Neural Network Predictive Models for Alkali-Activated Concrete Carbon Emission Using Metaheuristic Optimization Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Dataset
2.2. Using HyperNetExplorer
2.2.1. Artificial Neural Network (ANN)
2.2.2. Algorithms for Hyperparameter Optimization
CMAES (Covariance Matrix Adaptation Evolution Strategy)
Genetic Algorithm (GA)
Original Particle Swarm Optimization (PSO)
2.2.3. Performance Evaluation
2.2.4. HyperNetExplorer: Architecture and Operation
3. Results and Discussion
4. Conclusions
- (1)
- Hyperparameter optimization with the genetic algorithm showed successful regression performance with accurate mean squared error (MSE = 161.17) and coefficient of determination (R2 = 0.90) values in the datasets.
- (2)
- CMAES follows the GA with MSE = 187.07 and R2 = 0.88.
- (3)
- The algorithm with the lowest R2 (R2 = 0.84) value and the highest MSE (MSE = 271.59) among them is PSO.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- İğci, T.; Çobanoğlu, N. An Assessment of Climate Change and Global Agreements from the Perspective of Environmental Ethics. Ank. Univ. J. Environ. Sci. 2019, 7, 130–146. [Google Scholar]
- Aksan, Z.; Çelikler, D. Pre-Service Elementary Teachers’ Opinions about Global Warming. Eskişehir Osman. Univ. J. Soc. Sci. 2013, 14, 49–67. [Google Scholar]
- CO2 Emissions in 2022. Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 20 September 2023).
- Mehta, K.P. Reducing the environmental impact of concrete. Concr. Int. 2001, 23, 61–66. [Google Scholar]
- United Nations Development. Sustainable Development Goals. 2015. Available online: https://www.undp.org/susabinable-development-goals (accessed on 20 September 2023).
- Erdoğan, T.Y. Concrete, Turkey; Hermes Promotion Offset Printing Services, Ltd.: Ottawa, ON, Canada, 2013. [Google Scholar]
- Kawashima, A.B.; Martins, L.D.; Rafee, S.A.A.; Rudke, A.P.; de Morais, M.V.; Martins, J.A. Development of a spatialized atmospheric emission inventory for the main industrial sources in Brazil. Environ. Sci. Pollut. Res. 2020, 27, 35941–35951. [Google Scholar] [CrossRef] [PubMed]
- Uzal, B.; Turanli, L.; Mehta, P.K. High-volume natural pozzolan concrete for structural applications. ACI Mater. J. 2007, 104, 535. [Google Scholar]
- About Cement & Concrete. Available online: https://gccassociation.org/our-story-cement-and-concrete/ (accessed on 20 September 2023).
- Cement: The Hidden Culprit of Global Warming. Available online: https://www.bbc.com/turkce/haberler-dunya-46589916 (accessed on 20 September 2023).
- CMIE. Infomerics Economic Research. Available online: https://www.infomerics.com/admin/uploads/Cement-Industry-Report-May2023.pdf (accessed on 21 September 2023).
