Biochar-Assisted Phytoremediation Potential of Sewage Sludge Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Production and Its Properties Evaluation
2.2. Pot Experiment Instalation
2.3. Determination of Total Amount of Heavy Metals
2.4. Calculation of Translocation and Bioconcentration Factors
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Biochar Addition on Heavy Metal Concentration in Soil, Following the Growth of Buckwheat and White Mustard
3.2. Accumulation of Heavy Metals in Plants Belowground Biomass after Biochar Incorporation
3.3. Accumulation of Heavy Metals in Plants Aboveground Biomass after Biochar Incorporation
3.4. Effect of Biochar on Heavy Metals Concentration in Lysimetric Water
3.5. Effects of Biochar Bioconcentration and Translocation Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, H.; Guan, J.; Liang, Q.; Zhang, X.; Hu, H.; Zhang, J. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci. Rep. 2021, 11, 9913. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Lin, X.; Zhou, F.; Qin, J.; Li, H. Biochar and crushed straw additions affect cadmium absorption in cassava-peanut intercropping system. Ecotoxicol. Environ. Saf. 2019, 167, 520–530. [Google Scholar] [CrossRef]
- Oladoye, P.O. Natural, low-cost adsorbents for toxic Pb(II) ion sequestration from (waste)water: A state-of-the-art review. Chemosphere 2022, 287, 132130. [Google Scholar] [CrossRef] [PubMed]
- Pinto, P.X.; Al-Abed, S.R.; Reisman, D.J. Biosorption of heavy metals from mining influenced water onto chitin products. Chem. Eng. J. 2011, 166, 1002–1009. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Han, Z.; Xie, B.; Wu, S. The effects of leaching methods on the combustion characteristics of rice straw. Biomass Bioenergy 2013, 49, 22–27. [Google Scholar] [CrossRef]
- Reeves, P.G.; Chaney, R.L. Bioavailability as an issue in risk assessment and management of food cadmium: A review. Sci. Total Environ. 2008, 398, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 2010, 48, 611–619. [Google Scholar] [CrossRef]
- Perez-Esteban, J.; Escolastico, C.; Moliner, A.; Masaguer, A.; Ruiz-Fernandez, J. Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments. Plant Soil. 2014, 377, 97–109. [Google Scholar] [CrossRef]
- Chou, J.; Wey, M.; Chang, S.H. Study on Pb and PAHs emission levels of heavy metals- and PAHs-contaminated soil during thermal treatment process. J. Environ. Eng. 2010, 136, 112–118. [Google Scholar] [CrossRef]
- Puga, A.P.; Abreu, C.A.; Melo, L.C.A.; Beesley, L. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J. Environ. Manag. 2015, 159, 86–93. [Google Scholar] [CrossRef]
- Lomaglio, T.; Hattab-Hambli, N.; Miard, F.; Lebrun, M.; Nandillon, R.; Trupiano, D.; Scippa, G.S.; Gauthier, A.; Motelica-Heino, M.; Bourgerie, S.; et al. Cd, Pb, and Zn mobility and (bio)availability in contaminated soils from a former smelting site amended with biochar. Environ. Sci. Pollut. Res. 2017, 25, 25744–25756. [Google Scholar] [CrossRef] [PubMed]
- Poucke, R.V.; Ainsworth, J.; Maeseele, M.; Ok, Y.S.; Meers, E.; Tack, F.M.G. Chemical stabilization of Cd-contaminated soil using biochar. Appl. Geochem. 2018, 88, 122–130. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental benefits of biochar. J. Environ. Qual. 2012, 41, 967–972. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Strezov, V.; Kan, T.; Weldekidan, H.; Asumadu-Sarkodie, S.; Kumar, R. Effect of temperature on heavy metal(loid) deportment during pyrolysis of Avicennia marina biomass obtained from phytoremediation. Bioresour. Technol. 2019, 278, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, Y.Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Wat Res. 2012, 46, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Komárek, M.; Vaněk, A.; Ettler, V. Chemical stabilization of metals and arsenic in contaminated soils using oxides—A review. Environ. Pollut. 2013, 172, 9–22. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jimenez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochar’s potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef]
