Slope Runoff Process and Regulation Threshold under the Dual Effects of Rainfall and Vegetation in Loess Hilly and Gully Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Experimental Measurement Methods
2.4. Hydraulic Parameter and Soil Infiltration Rate Calculation
3. Results
3.1. Runoff Yield Process in Different Rainfall and Vegetation Conditions
3.2. Hydraulic Parameters Change in Different Rainfall and Vegetation Conditions
3.2.1. Flow Velocity
3.2.2. Reynolds Number
3.2.3. Froude Number
3.2.4. Drag Coefficient
3.3. Response Threshold of Slope Runoff Characteristics to Grassland Cover Changes
3.3.1. Response Threshold of Runoff to Vegetation Coverage Change
3.3.2. Response Threshold of Hydraulic Parameters to Changes in Grassland Coverage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Hou, X.L.; Qiao, J.; Zhang, W.C.; Fang, M.; Lin, M. Evaluation of soil erosion rates in the hilly-gully region of the Loess Plateau in China in the past 60 years using global fallout plutonium. Catena 2023, 220, 106666. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Fu, Z.; Wang, K. Effects of vegetation restoration on soil properties along an elevation gradient in the karst region of southwest China. Agric. Ecosyst. Environ. 2021, 320, 107572. [Google Scholar] [CrossRef]
- Branson, F.A.; Owen, J.B. Plant Cover, Runoff, and Sediment Yield Relationshi ps on Mancos Shale in Western Colorado. Water Resour. Res. 1970, 6, 783–790. [Google Scholar] [CrossRef]
- Kateb, H.E.; Zhang, H.; Zhang, P.; Mosandl, R. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province. China. Catena 2013, 105, 1–10. [Google Scholar] [CrossRef]
- Shi, P.; Li, P.; Li, Z.; Sun, J.M.; Wang, D.J.; Min, Z.Q. Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau, China. Agric. Water Manag. 2022, 259, 107231. [Google Scholar] [CrossRef]
- Bing, W.; Zhang, G.H.; Yang, Y.F.; Li, P.P.; Liu, J.X. Response of soil detachment capacity to plant root and soil properties in typical grasslands on the Loess Plateau. Agric. Ecosyst. Environ. 2018, 266, 68–75. [Google Scholar]
- Valente, M.L.; Reichert, J.M.; Cavalcante, R.; Minella, J.; Evrard, O.; Srinivasan, R. Afforestation of degraded grasslands reduces sediment transport and may contribute to streamflow regulation in small catchments in the short-run. Catena 2021, 204, 105371. [Google Scholar] [CrossRef]
- Sun, W.Y.; Shao, Q.Q.; Liu, J.Y. Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. J. Geogr. Sci. 2013, 23, 1091–1106. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, C.Y.; Xu, Z.L.; Wang, Y.; Peng, H.H. Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment. J. Arid. Land 2013, 5, 207–219. [Google Scholar] [CrossRef]
- Moir, W.H.; Ludwig, J.A.; Scholes, R.T. Soil erosion and vegetation in grasslands of the Peloncillo Mountains, New Mexico. Soil Sci. Soc. Am. J. 2000, 64, 1055–1067. [Google Scholar] [CrossRef]
- Neave, M.; Abrahams, A.D. Vegetation influences on water yields from grassland and shrubland ecosystems in the Chihuahuan Desert. Earth Surf. Proc. Land. 2002, 27, 1011–1020. [Google Scholar] [CrossRef]
- Jiao, J.Y.; Wang, W.Z. The benefits of runoff and sediment reducing & effective cover rate for soil and water conservation of artificial grassland on Loess Plateau. Acta Agrestia Sin. 2001, 9, 176–182. [Google Scholar]
- Zhou, Z.C.; Gan, Z.T.; Shangguan, Z.P.; Dong, Z.B. Effects of grazing on soil physical properties and soil erodibility in semiarid grassland of the Northern Loess Plateau (China). Catena 2010, 82, 87–91. [Google Scholar] [CrossRef]
- Dbert, T.F.; Bork, E.W.; Apfelbaum, S.; Carlyle, C.N.; Chang, S.X.; Khatri-Chhetri, U.; Sobrinho, L.S.; Thompson, R.; Boyce, M. Adaptive multi-paddock grazing improves water infiltration in Canadian grassland soils. Geoderma 2021, 401, 115314. [Google Scholar] [CrossRef]
