist. | Connectivity | Purpose | Platform | Key Outcomes | Difference |
---|---|---|---|---|---|---|
[6] | No | UART bus | A low-cost solution for real-time instrumentation of the photovoltaic (PV) panel characteristics such as voltage and current power. | Arduino UNO PLX-DAQ data acquisition Excel Macro | confirmation of the effectiveness of the developed virtual instrumentation system | single point of acquisition, no networking and distribution |
[7] | No | Bluetooth HC-05 | Smart voltage and current monitoring system (SVCMS) for monitoring a three-phase electrical system with three voltage and current sensors. | Arduino Nano V3.0 Android Smartphone | Android smartphone application for monitoring the voltage and current measurements | single point of acquisition, no networking and distribution |
[8] | Yes | Zigbee USB | A prototype of a low-cost home energy management system (HEMS). This platform aims to monitor the energy consumption of typical household devices so that the users can access the consumption of each device separately and, in the end, establish a strategy that allows them to reduce energy consumption at home. | Arduino Uno | low-cost home energy management system | single-type sensor, short-range indoor wireless connection |
[9] | No | Wired USB | Data Acquisition System (DAS) is designed to collect voltage and current data in real-time at variable load resistance during an experimental characterization analysis of a 3 × 3 size photovoltaic (PV) system under partial shading (PSC) conditions using Analog voltage and current sensors. | Arduino Nano | collecting voltage and current data in real-time | single point of acquisition, wired connection to PC |
[10] | No | HC-05 Bluetooth module | The system for monitoring the robotic base and its output voltages. The measuring system uses an Arduino microcontroller, current ACS712, and voltage sensor FZ0430. | Arduino UNO Arduino SmartPhone | low-cost monitoring of the robotic base and its output voltages | Single point of acquisition, short-range wireless connection |
[11] | No | Wi-Fi IEEE 802.11ac | The energy consumption characteristics monitoring for robots with INA219 high-side current sense amplifier to capture power, current, and voltage measurements. | Raspberry Pi4 model B | energy consumption monitoring for robots | single point of acquisition, mobile wireless connection |
[12] | Yes | LoRa/ LoRaWAN | Monitoring PV system-related parameters (voltage, current, power, energy, light intensity, temperature, and humidity) and updating this information to the cloud. Data are sent to the LoRaWAN gateway and further to The Things Network (TTN). | Arduino UNO | cloud PV system-related parameters monitoring | PC-centric acquisition system, no PV performance dependency analyses, different architecture |
[13] | Yes | LoRa/Wi-Fi | Monitoring climatic variables and photovoltaic generation for Smart Grid application (voltage, current, alternating power, and seven meteorological variables). | HeltecWi-Fi LoRa 32 (V2) IoT dev-board | climatic and PV monitoring for the Smart Grid application | PC-centric acquisition system, no PV performance dependency analyses, different architecture |
[14] | Yes | I2C, SPI, Serial, proprietary NRF24L01 | Supervisory Control and Data Acquisition system for a microgrid testbed. | Arduino UNO/Raspberry Pi | data acquisition system for a microgrid | proprietary communication, the limited number of wireless nodes |
[15] | No | USB, Wi-Fi, 3G/LTE/4G, etc.), Ethernet | Open source, low-cost, precise, and reliable power and electric energy meter and power quality analyzer for homes in urban or rural areas. | open meter custom build board | low-cost, electric energy meter and analyzer | no network architecture defined |
[16] | No | Ethernet | Monitoring system based on open-source hardware and software for tracking the temperature of the photovoltaic generator in an SMG. | Arduino MEGA 2560 R3 RPi model 3 ver. B | the temperature of the photovoltaic generator monitoring | single point of acquisition, wired connectivity |
[17] | No | Modbus-RTU, TCP/IP, and Wi-Fi | PV Monitoring System for a Water Pumping Scheme to provide a valuable tool for the operation, management, and development of these facilities. | Raspberry Pi ADAM 4017+ | PV monitoring | single point of acquisition, wired connectivity |
[18] | Yes | 433 MHz RF HopeRF RFM69CW | Low-cost PV-module monitoring system based on open-source solutions for monitoring installations at the PV-module level, giving detailed information regarding PV power-plant performance (monitoring PV module and meteorological data) | Arduino UNO Raspberry Pi | PV monitoring | no network architecture defined |
[19] | Yes | Wi-Fi | System for real-time cloud monitoring of a decentralized photovoltaic (PV) plant with ACS712 current sensor, LM35 temperature sensor, LP02 pyranometer, and DHT11 sensor. | Raspberry Pi ADCES (SanUSB board) | cloud PV monitoring | no PV performance dependency analyses, different architecture |
[20] | Yes | Wi-Fi | IoT modular system to compose a worldwide monitoring network focused on meteorological and PV modules temperature data (PV modules temperature, meteorological data such as solar irradiance, ambient temperature, relative humidity, and wind speed) | ESP8266 ESP32 | photovoltaic plants monitoring | no PV performance dependency analyses, different architecture |