- Wu, H.; Hu, R.; Yang, D.; Ma, Z. Micro-macro characterizations of mortar containing construction waste fines as replacement of cement and sand: A comparative study. Constr. Build. Mater. 2023, 383, 131328. [Google Scholar] [CrossRef]
- Dobiszewska, M.; Bagcal, O.; Beycioğlu, A.; Goulias, D.; Köksal, F.; Płomiński, B.; Ürünveren, H. Utilization of rock dust as cement replacement in cement composites: An alternative approach to sustainable mortar and concrete productions. J. Build. Eng. 2023, 69, 106180. [Google Scholar] [CrossRef]
- Moumin, G.; Ryssel, M.; Zhao, L.; Markewitz, P.; Sattler, C.; Robinius, M.; Stolten, D. CO2 emission reduction in the cement industry by using a solar calciner. Renew. Energy 2020, 145, 1578–1596. [Google Scholar] [CrossRef]
- Chaudhury, R.; Sharma, U.; Thapliyal, P.C.; Singh, L.P. Low-CO2 emission strategies to achieve net zero target in cement sector. J. Clean. Prod. 2023, 417, 137466. [Google Scholar]
- Cakiroglu, C.; Islam, K.; Bekdas, G.; Apak, S. Cost and CO2 emission-based optimisation of reinforced concrete deep beams using Jaya algorithm. J. Environ. Prot. Ecol. 2022, 23, 9534. [Google Scholar]
- Cakiroglu, C.; Islam, K.; Bekdaş, G.; Billah, M. CO2 emission and cost optimization of concrete-filled steel tubular (CFST) columns using metaheuristic algorithms. Sustainability 2021, 13, 8092. [Google Scholar] [CrossRef]
- Artel, T. Building Materials, 2nd ed.; Gündüz, D., Ed.; Osman Yalçın Printing House: Istanbul, Turkey, 1969. [Google Scholar]
- Buchwald, A.; Kaps, C.; Hohmann, M. Alkali-activated binders and pozzolan cement binders–complete binder reaction or two sides of the same story. In Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), Durban, South Africa, 11–16 May 2003; pp. 1238–1246. [Google Scholar]
- Shi, C.; Krivenko, P.V.; Roy, D.M. Alkali-Activated Cements and Concretes; Taylor and Francis: Abingdon, UK, 2006. [Google Scholar]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 2008, 22, 1305–1314. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM; Provis, J.L., Van Deventer, J.S., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 13. [Google Scholar]
- Hamrani, A.; Akbarzadeh, A.; Madramootoo, C.A. Machine learning for predicting greenhouse gas emissions from agricultural soils. Sci. Total Environ. 2020, 741, 140338. [Google Scholar] [CrossRef] [PubMed]
- Leerbeck, K.; Bacher, P.; Junker, R.G.; Goranović, G.; Corradi, O.; Ebrahimy, R.; Tveit, A.; Madsen, H. Short-term forecasting of CO2 emission intensity in power grids by machine learning. Appl. Energy 2020, 277, 115527. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y. Modeling and predicting city-level CO2 emissions using open access data and machine learning. Environ. Sci. Pollut. Res. 2021, 28, 19260–19271. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ren, A.; Li, Q. Exploring patterns of transportation-related CO2 emissions using machine learning methods. Sustainability 2022, 14, 4588. [Google Scholar] [CrossRef]
- Wang, C.; Li, M.; Yan, J. Forecasting carbon dioxide emissions: Application of a novel two-stage procedure based on machine learning models. J. Water Clim. Change 2023, 14, 477–493. [Google Scholar] [CrossRef]
- He, B.; Zhu, X.; Cang, Z.; Liu, Y.; Lei, Y.; Chen, Z.; Wang, Y.; Zheng, Y.; Cang, D.; Zhang, L. Interpretation and Prediction of the CO2 Sequestration of Steel Slag by Machine Learning. Environ. Sci. Technol. 2023, 57, 17940–17949. [Google Scholar] [CrossRef]
- Amin, M.N.; Ahmad, W.; Khan, K.; Al-Hashem, M.N.; Deifalla, A.F.; Ahmad, A. Testing and modeling methods to experiment the flexural performance of cement mortar modified with eggshell powder. Case Stud. Constr. Mater. 2023, 18, e01759. [Google Scholar] [CrossRef]