- He, Z.; Xiao, P.; Jia, G.; Liu, Z.; Zhang, Z.; Yu, X. Field studies on the influence of rainfall intensity, vegetation cover and slope length on soil moisture infiltration on typical watersheds of the Loess Plateau, China. Hydrol. Process. 2020, 34, 4904–4919. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Gao, L.; Sun, Y. Influence of Rainfall Intensity and Slope on Runoff and Sediment Reduction Benefits of Fine Mesh Net on Construction Spoil Deposits. Sustainability 2022, 14, 5288. [Google Scholar] [CrossRef]
- Zuo, D.P.; Xu, Z.X.; Yao, W.Y.; Jin, S.Y.; Xiao, P.Q.; Ran, D.C. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef]
- Sun, J.M.; Yu, X.X.; Fan, D.X.; Liang, H.R. Impact of vegetation cover on surface runoff hydraulic characteristics with simulated rainfall. Acta Ecol. Sin. 2015, 35, 2574–2580. [Google Scholar]
- Cai, Y.; Yan, Y.; Wang, C.; Xu, D.W.; Wang, X.; Xin, X.Q.; Chen, J.Q.; Eldridge, D.J. Effect of shrubs on soil saturated hydraulic conductivity depends on the grazing regime in a semi-arid shrub-encroached grassland. Catena 2021, 207, 105680. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, W.; Martinez-Murillo, J.F.; Pereira, P. Loess Plateau, from degradation to restoration. Sci. Total Environ. 2020, 738, 140206. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.Z.; Lü, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Chen, L.; Wei, W.; Fu, B.; Lü, Y.H. Soil and water conservation on the Loess Plateau in China: Review and perspective. Prog. Phys. Geogr. 2007, 31, 3547–3554. [Google Scholar] [CrossRef]
- Wang, H.J.; Sun, P.; Enlong Liu, E.L.; Li, R.J. Dynamic properties of Tianshui saturated remolded loess: A laboratory study. Eng. Geol. 2020, 272, 105570. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Y.J.; Zhao, Q.Y. Variation characteristics of maximum daily precipitation and estimation of possible maximum daily precipitation in Tianshui area of Gansu Province. Arid Meteorol. 2015, 33, 48–53. (In Chinese) [Google Scholar]
- Kalhoro, S.A.; Ding, K.; Zhang, B.; Chen, W.Y.; Hua, R.; Shar, A.H.; Xu, X.X. Soil infiltration rate of forestland and grassland over different vegetation restoration periods at Loess Plateau in northern hilly areas of China. Landsc. Ecol. Eng. 2019, 15, 91–99. [Google Scholar] [CrossRef]
- Li, Y.; Shao, M. Experimental study on influence factors of rainfall and infiltration under artificial grassland coverage. Trans. Chin. Soc. Agric. Eng. 2007, 23, 18–23. (In Chinese) [Google Scholar]
- Wang, C.Y.; Yu, Y.C. Variation of soil stable infiltration rate in growing season for rehabilitated grassland in loess hilly region. Agric. Res. Arid Areas 2017, 35, 107–113. (In Chinese) [Google Scholar]
- Greene, R.; Kinnell, P.; Wood, J. Role of plant cover and stock trampling on runoff and soil-erosion from semiarid wooded rangelands. Aust. J. Soil Res. 1994, 32, 953–973. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, S.; Tian, F.; Ma, C. Runoff and sediment yield characteristics of earth road under artificial rainfall and simulated overland flow tests conditions in Loess Plateau. Trans. Chin. Soc. Agric. Eng. 2010, 26, 83–87. (In Chinese) [Google Scholar]
- Pinski, S.L.; Trohman, R.G. Analysis of surface roughness in relation to soil loss and runoff at high rainfall intensities. Hydrol. Process. 2010, 16, 2339–2345. [Google Scholar]
- Yang, C.X.; Yao, W.Y.; Xiao, P.Q.; Yi, L. Influence of vegetation cover structure on runoff and sediment yield on slope and analysis of regulation mechanism. J. Water Conserv. 2019, 50, 1078–1085. [Google Scholar]
- Mendes, T.A.; Alves, R.D.; Gitirana, G.; Pereira, S.A.D.S.; Rebolledo, J.F.R.; Luz, M.P.D. Evaluation of Rainfall Interception by Vegetation Using a Rainfall Simulator. Sustainability 2021, 13, 3060. [Google Scholar] [CrossRef]
- Mavimbela, S.S.W.; Dlamini, P.; Van Rensburg, L.D. Infiltration-excess runoff properties of dryland floodplain soil types under simulated rainfall conditions. Arid. Land Res. Manag. 2019, 33, 235–254. [Google Scholar] [CrossRef]
