Preparation and Evaluation of an Elastic Cushion with Waste Bamboo Fiber Based on Sitting Pressure Distribution of the Human Body
Abstract
:1. Introduction
2. Method
2.1. Preparation and Characterization of BEC Units
2.2. Preparetion of the BEC
2.3. Participants
2.4. Objective Analysis
2.5. Subjective Assessment
3. Results and Discussion
3.1. Characterization of BEC Units
3.2. Objective Analysis of the BEC
3.3. Subjective Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gan, J.; Chen, M.; Semple, K.; Liu, X.; Dai, C.; Tu, Q. Life cycle assessment of bamboo products: Review and harmonization. Sci. Total Environ. 2022, 849, 157937. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, H.; Dauletbek, A.; Lorenzo, R.; Corbi, I.; Corbi, O.; Ashraf, M. Review on materials and structures inspired by bamboo. Constr. Build. Mater. 2022, 325, 126656. [Google Scholar] [CrossRef]
- Buziquia, S.T.; Lopes, P.V.F.; Almeida, A.K.; de Almeida, I.K. Impacts of bamboo spreading: A review. Biodivers. Conserv. 2019, 28, 3695–3711. [Google Scholar] [CrossRef]
- Wang, W.; Wei, W.; Gao, S.; Chen, G.; Yuan, J.; Li, Y. Agricultural and aquaculture wastes as concrete components: A review. Front. Mater. 2021, 8, 762568. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, J.; Zhang, J.; Brooks, M.S. Potential for value-added utilization of bamboo shoot processing waste-recommendations for a biorefinery approach. Food Bioprocess Technol. 2018, 11, 901–912. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Norrrahim, M.N.F.; Sabaruddin, F.A.; Shazleen, S.S.; Ilyas, R.A.; Lee, S.H.; Padzil, F.N.M.; Aizat, G.; Aisyah, H.A.; Mohidem, N.A. Mechanical performance evaluation of bamboo fibre reinforced polymer composites and its applications: A review. Funct. Compos. Struct. 2022, 4, 015009. [Google Scholar] [CrossRef]
- Nkeuwa, W.N.; Zhang, J.; Semple, K.E.; Chen, M.; Xia, Y.; Dai, C. Bamboo-based composites: A review on fundamentals and processes of bamboo bonding. Compos. Part B-Eng. 2022, 235, 109776. [Google Scholar] [CrossRef]
- Sun, X.; He, M.; Li, Z. Novel engineered wood and bamboo composites for structural applications: State-of-art of manufacturing technology and mechanical performance evaluation. Constr. Build. Mater. 2020, 249, 118751. [Google Scholar] [CrossRef]
- Pang, B.; Zhou, T.; Cao, X.; Zhao, B.; Sun, Z.; Liu, X.; Chen, Y.; Yuan, T. Performance and environmental implication assessments of green bio-composite from rice straw and bamboo. J. Clean. Prod. 2022, 375, 134037. [Google Scholar] [CrossRef]
- Guan, M.; Fu, R.; Yong, C.; Li, Y.; Xu, X. Properties of binderless bamboo particleboards derived from biologically fermented bamboo green residues. Waste Manag. 2022, 151, 195–204. [Google Scholar] [CrossRef]
- Iswanto, A.H.; Madyaratri, E.W.; Hutabarat, N.S.; Zunaedi, E.R.; Darwis, A.; Hidayat, W.; Susilowati, A.; Adi, D.S.; Lubis, M.A.R.; Sucipto, T.; et al. Chemical, physical, and mechanical properties of belangke bamboo (Gigantochloa pruriens) and its application as a reinforcing material in particleboard mManufacturing. Polymwes 2022, 14, 3111. [Google Scholar] [CrossRef]
- Xu, F.; Ding, S.; Jin, F.; Wang, F.; Zhang, S.; Shao, Z. A multiscale study on the elastic properities of bamboo. Wood Fiber Sci. 2022, 53, 238–246. [Google Scholar] [CrossRef]
- Chen, C.; Li, H.; Dauletbek, A.; Shen, F.; Hui, D.; Gaff, M.; Lorenzo, R.; Corbi, I.; Corbi, O.; Ashraf, M. Properties and applications of bamboo fiber-A current-state-of-the art. J. Renew. Mater. 2022, 10, 605–624. [Google Scholar] [CrossRef]
- Chen, M.; Ye, L.; Li, H.; Wang, G.; Chen, Q.; Fang, C.; Dai, C.; Fei, B. Flexural strength and ductility of moso bamboo. Constr. Build. Mater. 2020, 246, 118418. [Google Scholar] [CrossRef]
- Cruz-Riano, L.J.; Quintero-Giraldo, L.J.; Garcia-Guzman, J.A.; Alcaraz-Zapata, A.; Gonzalez-Castrillon, E.D.; Osorio-Saraz, J.A. Synthesis of polymeric composites reinforced with short bamboo fibers supported by experiment design. Polym. Compos. 2021, 42, 474–483. [Google Scholar] [CrossRef]
- Wei, X.; Wang, G.; Chen, X.; Jiang, H.; Smith, L.M. Natural bamboo coil springs with high cyclic-compression durability fabricated via a hydrothermal-molding-fixing method. Ind. Crops Prod. 2022, 184, 115055. [Google Scholar] [CrossRef]