- Shen, X.; Huang, D.-Y.; Ren, X.-F.; Zhu, H.-H.; Wang, S.; Xu, C.; He, Y.-B.; Luo, Z.-C.; Zhu, Q.-H. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil. J. Environ. Manag. 2016, 168, 245–251. [Google Scholar] [CrossRef]
- Ahmad, M.; Ok, Y.S.; Kim, B.-Y.; Ahn, J.-H.; Lee, Y.H.; Zhang, M.; Moon, D.H.; Alwabel, M.I.; Lee, S.S. Impact of soybean stover- and pine needle-derived biochar’s on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. J. Environ. Manag. 2016, 166, 131–139. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Qasim, B.; Razzak, A.A.; Rasheed, R.T. Effect of biochar amendment on mobility and plant uptake of Zn, Pb and Cd in contaminated soil. IOP Conf. Ser. Earth Environ. Sci. 2021, 779, 012082. [Google Scholar] [CrossRef]
- Barcauskaite, K.; Mažeika, R. Chemical composition and risk assessment of spring barley grown in artificially contaminated soil. Environ. Sci. Pollut. Res. 2021, 28, 21684–21695. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin, Germany, 2007. [Google Scholar]
- Kalavrouziotis, I.K.; Kostakioti, E.; Koukoulakis, P.H.; Papadopoulos, A.H.; Leotsinidis, M.; Sakazli, E. The impact of Cl-Cd interrelationship on planning wastewater reuse on cabbage. Water Air Soil. Pollut. 2011, 214, 565–573. [Google Scholar] [CrossRef]
- Wang, Z.L.; Li, Y.F.; Chang, S.X.; Zhang, J.J.; Jiang, P.K.; Zhou, G.M.; Shen, Z.M. Contrasting effects of bamboo leaf and its biochar on soil CO2 efflux and labile organic carbon in an intensively managed Chinese chestnut plantation. Biol. Fertil. Soils 2014, 50, 1109–1119. [Google Scholar] [CrossRef]
- Xu, P.; Sun, C.X.; Ye, X.Z.; Xiao, W.D.; Zhang, Q.; Wang, Q. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotox. Environ. Saf. 2016, 132, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Soudek, P.; Rodriguez, I.M.; Petrova, S.; Song, J.; Vanek, T. Characteristics of different types of biochar and effects on the toxicity of heavy metals to germinating sorghum seeds. J. Geochem. Explor. 2017, 182, 157–165. [Google Scholar] [CrossRef]
- Erdem, H. The effects of biochar’s produced in different pyrolysis temperatures from agricultural wastes on cadmium uptake of tobacco plant. Saudi J. Biol. Sci. 2021, 28, 3965–3971. [Google Scholar] [CrossRef]
- Nejad, Z.D.; Jung, M.C. The effects of biochar and inorganic amendments on soil remediation in the presence of hyperaccumulator plant. Int. J. Energy Environ. Eng. 2017, 8, 317–329. [Google Scholar] [CrossRef]
- Yang, X.; Igalavithana, A.D.; Oh, S.E.; Nam, H.; Zhang, M.; Wang, C.H.; Kwon, E.E.; Tsang, D.C.W.; Ok, Y.S. Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil. Sci. Total Environ. 2018, 640–641, 704–713. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Gong, Y.; Liu, Q.; Yang, S.; Ma, J.; Zhao, L.; Hou, H. Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere 2020, 244, 125516. [Google Scholar] [CrossRef]
- Idrees, M.; Batool, S.; Hussain, Q.; Ullah, H.; Al-Wabel, M.; Ahmad, M.; Kong, J. High efficiency remediation of cadmium (Cd2+) from aqueous solution using poultry manure- and farmyard manure-derived biochar’s. Separ. Sci. Technol. 2016, 51, 2307–2317. [Google Scholar] [CrossRef]
