A Review of Propagation and Restoration Techniques for American Beech and Their Current and Future Application in Mitigation of Beech Bark Disease
Abstract
:1. Introduction
1.1. F. grandifolia Ecology and Natural Reproduction
1.2. Beech Bark Disease Pathosystem and Ecology
1.3. Direct Control of BBD
2. Natural Vegetative Propagation of BBD-Resistant F. grandifolia
3. Artificial Vegetative Propagation of BBD-Resistant F. grandifolia
3.1. Micropropagation
3.2. Grafting
4. Applications in Restoration
5. Management Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flachowsky, H.; Hanke, M.V.; Peil, A.; Strauss, S.H.; Fladung, M. A review on transgenic approaches to accelerate breeding of woody plants: Review. Plant Breed 2009, 128, 217–226. [Google Scholar] [CrossRef]
- Sniezko, R.A.; Koch, J. Breeding trees resistant to insects and diseases: Putting theory into application. Biol. Invasions 2017, 19, 3377–3400. [Google Scholar] [CrossRef]
- Burger, T.L.; Kotar, J. A Guide to Forest Communities and Habitat Types of Michigan; University of Wisconsin-Madison: Madison, WI, USA, 2003. [Google Scholar]
- Rosemier, J.N.; Storer, A.J. Assessing the responses of native small mammals to an incipient invasion of beech bark disease through changes in seed production of American beech (Fagus grandifolia). Am. Midl. Nat. 2010, 164, 238–259. [Google Scholar] [CrossRef]
- Jensen, P.G.; Demers, C.L.; McNulty, S.A.; Jakubas, W.J.; Humphries, M.M. Marten and fisher responses to fluctuations in prey populations and mast crops in the northern hardwood forest: Marten and fisher harvest dynamics. J. Wildl. Manag. 2012, 76, 489–502. [Google Scholar] [CrossRef]
- Conrod, C.A.; Reitsma, L. Demographic responses of myomorph rodents to mast production in a beech- and birch-dominated Northern hardwood forest. Northeast Nat. 2015, 22, 746–761. [Google Scholar] [CrossRef]
- Kremer, A.; Casasoli, M.; Barreneche, T.; Bodénès, C.; Sisco, P.; Kubisiak, T.; Scalfi, M.; Leonardi, S.; Bakker, E.; Buiteveld, J.; et al. Fagaceae Trees. In Forest Trees; Springer: Berlin/Heidelberg, Germany, 2007; pp. 161–187. [Google Scholar]
- Tubbs, C.H.; Houston, D.R. Fagus grandifolia Ehrh. American beech. In Silvics of North America; Burns, R.M., Honkala, B.H., Eds.; Agriculture Handbook; U.S. Department of Agriculture Forest Service: Washington, DC, USA, 1990; Volume 2: Hardwoods, pp. 325–332. [Google Scholar]
- Carpenter, R.D. American Beech. In American Woods; U.S. Department of Agriculture, Forest Service: Washington DC, USA, 1974; p. 8. [Google Scholar]
- McCullough, D.G.; Heyd, R.L.; O’Brien, J.G. Biology and Management of Beech Bark Disease; Michigan State University, East Lansing, MI, USA, 2001.
- U.S. Department of Agriculture Forest Service, Northern Research Station Forest Health Protection. Alien Forest Pest Explorer—Species Map. Available online: https://www.nrs.fs.fed.us/tools/afpe/maps/ (accessed on 16 August 2021).
