Kano Model Analysis of Digital On-Farm Technologies for Climate Adaptation and Mitigation in Livestock Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Survey Questionnaire
2.3. Evaluation of the Characteristics
- (a)
- The total frequency of the most frequently mentioned category;
- (b)
- The total frequency of the category in second place;
- (c)
- The total sum of the answers that are analyzed.
3. Results
3.1. Sociodemographic Characteristics of the Participants
3.2. Evaluation of the DSS Characteristics
3.3. Satisfaction Coefficients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Transforming our World: The 2030 Agenda for Sustainable Development. United Nations (UN). A/RES/70/1. 2015. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 7 September 2022).
- Manabe, S. Role of greenhouse gas in climate change. Tellus A Dyn. Meteorol. Oceanogr. 2015, 71, 1620078. [Google Scholar] [CrossRef]
- Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen. Umweltbundesamt (UBA). Available online: https://www.umweltbundesamt.de/daten/land-forstwirtschaft/beitrag-der-landwirtschaft-zu-den-treibhausgas#klimagase-aus-der-viehhaltung (accessed on 7 September 2022).
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Scope for mitigation. In Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2013; pp. 45–53. [Google Scholar]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Opinion: Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [PubMed]
- Aubert, B.A.; Schroeder, A.; Grimaudo, J. IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 2012, 54, 510–520. [Google Scholar] [CrossRef]
- Rios, H.V.; Waquil, P.D.; de Carvalho, P.S.; Norton, T. How are Information Technologies Addressing Broiler Welfare Quality? A Systematic Review Based on the Welfare Quality Assessment Sustainability. Sustainability 2020, 12, 1413. [Google Scholar] [CrossRef]
- Krehbiel, C. The role of new technologies in global food security: Improving animal production efficiency and minimizing impacts. Anim. Front. 2013, 3, 4–7. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; van der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigate strategies. Anim. Front. 2018, 9, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Niloofar, P.; Francis, D.P.; Lazarova-Molnar, S.; Vulpe, A.; Vochin, M.-C.; Suciu, G.; Balanescu, M.; Anestis, V.; Bartzanas, T. Data-Driven Decision Support in Livestock Farming for Improved Animal Health, Welfare and Greenhouse Gas Emissions: Overview and Challenges. Comput. Electron. Agric. 2021, 190, 106406. [Google Scholar] [CrossRef]
- Andretta, I.; Hickmann, F.M.W.; Remus, A.; Franceschi, C.H.; Mariani, A.B.; Orso, C.; Kipper, M.; Letourneau-Montminy, M.-P.; Pomar, C. Environmental Impacts of Pig and Poultry Production: Insights from a Systematic Review. Front. Vet. Sci. 2021, 8, 750733. [Google Scholar] [CrossRef]
- Rotz, C.A. Symposium review: Modeling greenhouse gas emissions from dairy farms. J. Dairy Sci. 2018, 101, 6675–6690. [Google Scholar] [CrossRef]
- Murphy, P.; Crosson, P.; O’Brien, D.; Schulte, R. The Carbon Navigator: A Decision Support Tool to Reduce Greenhouse Gas Emissions from Livestock Production Systems. Animal 2013, 7, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Larios, A.D.; Brar, S.K.; Ramirez, A.A.; Godbout, S.; Sandoval-Salas, F.; Palacios, J.H. Challenges in the measurement of emissions of nitrogen and methane from livestock sector. Rev. Environ. Sci. Biotechnol. 2016, 15, 285–297. [Google Scholar] [CrossRef]
- Fayoumi, A.G. Evaluating the Effectiveness of Decision Support System: Findings and Comparison. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 195–200. [Google Scholar] [CrossRef]