- Wang, P.; Hu, J.; Chen, W. A hybrid machine learning model to optimize thermal comfort and carbon emissions of large-space public buildings. J. Clean. Prod. 2023, 400, 136538. [Google Scholar] [CrossRef]
- Yücel, M.; Bekdaş, G.; Nigdeli, S.M. Prediction of Minimum CO2 Emission for Rectangular Shape Reinforced Concrete (RC) Beam. In Proceedings of the 7th International Conference on Harmony Search, Soft Computing and Applications, ICHSA, Seoul, Republic of Korea, 3 September 2022; Springer Nature: Singapore, 2022; pp. 139–148. [Google Scholar]
- Bekdaş, G.; Yucel, M.; Nigdeli, S.M. Generation of eco-friendly design for post-tensioned axially symmetric reinforced concrete cylindrical walls by minimizing of CO2 emission. Struct. Des. Tall Spec. Build. 2022, 31, e1948. [Google Scholar] [CrossRef]
- Aydın, Y.; Bekdaş, G.; Nigdeli, S.M.; Isıkdağ, Ü.; Kim, S.; Geem, Z.W. Machine learning models for ecofriendly optimum design of reinforced concrete columns. Appl. Sci. 2023, 13, 4117. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, H.; Zhang, S.; Mohan, M.K.; Ye, G.; De Schutter, G. Prediction & optimization of alkali-activated concrete based on the random forest machine learning algorithm. Constr. Build. Mater. 2023, 385, 131519. [Google Scholar]
- Cakiroglu, C.; Bekdaş, G. CO2 Emission Minimization of a Plate Girder under Lateral Torsional Buckling Constraint. In AIP Conference Proceedings; AIP Publishing: Long Island, NY, USA, 2023; Volume 2849. [Google Scholar]
- Torres, B.M.; Völker, C.; Firdous, R. An Alkali-Activated Concrete Dataset for Sustainable Building Materials. Zenodo 2023, 2, 7805018. [Google Scholar] [CrossRef]
- Mealpy. Available online: https://github.com/thieu1995/mealpy (accessed on 23 September 2023).
- Kohonen, T. An introduction to neural computing. Neural Netw. 1988, 1, 3–16. [Google Scholar] [CrossRef]
- Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Akkaya, G. Artificial Neural Networks and Their Applications in Agriculture. J. Atatürk Univ. Fac. Agric. 2007, 38, 195–202. [Google Scholar]
- Oztemel, E. Artificial Neural Networks; Papatya Publishing: Istanbul, Turkey, 2006. [Google Scholar]
- Kurt, R.; Karayilmazlar, S.; Imren, E.; Çabuk, Y. Forecasting by Using Artificial Neural Networks: Turkey’s Paper Paperboard Industry Case. J. Bartin Fac. For. 2017, 19, 99–106. [Google Scholar]
- Benli, Y. The Use of Artificial Neural Network in the Prediction of Financial Failure and an Application in ISE. J. Account. Sci. World 2002, 4, 17–30. [Google Scholar]
- Alaloul, W.S.; Qureshi, A.H. Data Processing Using Artificial Neural Networks; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Şafak, E. Detection of fake face images using convolutional neural networks. Master’s Thesis, Gazi University, Ankara, Turkey, 2023. [Google Scholar]
- Karlik, B.; Olgac, A.V. Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 2011, 1, 111–122. [Google Scholar]
- Misra, D. Mish: A Self Regularized Non-monotonic Activation Function. arXiv 2019, arXiv:1908.08681. [Google Scholar]
- Xu, J.; Li, Z.; Du, B.; Zhang, M.; Liu, J. Reluplex made more practical: Leaky ReLU. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv 2015, arXiv:1511.07289. [Google Scholar]
- Atlan, F.; Hançer, E.; Pençe, İ. Evaluation of Hyper Parameter Optimization Effect on Nuclei Segmentation with U-Net. Eur. J. Sci. Technol. 2020, 22, 60–69. [Google Scholar]
- Hansen, N.; Ostermeier, A. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In Proceedings of the IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 312–317. [Google Scholar]
- CMA-ES. Available online: https://en.wikipedia.org/wiki/CMA-ES (accessed on 25 September 2023).