- Ewing, C.J.; Hausman, C.E.; Pogacnik, J.; Slot, J.; Bonello, P.; Sieber, T. Beech leaf disease: An emerging forest epidemic. For. Pathol. 2019, 49, e12488. [Google Scholar] [CrossRef]
- Carta, L.K.; Handoo, Z.A.; Li, S.; Kantor, M.; Bauchan, G.; McCann, D.; Gabriel, C.K.; Yu, Q.; Reed, S.; Koch, J. Beech leaf disease symptoms caused by newly recognized nematode subspecies Litylenchus crenatae mccannii (Anguinata) described from Fagus grandifolia in North America. For. Pathol. 2020, 50, e12580. [Google Scholar] [CrossRef]
- Sweeney, J.D.; Hughes, C.; Zhang, H.; Hillier, N.K.; Morrison, A.; Johns, R. Impact of the invasive beech leaf-mining weevil, Orchestes fagi, on American beech in Nova Scotia, Canada. Front. For. Glob. Chang. 2020, 3, 1–11. [Google Scholar] [CrossRef]
- Iverson, L.R.; Prasad, A.M.; Matthews, S.N.; Peters, M. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For. Ecol. Manag. 2008, 254, 390–406. [Google Scholar] [CrossRef]
- Ehrlich, J. The beech bark disease, a Nectria disease of Fagus following Cryptococcus fagi (Baer.). Can. J. For. Res. 1934, 10, 593–692. [Google Scholar] [CrossRef]
- Houston, D.R. Major new tree disease epidemics: Beech bark disease. Annu. Rev. Phytopathol. 1994, 32, 75–87. [Google Scholar] [CrossRef]
- Cale, J.A.; Garrison-Johnston, M.T.; Teale, S.A.; Castello, J.D. Beech bark disease in North America: Over a century of research revisited. For. Ecol. Manag. 2017, 394, 86–103. [Google Scholar] [CrossRef]
- Beckman, E.; Meyer, A.; Pivorunas, D.; Hoban, S.; Westwood, M. Conservation Gap Analysis of American Beech; The Morton Arboretum: Lisle, IL, USA, 2021. [Google Scholar]
- Bonner, F.T.; Leak, W.B. Fagus L. In The Woody Plant Seed Manual; Bonner, F.T., Karrfalt, R.P., Eds.; Forest Service Agricultural Handbook; U.S. Department of Agriculture: Washington, DC, USA, 2008; Volume 727, pp. 520–524. [Google Scholar]
- Stephanson, C.A.; Coe, N.R. Impacts of beech bark disease and climate change on American beech. Forests 2017, 8, 155. [Google Scholar] [CrossRef]
- Held, M.E. Pattern of beech regeneration in the east-central United States [Fagus grandifolia, environmental variables, relationship of reproductive mechanisms to geographic distribution in deciduous forests]. J. Torrey Bot. Soc. 1983, 110, 55–62. [Google Scholar] [CrossRef]
- Del Tredici, P. Sprouting in Temperate Trees: A Morphological and Ecological Review. Bot. Rev. 2001, 67, 121–140. [Google Scholar] [CrossRef]
- Giencke, L.M.; Martin, D.I.; Giorgos, M.; Jonathan, A.C.; Myron, J.M. Beech bark disease: Spatial patterns of thicket formation and disease spread in an aftermath forest in the northeastern United States. Can. J. For. Res. 2014, 44, 1042–1050. [Google Scholar] [CrossRef]
- Nyland, R.D. Origin of small understory beech in New York northern hardwood stands. North. J. Appl. For. 2008, 25, 161–163. [Google Scholar] [CrossRef]
- Wagner, S.; Collet, C.; Madsen, P.; Nakashizuka, T.; Nyland, R.D.; Sagheb-Talebi, K. Beech regeneration research: From ecological to silvicultural aspects. For. Ecol. Manag. 2010, 259, 2172–2182. [Google Scholar] [CrossRef]
- Nyland, R.D.; Bashant, A.L.; Bohn, K.K.; Verostek, J.M. Interference to hardwood regeneration in northeastern North America: Controlling effects of American beech, striped maple, and hobblebush. North. J. Appl. For. 2006, 23, 122–132. [Google Scholar] [CrossRef]
- Bernard, A.; Gélinas, N.; Duchateau, E.; Durocher, C.; Achim, A. American beech in value-added hardwood products: Assessing consumer preferences. Bioresources 2019, 13, 6893–6910. [Google Scholar] [CrossRef]
- Burns, B.S.; Houston, D.R. Managing beech bark disease: Evaluating defects and reducing losses. North. J. Appl. For. 1987, 4, 28–33. [Google Scholar] [CrossRef]
- Lemaitre, J.; Villard, M.A. Foraging patterns of pileated woodpeckers in a managed Acadian forest: A resource selection function. Can. J. For. Res. 2005, 35, 2387–2393. [Google Scholar] [CrossRef]