- Petter, S.; DeLone, W.H.; McLean, E.R. Measuring information systems success: Models, dimensions, measures, and interrelationships. Eur. J. Inf. Syst. 2008, 17, 236–263. [Google Scholar] [CrossRef]
- Kijsanayotin, B.; Pannarunothai, S.; Speedie, S.M. Factors influencing health information technology adoption in Thailand’s community health centers; Applying the UTAUT model. Int. J. Med. Inform. 2009, 3, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Gindele, N.; Kaps, S.; Doluschitz, R. Strukturelle Veränderungen in der Landwirtschaft—Reaktionen der landwirtschaftlichen Betriebsleiter sowie Konsequenzen für den Landwirt als Unternehmer. J. Socio-Econ. Agric. 2015, 8, 11–20. [Google Scholar]
- Kano, N.; Seraku, N.; Takahashi, F.; Tsuhi, S. Attractive quality and must-be quality. J. Jpn Soc. Qual. Control 1984, 14, 39–48. [Google Scholar]
- Lee, M.C.; Newcomb, J.F. Applying the Kano Methodology to Meet Customer Requirements: Nasa’s Microgravity Science Program. Qual. Manag. J. 1998, 4, 95–110. [Google Scholar] [CrossRef]
- Karpe, N.; Scharf, A. Ermittlung reevanter Determinaten der Kundenzufriedenheit mittels Kano-Modell: Dargesellt am Beispiel der Dienstleistungen von Immobilienmaklern. In Nordhäuser Hoschschultexte Betriebswirtschaft; Heft 1, Hrsg.; FH Nordhausen: Nordhausen, Germany, 2006; p. 10. [Google Scholar]
- Fong, D. Using the self-stated importance questionnaire to interpret Kano questionnaire results. Cent. Qual. Manag. J. 1996, 5, 21. [Google Scholar]
- Aarts, H.F.M.; Biewinga, E.E.; van Keulen, H. Dairy farming systems based on efficient nutrient management. Neth. J. Agric. Sci. 1992, 40, 285–299. [Google Scholar] [CrossRef]
- Ondersteijn, C.J.M.; Harsh, S.B.; Giesen, G.W.J.; Beldman, A.C.G. Management strategies on Dutch dairy farms to meet environmental regulations; a multi-case study. NJAS—Wageningen. J. Life Sci. 2002, 50, 47–65. [Google Scholar]
- Thumba, D.A.; Lazarova-Molnar, S.; Niloofar, P. Estimating Livestock Greenhouse Gas Emissions: Existing Models, Emerging Technologies and Associated Challenges. In Proceedings of the 6th International Conference on Smart and Sustainable Technologies (SpliTech), Bol and Split, Croatia, 8–11 September 2021. [Google Scholar]
- Thumba, D.A.; Lazarova-Molnar, S.; Niloofar, P. Comparative evaluation of data requirements and level of decision support provided by decision support tools for reducing livestock-related greenhouse gas emissions. J. Clean. Prod. 2022, 373, 133886. [Google Scholar] [CrossRef]
- Klein, K.J.; Sorra, J.S. The Challenge of Innovation Implementation. Acad. Manag. Rev. 1996, 21, 1055–1080. [Google Scholar] [CrossRef]
- Hansson, H.; Lagerkvist, C.J. Defining and measuring farmers’ attitudes to farm animal welfare. Anim. Welf. 2014, 23, 47–56. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. SERVQUAL: A multiple-item scale for measuring customer perceptions of service quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Luor, T.; Lu, K.-P.; Chien, K.-M.; Wu, T.-C. Contribution to quality research: A literature review of Kano’s model from 1998 to 2012. Total Qual. Manag. Bus. Excell. 2012, 26, 234–247. [Google Scholar] [CrossRef]
- Tang, G.; Luo, Y.-W.; Wu, W. Research on the evaluation method of agricultural intelligent robot design solutions. PLoS ONE 2023, 18, e0281554. [Google Scholar] [CrossRef] [PubMed]
- Kermanshachi, S.; Nipa, T.J.; Nadiri, H. Service quality assessment and enhancement using Kano model. PLoS ONE 2022, 17, e0264423. [Google Scholar] [CrossRef]
- Timko, M. An experiment in continuous analysis. Cent. Qual. Manag. J. 1993, 2, 17–20. [Google Scholar]