- Bao, Y.; Gou, B.; Chu, J.; Cun, W.; Zhao, Z.; Chen, C. Sitting comfort analysis and prediction for high-speed rail passengers based on statistical analysis and machine learning. Build. Environ. 2022, 225, 109589. [Google Scholar] [CrossRef]
- Choi, S.; Kim, H.; Kim, H.; Yang, W. A development of the self shape adjustment cushion mechanism for improving sitting comfort. Sensors 2021, 21, 7959. [Google Scholar] [CrossRef]
- Hui, C.; Feng, Q.; Wong, M.; Ng, S.F.; Lin, Y.Y.M. Study of main and cross-over effects on pressure relief among body mass index (BMI), body position and supporting material properties. Med. Eng. Phys. 2018, 51, 72–78. [Google Scholar] [CrossRef]
- Velagapudi, S.P.; Ray, G.G. The influence of static factors on seating comfort of motorcycles: An initial investigation. Hum. Facors 2020, 62, 55–63. [Google Scholar] [CrossRef]
- Li, W.; Mo, R.; Yu, S.; Chu, J.; Hu, Y.; Wang, L. The effects of the seat cushion contour and the sitting posture on surface pressure distribution and comfort during seated work. Int. J. Occup. Med. Environ. Health 2020, 33, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Kilincsoy, U.; Wagner, A.; Vink, P.; Bubb, H. Application of ideal pressure distribution in development process of automobile seats. Work-A J. Prev. Assess. Rehabil. 2016, 54, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Liu, Z.; Tang, Y.; Dou, J.; Xu, C.; Wang, L. Model construction and analysis of ride comfort for high-speed railway seat cushions. Work-A J. Prev. Assess. Rehabil. 2021, 68, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Zhou, Q.; Wang, X.; Yin, C. Comfort evaluation of slow-recovery ejection seat cushions based on sitting pressure distribution. Front. Bioeng. Biotechnol. 2021, 9, 759442. [Google Scholar] [CrossRef] [PubMed]
- Carrigan, W.; Nuthi, P.; Pande, C.; Wijesundara, M.B.; Chung, C.S.; Grindle, G.G.; Brown, J.D.; Gebrosky, B.; Cooper, R.A. Design and operation verification of an automated pressure mapping and modulating seat cushion for pressure ulcer prevention. Med. Eng. Phys. 2019, 69, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Hirao, A.; Naito, S.; Yamazaki, N. Pressure sensitivity of buttock and thigh as a key factor for understanding of sitting comfort. Appl. Sci. 2022, 12, 7363. [Google Scholar] [CrossRef]
- Jiang, Y.; Duan, J.; Deng, S.; Qi, Y.; Wang, P.; Wang, Z.; Zhang, T. Sitting posture recognition by body pressure distribution and airbag regulation strategy based on seat comfort evaluation. J. Eng.-Joe 2019, 2019, 8910–8914. [Google Scholar] [CrossRef]
Group | Comfort Rating | ||||
---|---|---|---|---|---|
Thigh | Thigh Root | Buttock | Sciatic Node | Overall Evaluation | |
A | 4.5 ± 1.2 | 4.8 ± 0.7 | 5.0 ± 1.0 | 4.2 ± 1.2 | 4.7 ± 0.8 |
B | 5.1 ± 1.4 | 5.4 ± 0.8 | 5.4 ± 1.3 | 4.9 ± 1.6 | 5.3 ± 0.9 |
C | 5.3 ± 0.6 | 5.3 ± 0.5 | 5.1 ± 1.2 | 4.7 ± 1.0 | 5.2 ± 0.7 |
D | 5.4 ± 0.8 | 5.1 ± 0.5 | 4.9 ± 0.8 | 4.6 ± 1.3 | 5.0 ± 1.0 |
E | 5.6 ± 0.9 | 5.2 ± 0.6 | 5.2 ± 0.9 | 4.3 ± 1.2 | 5.1 ± 0.9 |
F | 4.8 ± 0.7 | 5.1 ± 0.5 | 5.2 ± 0.7 | 4.3 ± 0.8 | 4.7 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zheng, J.; Pu, H.; Zhu, C.; Wu, Q. Preparation and Evaluation of an Elastic Cushion with Waste Bamboo Fiber Based on Sitting Pressure Distribution of the Human Body. Sustainability 2023, 15, 7462. https://doi.org/10.3390/su15097462
Yu Y, Zheng J, Pu H, Zhu C, Wu Q. Preparation and Evaluation of an Elastic Cushion with Waste Bamboo Fiber Based on Sitting Pressure Distribution of the Human Body. Sustainability. 2023; 15(9):7462. https://doi.org/10.3390/su15097462
Chicago/Turabian StyleYu, Yuxiang, Jipeng Zheng, Huawei Pu, Chanan Zhu, and Qun Wu. 2023. "Preparation and Evaluation of an Elastic Cushion with Waste Bamboo Fiber Based on Sitting Pressure Distribution of the Human Body" Sustainability 15, no. 9: 7462. https://doi.org/10.3390/su15097462
APA StyleYu, Y., Zheng, J., Pu, H., Zhu, C., & Wu, Q. (2023). Preparation and Evaluation of an Elastic Cushion with Waste Bamboo Fiber Based on Sitting Pressure Distribution of the Human Body. Sustainability, 15(9), 7462. https://doi.org/10.3390/su15097462