- Tozer, D.C.; Burke, D.M.; Nol, E.; Elliott, K.A. Managing ecological traps: Logging and sapsucker nest predation by bears. J. Wildl. Manag. 2012, 76, 887–898. [Google Scholar] [CrossRef]
- Kahler, H.A.; Anderson, J.T. Tree cavity resources for dependent cavity-using wildlife in West Virginia forests. North. J. Appl. For. 2006, 23, 114–121. [Google Scholar] [CrossRef]
- Faison, E.K.; Houston, D.R. Black bear foraging in response to beech bark disease in northern Vermont. Northeast Nat. 2004, 11, 387–394. [Google Scholar] [CrossRef]
- Čalić, I.; Koch, J.; Carey, D.; Addo-Quaye, C.; Carlson, J.E.; Neale, D.B. Genome-wide association study identifies a major gene for beech bark disease resistance in American beech (Fagus grandifolia Ehrh.). BMC Genom. 2017, 18, 547. [Google Scholar] [CrossRef] [PubMed]
- Wainhouse, D. Dispersal of first instar larvae of the felted beech scale, Cryptococcus fagisuga. J. Appl. Ecol. 1980, 17, 523–532. [Google Scholar] [CrossRef]
- Kasson, M.T.; Livingston, W.H. Spatial distribution of Neonectria species associated with beech bark disease in northern Maine. Mycologia 2009, 101, 190–195. [Google Scholar] [CrossRef]
- Gavin, D.G.; Peart, D.R. Effects of beech bark disease on the growth of American beech (Fagus grandifolia). Can. J. For. Res. 1993, 23, 1566–1575. [Google Scholar] [CrossRef]
- Cale, J.A.; Teale, S.A.; Johnston, M.T.; Boyer, G.L.; Perri, K.A.; Castello, J.D. New ecological and physiological dimensions of beech bark disease development in aftermath forests. For. Ecol. Manag. 2015, 336, 99–108. [Google Scholar] [CrossRef]
- Garnas, J.R.; Ayres, M.P.; Liebhold, A.M.; Evans, C. Subcontinental impacts of an invasive tree disease on forest structure and dynamics. J. Ecol. 2011, 99, 532–541. [Google Scholar] [CrossRef]
- Roy, M.È.; Nolet, P. Early-stage of invasion by beech bark disease does not necessarily trigger American beech root sucker establishment in hardwood stands. Biol. Invasions 2018, 20, 3245–3254. [Google Scholar] [CrossRef]
- Wainhouse, D.; Gate, I.M. The Beech Scale. In Dynamics of Forest Insect Populations: Patterns, Causes, Implications; Berryman, A.A., Ed.; Population Ecology; Springer: Boston, MA, USA, 1988; pp. 67–85. [Google Scholar] [CrossRef]
- Garnas, J.R.; Houston, D.R.; Twery, M.J.; Ayres, M.P.; Evans, C.A.; Lucas, J.A.; Twery, M.J. Inferring controls on the epidemiology of beech bark disease from spatial patterning of disease organisms. Agric. For. Entomol. 2013, 15, 146–156. [Google Scholar] [CrossRef]
- Wiggins, G.J.; Grant, J.F.; Eelbourn, W.C. Allothrombium mitchelli (Acari: Trombidiidae) in the Great Smoky Mountains National Park: Incidence, seasonality, and predation on beech scale (Homoptera: Eriococcidae). Ann. Entomol. Soc. Am. 2001, 94, 896–901. [Google Scholar] [CrossRef]
- Mayer, M.; Allen, D.C. Chilocorus stigma (Coleoptera: Coccinellidae) and other predators of beech scale in central New York. In Proceedings of the IUFRO Beech Bark Disease Working Party Conference, Hamden, CT, USA, 27 September–7 October 1982; GTR-WO-37. U.S. Department of Agriculture Forest Service: Washington, DC, USA, 1983; pp. 89–98. [Google Scholar]
- Houston, D.; O’Brien, J. Beech Bark Disease: Forest Insect and Disease Leaflet 75; U.S. Department of Agriculture Forest Service, Northeastern Forest Experiment Station: Hamden, CT, USA, 1983. [Google Scholar]
- Weber, R.W.S. Biology and control of the apple canker fungus Neonectria ditissima (syn. N. galligena) from a Northwestern European perspective. Erwerbs-Obstbau 2014, 56, 95–107. [Google Scholar] [CrossRef]
- Walter, M.; Stevenson, O.D.; Amponsah, N.T.; Scheper, R.W.A.; Rainham, D.G.; Hornblow, C.G.; Kerer, U.; Dryden, G.H.; Latter, I.; Butler, R.C. Control of Neonectria ditissima with copper based products in New Zealand. N. Z. Plant Prot. 2015, 68, 241–249. [Google Scholar] [CrossRef]
- Houston, D.R. A Technique to Artificially Infest Beech Bark with the Beech Scale Cryptococcus Fagisuga (Lindinger); Reasearch Paper NE-507; U.S. Department of Agriculture Forest Service, Northeastern Forest Experiment Station: Broomall, PA, USA, 1982.