- Schukat, S.; Heise, H. Smart Products in Livestock Farming—An Empirical Study on the Attitudes of German Farmers. Animals 2021, 11, 1055. [Google Scholar] [CrossRef]
- Raimundo, R.; Rosario, A. The impact of Artifical Intelligence on Data System Security: A Literature Review. Sensors 2021, 21, 7029. [Google Scholar] [CrossRef] [PubMed]
- Charo, R.A. Yellow lights for emerging technologies. Science 2015, 349, 384–385. [Google Scholar] [CrossRef] [PubMed]
- Hallerman, E.M.; Bredlau, J.P.; Camargo, L.S.; Dagli, M.L.Z.; Karembu, M.; Ngure, G.; Romero-Aldemita, R.; Rocha-Salavarrieta, P.J.; Tizard, M.; Walton, M.; et al. Towards progressive regulatory approaches for agricultural applications of animal biotechnology. Transgenetic Res. 2022, 31, 167–199. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A Review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Kutter, T.; Tiemann, S.; Siebert, R.; Fountas, S. The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 2011, 12, 2–17. [Google Scholar] [CrossRef]
- Chen, W.K.; Chang, J.R.; Chen, L.S.; Hsu, R.Y. Using refined Kano model and decision trees to discover learners’ needs for teaching videos. Multimed. Tools Appl. 2022, 81, 8317–8347. [Google Scholar] [CrossRef]
- Sauerwein, E. Das Kano-Modell der Kundenzufriedenheit. Reliabilität und Validität Einer Methode zur Klassifizierung von Produkteigenschaften, 2000th ed.; Deutscher Universitäts-Verlag: Wiesbaden, Germany, 2000; p. 28. [Google Scholar]
- Serazetdinova, L.; Garratt, J.; Baylis, A.; Stergiadis, S.; Collison, M.; Davis, S. How should we turn data into decisions in AgriFood? J. Sci. Food Agric. 2019, 99, 3213–3219. [Google Scholar] [CrossRef]
- Li, B.; Clarke, J.; Ashrafian, H.; Darzi, A.; Neves, A.L. The Impact of Electronic Health Record Interoperability on Safety and Quality of Care in High-Income Countries: Systematic Review. J. Med. Internet Res. 2022, 24, e38144. [Google Scholar] [CrossRef]
- Malinka, C.; von Jan, U.; Albrecht, U.-V. Priotization of Quality Principles for Health Apps Using the Kano Model: Survey Study. JMIR mHealth uHealth 2022, 10, e26563. [Google Scholar] [CrossRef] [PubMed]
- Zoghi, M.; Rostami, G.; Khoshand, A.; Motalleb, F. Material selection in design for deconstruction using Kano model, fuzzy-AHP and TOPSIS methodology. Waste Manag. Res. 2022, 40, 410–419. [Google Scholar] [CrossRef]
- Witell, L.; Löfgren, M. Classification of quality attributes. Manag. Serv. Qual. 2007, 17, 54–73. [Google Scholar] [CrossRef]
- Smith, P.; Haberl, H.; Popp, A.; Erb, K.-H.; Lauk, C.; Harper, R.; Tubiello, F.; de Siqueira Pinto, H.; Jafari, M.; Shi, S.; et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Chang. Biol. 2013, 19, 2285–2302. [Google Scholar] [CrossRef] [PubMed]
- Bella, R.L.F.; Quelhas, O.L.G.; Ferraz, F.T.; Barboza, D.V.; França, S.L.B. An initial approach to increase job satisfaction through workplace spirituality. Front. Psychol. 2021, 12, 768290. [Google Scholar] [CrossRef]
- Kühl, S.; Gassler, B.; Spiller, A. Labeling strategies to overcome the problem of niche markets for sustainable milk products: The example of pasture-raised milk. J. Dairy Sci. 2017, 100, 5082–5096. [Google Scholar] [CrossRef]
- Thompson, P.; Harris, C.; Holt, D.; Pajor, E.A. Livestock welfare product claims: The emerging social context. J. Anim. Sci. 2007, 85, 2354–2360. [Google Scholar] [CrossRef]
- Zusätzliche Einkommensquellen von Landwirtschaftsbetrieben. Statista. 2022. Available online: https://de.statista.com/statistik/daten/studie/1264633/umfrage/zusaetzliche-einkommensquellen-von-landwirtschaftsbetrieben-nach-art/ (accessed on 18 June 2023).