- Kelly, C.N.; Peltz, C.D.; Stanton, M.; Rutherford, D.W.; Rostad, C.E. Biochar application to hardrock mine tailings: Soil quality, microbial activity, and toxic element sorption. Appl. Geochem. 2014, 43, 35–48. [Google Scholar] [CrossRef]
- Nguyen, T.X.T.; Amyot, M.; Labrecque, M. Differential effects of plant root systems on nickel, copper and silver bioavailability in contaminated soil. Chemosphere 2017, 168, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Vavva, C.; Voutsas, E.; Magoulas, K. Process development for chemical stabilization of fly ash from municipal solid waste incineration. Chem. Eng. Res. Des. 2017, 125, 57–71. [Google Scholar] [CrossRef]
- Tytła, M. Identification of the chemical forms of heavy metals in municipal sewage sludge as a critical element of ecological risk assessment in terms of its agricultural or natural use. J. Environ. Res. Publ. Health 2020, 17, 4640. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Huang, S.; Fu, T.; Li, J.; Zhou, X.; Xue, Y.; Hou, H. Effects of electromagnetic induction on migration and speciation of heavy metals in drying sewage sludge: Mechanistic insights. Waste Manag. 2020, 109, 192–201. [Google Scholar] [CrossRef]
- Albert, H.A.; Li, X.; Jeyakumar, P.; Wei, L.; Huang, L.; Huang, Q.; Kamran, M.; Shaheen, S.M.; Hou, D.; Rinklebe, J.; et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Sci. Total Environ. 2021, 755, 142582. [Google Scholar] [CrossRef]
- Nigam, N.; Khare, P.; Ahsan, M.; Yadav, V.; Shanker, K.; Singh, R.P.; Pandey, V.; Das, P.; Anupama Yadav, R.; Tripathi, P.; et al. Biochar amendment reduced the risk associated with metal uptake and improved metabolite content in medicinal herbs. Physiol. Plantarum 2021, 173, 321–339. [Google Scholar] [CrossRef]
- Nayek, S.; Gupta, S.; Saha, R.N. Metal accumulation and its effects in relation to biochemical response of vegetables irrigated with metal contaminated water and wastewater. J. Hazard. Mater. 2010, 178, 588–595. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Jabeen, R.; Ahmad, A.; Iqbal, M. Phytoremediation of Heavy Metals: Physiological and Molecular Mechanisms. Bot. Rev. 2009, 75, 339–364. [Google Scholar] [CrossRef]
- Patra, D.K.; Pradhan, C.; Patra, H.K. Toxic metal decontamination by phytoremediation approach: Concept, challenges, opportunities and future perspectives. Environ. Technol. Innova. 2020, 18, 100672. [Google Scholar] [CrossRef]
- Karak, T.; Bhattacharyya, P.; Das, T.; Paul, R.K.; Bezbaruah, R. Non-segregated municipal solid waste in an open dumping ground: A potential contaminant in relation to environmental health. Int. J. Environ. Sci. Technol. 2013, 10, 503–518. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass (Lolium perenne). J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Mleczek, M.; Mocek, A.; Magdziak, Z.; Gasecka, M.; Mocek-Płóciniak, A. Impact of Metal/Metalloid-Contaminated Areas on Plant Growth. In Plant-Based Remediation Processes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 79–100. [Google Scholar]
- Ahmad, M.; Usman, A.R.; Al-Faraj, A.S.; Ahmad, M.; Sallam, A.; Al-Wabel, M.I. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere 2018, 194, 327–339. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 2011, 348, 439. [Google Scholar] [CrossRef]
- Mohamed, I.; Zhang, G.; Shi Li Guo, Z.; Liu, Y.; Chen, F.; Dai, K. Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecol. Eng. 2015, 84, 67–76. [Google Scholar] [CrossRef]