- Dunkerley, D. An approach to analysing plot scale infiltration and runoff responses to rainfall of fluctuating intensity. Hydrol. Process. 2017, 31, 191–206. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, H.; Li, Z.; Liu, C. Threshold effects of vegetation coverage on soil erosion control in small watersheds of the red soil hilly region in China. Ecol. Eng. 2019, 132, 109–114. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liang, Y.M. Study on runoff beginning time of artificial grassland in Loess Hilly Region. J. Soil Water Conserv. 1995, 9, 78–83. [Google Scholar]
- Zhu, B.B.; Li, Z.B.; Li, P.; You, Z. Effect of grass coverage on sediment yield of rain on slope. Acta Pedol. Sin. 2010, 7, 401–407. (In Chinese) [Google Scholar]
- Alemayehu, M.; Amede, T.; Böhme, M.; Peters, K.J. Collective management on communal grazing lands: Its impact on vegetation attributes and soil erosion in the upper Blue Nile basin, northwestern Ethiopia. Livest. Sci. 2013, 157, 271–279. [Google Scholar] [CrossRef]
- Bai, Y.J.; Zhang, F.B.; Yang, M.Y.; Li, Z.; Zhang, J. Variation of hydraulic parameters of shallow flow on steep loess slope. J. Soil Sci. 2018, 55, 641–649. [Google Scholar]
- Zhang, K.D.; Wang, G.Q.; Sun, X.M.; Wang, J. Hydraulic characteristic of overland flow under different vegetation coverage. Adv. Water Sci. 2014, 25, 825–834. [Google Scholar]
- Wang, L.L.; Yao, W.Y.; Shen, Z.Z. Effects of grass coverage on shallow flow hydraulic parameters and sediment reduction. Sci. Water Conserv. 2009, 7, 80–83. [Google Scholar]
- Jiang, F.; Zhan, Z.; Chen, J.; Lin, J.S.; Wang, M.K.; Ge, H.L.; Huang, Y.H. Rill erosion processes on a steep colluvial deposit slope under heavy rainfall in flume experiments with artificial rain. Catena 2018, 169, 46–58. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, L.; Huang, D. Development of rill erosion on bare sloping farmland under natural rainfall conditions. Environ. Earth Sci. 2022, 81, 264.1–264.11. [Google Scholar] [CrossRef]
- Sobol, N.V.; Gabbasova, I.M.; Komissarov, M.A. Effect of rainfall intensity and slope steepness on the development of soil erosion in the Southern Cis-Ural region (A model experiment). Eurasian Soil Sci. 2017, 50, 1098–1104. [Google Scholar] [CrossRef]
- Ribolzi, O.; Patin, J.; Bresson, L.M.; Latsachack, K.O.; Mouche, E.; Sengtaheuanghoung, O.; Silvera, N.; Thiébaux, J.P.; Valentin, C. Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology 2014, 127, 53–63. [Google Scholar] [CrossRef]
- Snelder, D.J.; Bryan, R.B. The use of rainfall simulation tests to assess the influence of vegetation density on soil loss on degraded rangelands in the Baringo District, Kenya. Catena 1995, 25, 105–116. [Google Scholar] [CrossRef]
- Liu, Y.X.; Yan, X.; Xie, Y.; Wang, W.T. Effects of slope and rainfall intensity on runoff and soil erosion from furrow diking under simulated rainfall. Catena 2019, 177, 92–100. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, D.; Zhuo, M.; Guo, T.; Liao, Y.; Xie, Z. Effects of rainfall intensity and slope gradient on erosion characteristics of the red soil slope. Stoch. Environ. Res. Risk Assess. 2015, 29, 609–621. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Lv, X.; Ni, Y.; Ma, L.; Wang, J. Slope Runoff Process and Regulation Threshold under the Dual Effects of Rainfall and Vegetation in Loess Hilly and Gully Region. Sustainability 2023, 15, 7582. https://doi.org/10.3390/su15097582
Zhang Q, Lv X, Ni Y, Ma L, Wang J. Slope Runoff Process and Regulation Threshold under the Dual Effects of Rainfall and Vegetation in Loess Hilly and Gully Region. Sustainability. 2023; 15(9):7582. https://doi.org/10.3390/su15097582
Chicago/Turabian StyleZhang, Qiufen, Xizhi Lv, Yongxin Ni, Li Ma, and Jianwei Wang. 2023. "Slope Runoff Process and Regulation Threshold under the Dual Effects of Rainfall and Vegetation in Loess Hilly and Gully Region" Sustainability 15, no. 9: 7582. https://doi.org/10.3390/su15097582
APA StyleZhang, Q., Lv, X., Ni, Y., Ma, L., & Wang, J. (2023). Slope Runoff Process and Regulation Threshold under the Dual Effects of Rainfall and Vegetation in Loess Hilly and Gully Region. Sustainability, 15(9), 7582. https://doi.org/10.3390/su15097582