- Walter, M.; Campbell, R.E.; Amponsah, N.T.; Scheper, R.W.A.; Butler, R.C. Evaluation of biological and agrichemical products for control of Neonectria ditissima conidia production. N. Z. Plant. Prot. 2017, 70, 87–96. [Google Scholar] [CrossRef]
- Ostrofsky, W.D.; McCormack, M.L. Silvicultural management of beech and the beech bark disease. North. J. Appl. For. 1986, 3, 89–91. [Google Scholar] [CrossRef]
- Bohn, K.K.; Nyland, R.D. Forecasting development of understory American beech after partial cutting in uneven-aged northern hardwood stands. For. Ecol. Manag. 2003, 180, 453–461. [Google Scholar] [CrossRef]
- Fajvan, M.A.; Hille, A.; Turcotte, R.M. Managing understory Fagus grandifolia for promoting beech bark disease resistance in Northern Hardwood Stands. For. Sci. 2019, 65, 644–651. [Google Scholar] [CrossRef]
- Leak, W.B. Fifty-year impacts of the beech bark disease in the Bartlett Experimental Forest, New Hampshire. North. J. Appl. For. 2006, 23, 141–143. [Google Scholar] [CrossRef]
- Taylor, A.R.; McPhee, D.A.; Loo, J.A. Incidence of beech bark disease resistance in the eastern Acadian forest of North America. For. Chron. 2013, 89, 690–695. [Google Scholar] [CrossRef]
- Koch, J.L.; Carey, D.W. A technique to screen American beech for resistance to the beech scale insect (Cryptococcus fagisuga Lind.). J. Vis. Exp. 2014, 87, e51515. [Google Scholar] [CrossRef]
- Mason, M.E.; Koch, J.L.; Krasowski, M.; Loo, J. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia). Proteome Sci. 2013, 11, 2. [Google Scholar] [CrossRef]
- Carlson, J.E.; Ćalić, I.; Koch, J.; Carey, D.; Addo-Quaye, C.; Shim, D.; Neale, D.B. Candidate genes from GWAS and RNASeq for beech bark disease resistance in American beech. In Proceedings of the Sixth International Workshop on the Genetics of Host-Parasite Interactions in Forestry—Tree Resistance to Insects and Diseases: Putting Promise into Practice, Asheville, NC, USA, 5–10 August 2018; Nelson, C.D., Koch, J., Sniezko, R.A., Eds.; e-GTR-SRS-252. U.S. Department of Agriculture Forest Service, Southern Research Station: Washington, DC, USA, 2020; pp. 42–51. [Google Scholar]
- Heyd, R.L. Managing beech bark disease in Michigan. In Beech Bark Disease, Proceedings of the Beech Bark Disease Symposium, Saranac Lake, New York, NY, USA, 16–18 June 2004; Evans, C.A., Lucas, J.A., Twery, M.J., Eds.; PNW-GTR-352; U.S. Department of Agriculture Forest Service: Newtown Square, PA, USA, 2005; pp. 128–137. [Google Scholar]
- Wisconsin Department of Natural Resources. Management of Beech Bark Disease in Wisconsin. Madison, WI, USA. Available online: https://dnr.wisconsin.gov/sites/default/files/topic/ForestHealth/beechBarkManagement.pdf (accessed on 6 June 2022).
- Missouri Botanical Garden. Fagus Grandifolia. Available online: http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?kempercode=a865 (accessed on 6 June 2022).
- Morton Arboretum. American Beech. Available online: https://mortonarb.org/plant-and-protect/trees-and-plants/american-beech/ (accessed on 6 June 2022).