- Yusuf, A.A.; Arowolo, T.A.; Bamgbose, O. Cadmium, copper, and nickel levels in vegetables from industrial and residential areas of Lagos City, Nigeria. Food Chem. Toxicol. 2003, 41, 375–378. [Google Scholar] [CrossRef]
- Beesley, L.; Inneh, O.S.; Norton, G.J.; Moreno-Jimenez, E.; Pardo, T.; Clemente, R.; Dawson, J.J.C. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut. 2014, 186, 195–202. [Google Scholar] [CrossRef]
- Glaser, B.; Wiedner, K.; Seelig, S.; Schmidt, H.-P.; Gerber, H. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 2015, 35, 667–678. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Wang, L.; Liu, X.; Wu, J.; Brookes, P.C.; Xu, J. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresour. Technol. 2013, 142, 641–646. [Google Scholar] [CrossRef]
- Wang, K.; Peng, N.; Lu, G.; Dang, Z. Effects of pyrolysis temperature and holding time on physicochemical properties of swine-manure-derived biochar. Waste Biomass Valori 2020, 11, 613–624. [Google Scholar] [CrossRef]
- Lin, Q.; Xu, X.; Wang, L.; Chen, Q.; Fang, J.; Shen, X.; Lou, L.; Tian, G. The speciation, leachability and bioaccessibility of Cu and Zn in animal manure derived biochar: Effect of feedstock and pyrolysis temperature. Front. Environ. Sci. Eng. 2017, 11, 5. [Google Scholar] [CrossRef]
- Tian, R.; Li, C.; Xie, S.; You, F.; Cao, Z.; Xu, Z.; Yu, G.; Wang, Y. Preparation of biochar via pyrolysis at laboratory and pilot scales to remove antibiotics and immobilize heavy metals in livestock feces. J. Soils Sediments 2019, 19, 2891–2902. [Google Scholar] [CrossRef]
- Beesley, L.; Marmiroli, M. The immobilisation and retention of soluble arsenic, cadmium, and zinc by biochar. Environ. Pollut. 2011, 159, 474–480. [Google Scholar] [CrossRef]
- Barcauskaite, K.; Anne, O.; Mockeviciene, I.; Repšiene, R.; Šiaudinis, G.; Karcauskiene, D. Determination of Heavy Metals Immobilization by Chemical Fractions in Contaminated Soil Amended with Biochar. Sustainability 2023, 15, 8677. [Google Scholar] [CrossRef]
- Szarek-Łukaszewska, G. Plants That Hyperaccumulate Metals. Kosmos 2014, 63, 443–453. [Google Scholar]
- Dahlawi, S.; Sadiq, M.; Sabir, M.; Farooqi, Z.U.R.; Saifullah; Qadir, A.A.; Faraj, T.K. Differential Response of Brassica Cultivars to Potentially Toxic Elements and Their Distribution in Different Plant Parts Irrigated with Metal-Contaminated Water. Sustainability 2023, 15, 1966. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Murtaza, G.; Bibi, S.; Sabir, M.; Owens, G.; Saifullah; Ahmad, I.; Zeeshan, N. Immobilization of Cadmium in Soil-Plant System through Soil and Foliar Applied Silicon. Int. J. Phytoremed. 2022, 24, 1193–1204. [Google Scholar] [CrossRef]
- van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of Metal and Metalloid Trace Elements: Facts and Fiction. Plant Soil. 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Cheraghi, M.; Lorestani, B.; Khorasani, N.; Yousefi, N.; Karami, M. Findings on the Phytoextraction and Phytostabilization of Soils Contaminated with Heavy Metals. Biol. Trace Elem. Res. 2011, 144, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Oladoye, P.O.; Olowe, O.M.; Asemoloye, M.D. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere 2022, 288, 132555. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; An, J.; Yin, Y.; Gao, C.; Wang, B.; Wei, S. Heavy metals uptake and translocation of typical wetland plants and their ecological effects on the coastal soil of a contaminated bay in Northeast China. Sci. Total Environ. 2022, 803, 149871. [Google Scholar] [CrossRef]