[21] | No | Modbus TCP/IP and OPC communication protocols | real-time supervision and predictive fault diagnosis of solar panel strings | ESP8266 module, ASC712-5A, and FZ0430 sensors and relay modules | predictive diagnosis method, based on online detection centered on each solar panel of the PV string | wired centralized standalone system |
[22] | No | Bluetooth | Photovoltaic tracking system and cleaning connected to a smart board | Arduino Mega2560, current sensor and voltage sensor | IoT-based smart household distribution board to monitor the functioning of various appliances | Short-range communication, standalone system |
[23] | No | Wi-Fi | Decentralized, low-cost alternative Automatic Data Acquisition Systems (ADAS) based on the ESP32 microcontroller | ESP32, sensors (Kipp and Zonen CMP11, PT100, Biotech VZS-007, SHT20 waterproof) | Data acquisition system for solar thermal collector testing | Standalone monitoring system |
Ref. No. | Description | Data Used | Artificial Intelligence |
---|---|---|---|
[24] | methodology for estimating the solar potential with the generation of a 3D structure | height data and roof types using satellite imagery and simulation of shadows | No |
[25] | determination of energy potential of rooftop solar PVs | building height model | No |
[26] | method for selecting suitable locations for installing solar panels | Graphic Processing Unit (GPU)- solar radiation model SHORTWAVE-C for simulation of direct and non-direct solar radiation | No |
[27] | a solar irradiation estimation solution for three-dimensional (3D) cities | annual irradiations on urban envelopes | No |
[28] | identification of the building roofs for estimating the city’s solar potential | U-Net of deep learning technology in combination with satellite maps | Deep learning |
[29] | 3D solar potential model | Light Detection and Ranging (LIDAR) data rendered in the ArcGIS platform using CityEngine | No |
[30] | hybrid models for solar radiation using | meteorological data | multiple linear regression, neural network, and random forest |
[31] | artificial intelligence-based solar radiation estimation model for green energy utilization | Artificial Neural Networks (ANN), Support vector machine (SVM), Random Forest (RF) | |
[32] | prediction of the performance of solar collectors | experimental data collection | clustering analysis with the Back Propagation (BP) and Convolutional Neural Network (CNN) models. |
[33] | solar radiation prediction | meteorological data | ANN model, and a recurrent neural network (RNN) model |
[34] | mapping clear-sky surface solar ultraviolet radiation | Chinese Ecosystem Research Network (CERN) stations measurements | Machine learning |
[35] | solar radiation estimation | CAMS Radiation Service solar radiation data | Ordinary Kriging and distance weighting, non-supervised competitive ANN-Self Organizing Map |
No. | Item | Price (EUR) |
---|---|---|
1 | Voltage sensor | ~2.50 |
2 | NodeMCU v3 | ~5.00 |
3 | Solar panel 137 × 81 cm | ~8.00 |
4 | Solar charger | ~11.00 |
5 | Li-Po 3.7 battery 4000 mAh | ~11.00 |
6 | UV sensor | ~8.00 |
7 | BH 1750 | ~2.00 |
8 | Case | ~2.00 |
Total | ~49.50 |
Light Source | Sensor Avg. [V] | DMM Avg. [V] | RMSE |
---|---|---|---|
Solar radiation | 5.260759494 | 5.408278481 | 0.173889 |
Incandescent bulb | 5.290892857 | 5.423053571 | 0.145102242 |
CFL bulb | 4.311111111 | 4.431962264 | 0.113867351 |
LED bulb | 4.401126761 | 4.510450704 | 0.115953123 |
Parameter | Sensor | Description | R2 |
---|---|---|---|
Visible light int. | I2C BH1750 | 16-bit ADC for measuring lux | 0.94 |
UV intensity | Analog | 10-bit ADC value range 0–1023 | 0.97 |
Panel temperature | Analog TMP36 | 10-bit ADC value converted in °C | 0.70 |
Air temperature | Digital DHT-11 | Value in °C | 0.60 |
Humidity | Digital DHT-11 | Value in humidity % | N/A |
Function | RMSE | R | R2 |
---|---|---|---|
Linear | 0.352247 | 0.680971 | 0.463721 |
Exponential | 0.132521 | 0.983125 | 0.966534 |
Logarithmic | 0.326726 | 0.892513 | 0.79658 |
Power | 0.352247 | 0.874081 | 0.764017 |
Function | RMSE | R | R2 |
---|---|---|---|
Linear | 31.46735 | 0.412497 | 0.1702 |
Exponential | 0.177258 | 0.969601 | 0.940126 |
Logarithmic | 0.494349 | 0.730967 | 0.534312 |
Power | 0.513439 | 0.705927 | 0.498332 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrilovic, D.; Pekez, J.; Desnica, E.; Radovanovic, L.; Palinkas, I.; Mazalica, M.; Djordjević, L.; Mihajlovic, S. Data Acquisition for Estimating Energy-Efficient Solar-Powered Sensor Node Performance for Usage in Industrial IoT. Sustainability 2023, 15, 7440. https://doi.org/10.3390/su15097440
Dobrilovic D, Pekez J, Desnica E, Radovanovic L, Palinkas I, Mazalica M, Djordjević L, Mihajlovic S. Data Acquisition for Estimating Energy-Efficient Solar-Powered Sensor Node Performance for Usage in Industrial IoT. Sustainability. 2023; 15(9):7440. https://doi.org/10.3390/su15097440
Chicago/Turabian StyleDobrilovic, Dalibor, Jasmina Pekez, Eleonora Desnica, Ljiljana Radovanovic, Ivan Palinkas, Milica Mazalica, Luka Djordjević, and Sinisa Mihajlovic. 2023. "Data Acquisition for Estimating Energy-Efficient Solar-Powered Sensor Node Performance for Usage in Industrial IoT" Sustainability 15, no. 9: 7440. https://doi.org/10.3390/su15097440
APA StyleDobrilovic, D., Pekez, J., Desnica, E., Radovanovic, L., Palinkas, I., Mazalica, M., Djordjević, L., & Mihajlovic, S. (2023). Data Acquisition for Estimating Energy-Efficient Solar-Powered Sensor Node Performance for Usage in Industrial IoT. Sustainability, 15(9), 7440. https://doi.org/10.3390/su15097440