- Gough, R.E. Juneberries for Montana Gardens; eresource MT198806AG; Montana Extension Service: Montana State University, Bozeman, MT, USA, 2010. [Google Scholar]
- Sapkota, S.; Sapkota, S.; Wang, S.; Liu, Z. Height and diameter affect survival rate of jujube suckers transplanted in a semi-arid farmland of New Mexico. J. Appl. Hort. 2019, 21, 249–251. [Google Scholar] [CrossRef]
- Diner, A.M. Somatic embryogenesis in forestry: A practical approach to cloning the best trees. In Under the Canopy—Forestry and Forest Products Newsletter of the Alaska Cooperative Extension; Wheeler, R., Ed.; University of Alaska Fairbanks Copperative Extension Service: Fairbanks, AK, USA, 1999; pp. 7–8. [Google Scholar]
- Barker, M.J.; Pijut, P.M.; Ostry, M.E.; Houston, D.R. Micropropagation of juvenile and mature American beech. Plant Cell Tissue Organ. Cult. 1997, 51, 209–213. [Google Scholar] [CrossRef]
- Pijut, P.M.; Woeste, K.E.; Michler, C.H. Promotion of adventitious root formation of difficult-to-root hardwood tree species. Horticult. Rev. 2011, 38, 213–251. [Google Scholar]
- Hazubska-Przybył, T.; Chmielarz, P.; Bojarczuk, K. In vitro responses of various explants of Fagus sylvatica. Dendrobiology 2015, 73, 135–144. [Google Scholar] [CrossRef]
- Loo, J.; Ramirez, M.; Krasowski, M. American beech vegetative propagation and genetic diversity. In Beech Bark Disease, Proceedings of the Beech Bark Disease Symposium, Saranak Lake, NY, USA, 16–18 June 2004; Evans, C.A., Lucas, J.A., Twery, M.J., Eds.; PNW-GTR-352; U.S. Department of Agriculture Forest Service: Newtown Square, PA, USA, 2005; pp. 106–112. [Google Scholar]
- Ramirez, M.; Krasowski, M.J.; Loo, J.A. Vegetative propagation of American beech resistant to beech bark disease. HortScience 2007, 42, 320–324. [Google Scholar] [CrossRef]
- Carey, D.W.; Mason, M.E.; Bloese, P.; Koch, J.L. Hot callusing for propagation of American beech by grafting. HortScience 2013, 48, 620–624. [Google Scholar] [CrossRef]
- Jacobs, D.F.; Dalgleish, H.J.; Nelson, C.D. A conceptual framework for restoration of threatened plants: The effective model of American chestnut (Castanea dentata) reintroduction. New Phytol. 2013, 197, 378–393. [Google Scholar] [CrossRef] [PubMed]
- Stanturf, J.A.; Palik, B.J.; Dumroese, R.K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manag. 2014, 331, 292–323. [Google Scholar] [CrossRef]
- Löf, M.; Dey, D.C.; Navarro, R.M.; Jacobs, D.F. Mechanical site preparation for forest restoration. New For. 2012, 43, 825–848. [Google Scholar] [CrossRef]
- Truax, B.; Gagnon, D.; Fortier, J.; Lambert, F.; Pétrin, M.-A. Ecological factors affecting white pine, red oak, bitternut hickory and black walnut underplanting success in a Northern Temperate post-agricultural forest. Forests 2018, 9, 499. [Google Scholar] [CrossRef]
- Johnson, R.; Lipow, S. Compatibility of breeding for increased wood production and long-term sustainability: The genetic variation of seed orchard seed and associated risks. In Congruent Management of Multiple Resources, Proceedings from the Wood Compatibility Initiative Workshop, Stevenson, Washington, USA, 4–7 December 2001; Johnson, A.C., Haynes, R.W., Monserud, R.A., Eds.; PNW-GTR-563; U.S. Department of Agriculture Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2002; pp. 169–182. [Google Scholar]
- Houston, D.; Houston, D. Variation in American beech (Fagus grandifolia Ehrh.): Isozyme analysis of genetic structure in selected stands. Silvae Genet. 1994, 43, 277–284. [Google Scholar]
- Houston, D.B.; Houston, D.R. Allozyme genetic diversity among Fagus grandifolia trees resistant or susceptible to beech bark disease in natural populations. Can. J. For. Res. 2000, 30, 778–789. [Google Scholar] [CrossRef]