- Wang, S.; Shi, X.; Sun, H.; Chen, Y.; Pan, H.; Yang, X.; Rafiq, T. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead. PLoS ONE 2014, 9, e108568. [Google Scholar] [CrossRef]
- Pajevič, S.; Borišev, M.; Nikolič, N.; Arsenov, D.D.; Orlovič, S.; Župunski, M. Phytoextraction of heavy metals by fast-growing trees: A review. In Phytoremediation; Springer: New York, NY, USA, 2016; pp. 29–64. [Google Scholar]
Bio-Substrates | Combustion Temp., °C | Parameters | ||||||
---|---|---|---|---|---|---|---|---|
pH | Bulk Density, g/cm3 | Nitrogen, % | Carbon, % | Corg, % | Hydrogen, % | Phosphorus, % | ||
Digestate | 450 | 8.49 | 0.574 | 1.30 | 38.96 | 31.24 | 0.75 | 1.31 |
700 | 9.27 | 0.529 | 2.11 | 57.55 | 52.60 | 0.83 | 1.77 | |
Waste of biodiesel production from rapeseed | 450 | 9.25 | 0.744 | 0.08 | 36.81 | 32.76 | 0.28 | 0.80 |
700 | 10.23 | 0.735 | 0.13 | 43.38 | 40.12 | 0.39 | 0.76 | |
Corn stalk | 450 | 9.53 | 0.197 | 1.07 | 42.77 | 38.95 | 1.26 | 0.053 |
700 | 9.75 | 0.186 | 1.16 | 58.96 | 53.05 | 1.62 | 0.050 |
Biochar Type | Temp, °C | Heavy Metals, mg/kg | |||||
---|---|---|---|---|---|---|---|
Cr | Cd | Cu | Ni | Pb | Zn | ||
Digestate | 450 | 89.163 | <0.007 | 354.69 | 16.829 | 6.057 | 1186.4 |
700 | 86.213 | <0.007 | 377.27 | 12.132 | 15.553 | 1108.9 | |
Rapeseed | 450 | 27.239 | <0.007 | 75.867 | 14.327 | 20.071 | 726.71 |
700 | 19.086 | <0.007 | 27.370 | <0.01 | 9.245 | 695.77 | |
Corn stalk | 450 | 18.494 | <0.007 | 33.545 | <0.01 | 9.744 | 600.23 |
700 | 15.154 | <0.007 | 24.571 | <0.01 | 1.943 | 633.14 |
pHKCl | P2O5, mg/kg | Ntotal, mg/kg | K2O, mg/kg | Ctotal, g/kg |
---|---|---|---|---|
4.50 | 88 | 1.26 | 191 | 12.5 |
Buckwheat | |||||||
---|---|---|---|---|---|---|---|
Treatments | TF | BCF | |||||
Cu | Zn | Cr | Ni | Cu | Zn | Pb | |
SS | 1.14 | 2.19 | 0.68 | 1.92 | 0.72 | 2.67 | 0.27 |
SS + RB450 | 1.44 | 2.05 | 0.93 | 2.31 | 0.64 | 3.63 | 0.18 |
SS + RB700 | 1.13 | 1.29 | 0.43 | 0.94 | 0.52 | 1.80 | 0.29 |
SS + DB450 | 0.43 | 0.79 | 0.71 | 0.84 | 0.85 | 0.99 | 0.85 |
SS + DB700 | 0.17 | 0.61 | 2.76 | 3.25 | 2.94 | 2.80 | 1.05 |
SS + CB450 | 1.87 | 2.74 | 0.98 | 2.54 | 0.54 | 2.48 | 0.06 |
White Mustard | |||||||
TF | BCF | ||||||
Zn | Cr | Ni | Cu | Zn | Pb | ||
SS | 1.14 | 0.62 | 0.00 | 0.22 | 1.34 | 0.25 | |
SS + RB450 | 1.56 | 1.31 | 1.42 | 1.55 | 0.97 | 0.68 | |
SS + RB700 | 0.92 | 0.87 | 0.00 | 0.34 | 0.91 | 0.34 | |
SS + DB450 | 1.06 | 0.21 | 0.00 | 0.18 | 0.76 | 0.17 | |
SS + DB700 | 1.05 | 0.46 | 0.41 | 0.18 | 0.88 | 0.13 | |
SS + CB700 | 0.94 | 0.56 | 1.68 | 0.00 | 1.04 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anne, O.; Mockevičienė, I.; Karčauskienė, D.; Repšienė, R.; Šiaudinis, G.; Barčauskaitė, K.; Žilė, G. Biochar-Assisted Phytoremediation Potential of Sewage Sludge Contaminated Soil. Sustainability 2024, 16, 183. https://doi.org/10.3390/su16010183
Anne O, Mockevičienė I, Karčauskienė D, Repšienė R, Šiaudinis G, Barčauskaitė K, Žilė G. Biochar-Assisted Phytoremediation Potential of Sewage Sludge Contaminated Soil. Sustainability. 2024; 16(1):183. https://doi.org/10.3390/su16010183
Chicago/Turabian StyleAnne, Olga, Ieva Mockevičienė, Danutė Karčauskienė, Regina Repšienė, Gintaras Šiaudinis, Karolina Barčauskaitė, and Greta Žilė. 2024. "Biochar-Assisted Phytoremediation Potential of Sewage Sludge Contaminated Soil" Sustainability 16, no. 1: 183. https://doi.org/10.3390/su16010183
APA StyleAnne, O., Mockevičienė, I., Karčauskienė, D., Repšienė, R., Šiaudinis, G., Barčauskaitė, K., & Žilė, G. (2024). Biochar-Assisted Phytoremediation Potential of Sewage Sludge Contaminated Soil. Sustainability, 16(1), 183. https://doi.org/10.3390/su16010183