- Chen, G.; Yin, J.; Yang, S. Ship Autonomous Berthing Simulation Based on Covariance Matrix Adaptation Evolution Strategy. J. Mar. Sci. Eng. 2023, 11, 1400. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 1973, 2, 88–105. [Google Scholar] [CrossRef]
- Okwu, M.O.; Tartibu, L.K. Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications; Springer Nature: Singapore, 2020; Volume 927. [Google Scholar]
- Keklik, G.; Özcan, B.D. Functioning of Genetic Algorithms and Operators Used in Genetic Algorithm Applications. Osman. Korkut Ata Univ. J. Inst. Sci. Technol. 2023, 6, 1052–1066. [Google Scholar]
- Az, M.T.; Ayvaz, B. Genetic Algorithm Application for Crew Pair Optimization in Airline Crew Planning. Istanb. Commer. Univ. J. Sci. 2022, 21, 194–210. [Google Scholar]
- Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Özsağlam, M.Y.; Çunkaş, M. Particle Swarm Optimization Algorithm for Solving Optimızation Problems. J. Polytech. 2008, 11, 299–305. [Google Scholar]
- Zhu, W.; Yao, T.; Ni, J.; Wei, B.; Lu, Z. Dependency-based Siamese long short-term memory network for learning sentence representations. PLoS ONE 2018, 13, e0193919. [Google Scholar] [CrossRef]
- Evaluating Model Performance—Metrics. Available online: https://medium.com/deep-learning-turkiye/model-performans%C4%B1n%C4%B1-de%C4%9Ferlendirmek-metrikler-cb6568705b1 (accessed on 2 October 2023).
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. arXiv 2019, arXiv:1912.01703. [Google Scholar]
Predictor | Min–Max Value | Mean | Standard Deviation |
---|---|---|---|
SiO2 | 30.61–77.1 | 50.166 | 9.377 |
Al2O3 | 4.26–38.38 | 23.365 | 6.710 |
Fe2O3 | 0.3–17.86 | 4.465 | 2.888 |
CaO | 0.05–43.34 | 12.993 | 11.802 |
MgO | 0–9.57 | 3.028 | 2.629 |
Na2O | 0–3.66 | 0.434 | 0.552 |
K2O | 0–5.03 | 0.877 | 1.111 |
SO3 | 0–5.04 | 0.676 | 0.793 |
TiO2 | 0–2.19 | 0.560 | 0.723 |
P2O5 | 0–4.48 | 0.200 | 0.655 |
SrO | 0–0.5 | 0.001 | 0.007 |
Mn2O3 | 0–0.29 | 0.010 | 0.039 |
MnO | 0–0.37 | 0.012 | 0.050 |
LOI | 0–13.97 | 1.254 | 1.474 |
kg of binder per m3 of mix | 150–788.58 | 402.938 | 88.017 |
Coarse aggregate (kg/m3) | 525.4–1591.34 | 1093.954 | 181.134 |
Fine aggregate (kg in 1 m3 mix) | 318.27 | 669.847 | 122.338 |
Total aggregates (kg in 1 m3 mix) | 1110 | 1763.798 | 150.755 |
Total Na2SiO3 (kg in 1 m3 of mix) | 49.6–213 | 123.887 | 31.492 |
Na2O (L)% | 0.08–0.23 | 0.139 | 0.027 |
SiO2 (L)% | 0.21–0.35 | 0.303 | 0.031 |
H2O% | 0.48–0.64 | 0.558 | 0.046 |
Na2O (Dry) | 6.08–35.18 | 16.843 | 5.280 |
SiO2 (Dry) | 11.23–66.84 | 37.162 | 10.947 |
Water | 25.26–130.51 | 67.967 | 19.300 |
Total NaOH (kg in 1 m3 mix) | 22.5–133.18 | 59.078 | 17.977 |
Concentration (M) NaOH | 3–22 | 10.927 | 3.112 |
Water | 8.51–79.91 | 33.217 | 12.243 |
NaOH (Dry) | 2.98–85.24 | 25.861 | 11.628 |
Superplasticizer (kg in 1 m3 mix) | 0–47 | 5.838 | 7.246 |
Total water (in solutions + additional) (kg in 1 m3 mix) | 41.38–303.54 | 124.053 | 49.615 |
Cube D (mm) | 50–150 | 121.267 | 27.337 |
fccube (MPa) | 3–91.94 | 45.554 | 15.256 |
Target | |||
CO2 footprint (kg emision per 1 m3 of samples) | 38.23–895.07 | 154.473 | 86.962 |
Parameter Name | Lower Bound | Upper Bound | Options |