- Corbin, J.D.; Holl, K.D. Applied nucleation as a forest restoration strategy. For. Ecol. Manag. 2012, 265, 37–46. [Google Scholar] [CrossRef]
- Wright, S. The genetics of quantitative variability. In Quantitative Inheritance; Edinburgh University: Edinburgh, UK, 1950; Her Majesty’s Stationery Office: Norwich, UK, 1952; pp. 5–41. [Google Scholar]
- Chybicki, I.J.; Trojankiewicz, M.; Oleksa, A.; Dzialuk, A.; Burczyk, J. Isolation-by-distance within naturally established populations of European beech (Fagus sylvatica). Botany 2009, 87, 791–798. [Google Scholar] [CrossRef]
- Kitamura, K.; Morita, T.; Kudo, H.; O’Neill, J.; Utech, F.H.; Whigham, D.F.; Kawano, S. Demographic genetics of the American beech (Fagus grandifolia Ehrh.) III. Genetic substructuring of coastal plain population in Maryland. Plant Species Biol. 2003, 18, 13–33. [Google Scholar] [CrossRef]
- Westergren, M.; Bozic, G.; Ferreira, A.; Kraigher, H. Insignificant effect of management using irregular shelterwood system on the genetic diversity of European beech (Fagus sylvatica L.): A case study of managed stand and old growth forest in Slovenia. For. Ecol. Manag. 2015, 335, 51–59. [Google Scholar] [CrossRef]
- Koch, J.L.; Carey, D.W.; Mason, M.E.; Nelson, C.D. Assessment of beech scale resistance in full- and half-sibling American beech families. Can. J. For. Res. 2010, 40, 265–272. [Google Scholar] [CrossRef]
- Boanares, D.; Azevedo, C.S.d. The use of nucleation techniques to restore the environment: A bibliometric analysis. Nat. Conserv. 2014, 12, 93–98. [Google Scholar] [CrossRef]
- Campanhã Bechara, F.; Trentin, B.E.; Lex Engel, V.; Estevan, D.A.; Ticktin, T. Performance and cost of applied nucleation versus high-diversity plantations for tropical forest restoration. For. Ecol. Manag. 2021, 491, 119088. [Google Scholar] [CrossRef]
- Holl, K.D.; Reid, J.L.; Chaves-Fallas, J.M.; Oviedo-Brenes, F.; Zahawi, R.A. Local tropical forest restoration strategies affect tree recruitment more strongly than does landscape forest cover. J. Appl. Ecol. 2017, 54, 1091–1099. [Google Scholar] [CrossRef]
- Johnson, W.C.; Adkisson, C.S. Dispersal of beech nuts by blue jays in fragmented landscapes. Am. Midl. Nat. 1985, 113, 319–324. [Google Scholar] [CrossRef]
- Koch, J.; Allmaras, S.; Barnes, P.; Berrang, T.; Hall, A.; Iskra, J.; Kochenderfer, W.; MacDonald, W.; Rogers, S.; Rose, J. Beech seed orchard development: Identification and propagation of beech bark resistant American beech trees. In Forest Health Monitoring: National Status, Trends and Analysis, 2014; Potter, K.M., Conkling, B.L., Eds.; GTR-SRS-209; U.S. Department of Agriculture Forest Service: Asheville, NC, USA, 2015; pp. 103–108. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myers, A.L.; Storer, A.J.; Dickinson, Y.L.; Bal, T.L. A Review of Propagation and Restoration Techniques for American Beech and Their Current and Future Application in Mitigation of Beech Bark Disease. Sustainability 2023, 15, 7490. https://doi.org/10.3390/su15097490
Myers AL, Storer AJ, Dickinson YL, Bal TL. A Review of Propagation and Restoration Techniques for American Beech and Their Current and Future Application in Mitigation of Beech Bark Disease. Sustainability. 2023; 15(9):7490. https://doi.org/10.3390/su15097490
Chicago/Turabian StyleMyers, Andrea L., Andrew J. Storer, Yvette L. Dickinson, and Tara L. Bal. 2023. "A Review of Propagation and Restoration Techniques for American Beech and Their Current and Future Application in Mitigation of Beech Bark Disease" Sustainability 15, no. 9: 7490. https://doi.org/10.3390/su15097490
APA StyleMyers, A. L., Storer, A. J., Dickinson, Y. L., & Bal, T. L. (2023). A Review of Propagation and Restoration Techniques for American Beech and Their Current and Future Application in Mitigation of Beech Bark Disease. Sustainability, 15(9), 7490. https://doi.org/10.3390/su15097490