---|---|---|---|
Number of Hidden Layers (HLs) | 0 | 2 | 0: Single HL |
1: Two HL | |||
2: Three HL | |||
Number of Neurons in HL = 1 | 0 | 6 | 0: 8 |
1: 16 | |||
2: 32 | |||
3: 64 | |||
4: 128 | |||
5: 256 | |||
6: 512 | |||
Number of Neurons in HL = 2 | 0 | 6 | 0: 8 |
1: 16 | |||
2: 32 | |||
3: 64 | |||
4: 128 | |||
5: 256 | |||
6: 512 | |||
Number of Neurons in HL = 3 | 0 | 6 | 0: 8 |
1: 16 | |||
2: 32 | |||
3: 64 | |||
4: 128 | |||
5: 256 | |||
6: 512 | |||
Activation Function of HL = 1 | 0 | 6 | 0: LeakyReLU |
1: Sigmoid | |||
2: Tanh | |||
3: ReLU | |||
4: LogSigmoid | |||
5: ELU | |||
6: Mish | |||
Activation Function of HL = 2 | 0 | 6 | 0: LeakyReLU |
1: Sigmoid | |||
2: Tanh | |||
3: ReLU | |||
4: LogSigmoid | |||
5: ELU | |||
6: Mish | |||
Activation Function of HL = 3 | 0 | 6 | 0: LeakyReLU |
1: Sigmoid | |||
2: Tanh | |||
3: ReLU | |||
4: LogSigmoid | |||
5: ELU | |||
6: Mish |
Neural Network Structure | Parameters |
---|---|
Type of optimization method | CMAES |
Number of layers in the network | 5 |
Number of neurons in the input layer | 33 |
Number of hidden layers | 3 |
Number of hidden layer neurons | 512-256-128 |
Total number of iterations | 1050 |
Number of best iteration | 699 |
Mean squared error (MSE) | 187.07 |
Coefficient of determination (R2) | 0.88 |
Neural Network Structure | Parameters |
---|---|
Type of optimization method | Genetic Algorithm |
Number of layers in the network | 5 |
Number of neurons in the input layer | 33 |
Number of hidden layers | 3 |
Number of hidden layer neurons | 512-256-128 |
Total number of iterations | 1050 |
Number of best iteration | 1030 |
Mean squared error (MSE) | 161.17 |
Coefficient of determination (R2) | 0.9 |
Neural Network Structure | Parameters |
---|---|
Type of optimization method | Particle Swarm Optimization |
Number of layers in the network | 5 |
Number of neurons in the input layer | 33 |
Number of hidden layers | 3 |
Number of hidden layer neurons | 512-512-256 |
Total number of iterations | 1050 |
Number of best iteration | 955 |
Mean squared error (MSE) | 271.59 |
Coefficient of determination (R2) | 0.84 |
Optimizer | MSE | R2 | Number of Best Iteration |
---|---|---|---|
CMAES | 187.07 | 0.88 | 699 |
GA | 161.17 | 0.90 | 1030 |
PSO | 271.59 | 0.84 | 955 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydın, Y.; Cakiroglu, C.; Bekdaş, G.; Işıkdağ, Ü.; Kim, S.; Hong, J.; Geem, Z.W. Neural Network Predictive Models for Alkali-Activated Concrete Carbon Emission Using Metaheuristic Optimization Algorithms. Sustainability 2024, 16, 142. https://doi.org/10.3390/su16010142
Aydın Y, Cakiroglu C, Bekdaş G, Işıkdağ Ü, Kim S, Hong J, Geem ZW. Neural Network Predictive Models for Alkali-Activated Concrete Carbon Emission Using Metaheuristic Optimization Algorithms. Sustainability. 2024; 16(1):142. https://doi.org/10.3390/su16010142
Chicago/Turabian StyleAydın, Yaren, Celal Cakiroglu, Gebrail Bekdaş, Ümit Işıkdağ, Sanghun Kim, Junhee Hong, and Zong Woo Geem. 2024. "Neural Network Predictive Models for Alkali-Activated Concrete Carbon Emission Using Metaheuristic Optimization Algorithms" Sustainability 16, no. 1: 142. https://doi.org/10.3390/su16010142