- Heise, H.; Theuvsen, L. Welche Tierwohlmaßnahmen sollten in einem Tierschutzprgramm umgesetzt werden? Eine Stakeholder Analyse. Ger. J. Agric. Econ. 2017, 66, 245–264. [Google Scholar]
- Kuczera, C. Landwirtschaftliche Handlungsentscheidungen: Sozialer Kontext und Prozess. In Der Einfluss des Sozialen Umfeldes auf Betriebliche Entscheidungen von Landwirten; Margraf Publishers: Weikersheim, Germany, 2006; pp. 9–24. [Google Scholar]
- Bahner, T. Landwirtschaftliche Betriebgestaltung nach persönlichen Zielen. Agrarwirtschaft 1995, 44, 343–349. [Google Scholar]
- Foster, A.; Rosenzweig, M.R. Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture. J. Political Econ. 1995, 103, 1176–1209. [Google Scholar] [CrossRef]
- Eastwood, C.; Klerkx, L.; Ayre, M.; Dela Rue, B. Managing Socio-Ethical Challenges in the Development of Smart Farming: From a Fragmented to a Comprehensive Approach for Responsible Research and Innovation. J. Agric. Environ. Ethics 2019, 32, 741–768. [Google Scholar] [CrossRef]
- von Hardenberg, L.; Heise, H. German Pig Farmers’ attitudes towards animal welfare programs and their willingness to participate in these programs: An empirical study. J. Food Syst. Dyn. 2018, 9, 280–301. [Google Scholar]
- McBride, W.D.; Daberkow, S.G. Information and the adoption of precision farming technologies. J. Agribus. 2003, 21, 31–38. [Google Scholar]
- Kitchen, N.R.; Snyder, C.J.; Franzen, D.W.; Wiebold, W.J. Educational needs of precision agriculture. Precis. Agric. 2002, 3, 341–351. [Google Scholar] [CrossRef]
- Salah, S.; Rahim, A.; Carretero, J.A. Kano-based Six Sigma utilizing quality function deployment. Int. J. Qual. Eng. Technol. 2010, 1, 206–230. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.; Smith, P.; Cambell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Gimpel, H.; Kleindienst, D.; Nüske, N.; Rau, D.; Schmied, F. The upside of data privacy–delighting customers by implementing data privacy measures. Electron. Mark. 2018, 28, 437–452. [Google Scholar] [CrossRef]
- Zhao, M.; Dholakia, R.R. A multi-attribute model of web site interactivity and customer satisfaction: An application of the Kano model. Managing Service Quality. Int. J. 2009, 19, 286–307. [Google Scholar]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–410. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
Functional | Dysfunctional | ||||
---|---|---|---|---|---|
I like it that way | It must be that way | I am neutral | I can live with it | I dislike it that way | |
I like it that way | Q | A | A | A | O |
It must be that way | R | I | I | I | M |
I am neutral | R | I | I | I | M |
I can live with it | R | I | I | I | M |
I dislike it that way | R | R | R | R | Q |
Characteristics | Observation (n) | Percentage (%) |
---|---|---|
Gender | ||
Male | 82 | 83.67% |
Female | 17 | 17.35% |
Age Group | ||
22–45 | 56 | 57.14% |
46–72 | 39 | 39.80% |
-- | 3 | 3.06% |
Kept Species * | ||
Broiler | 43 | 43.88% |
Fattening Pigs | 32 | 32.65% |
Dairy | 28 | 28.57% |
Bulls | 22 | 22.45% |
Laying Hens | 12 | 12.24% |
Sows | 9 | 9.18% |
Management | ||
Conventional | 89 | 90.82% |
Mixed | 7 | 7.14% |
Ecological | 2 | 2.04% |
Characteristics | M | O | A | R | I | Q |
---|---|---|---|---|---|---|
Economy | ||||||
Salary | 35.7% | 11.2% | 24.5% | 3.1% | 21.4% | 4.1% |
Cost Savings | 16.3% | 35.7% | 34.7% | 2.0% | 9.2% | 2.0% |
Market Perspective | 12.2% | 21.4% | 24.5% | 2.0% | 39.8% | 0.0% |
Usefulness | ||||||
Work Simplification | 17.3% | 39.8% | 38.9% | 0.0% | 4.1% | 0.0% |
Knowledge Transfer | 28.6% | 10.2% | 21.4% | 5.1% | 32.% | 2.0% |
Multi-target Optimization | 7.1% | 32.7% | 45.9% | 0.0% | 13.3.% | 1.0% |
Recognition | 22.4% | 32.7% | 16.3% | 3.1% | 24.5% | 1.0% |
Operability | ||||||
Integrability | 21.4% | 36.7% | 24.5% | 2.0% | 14.3% | 1.0% |
Time Efficiency | 28.6% | 21.4% | 23.5% | 3.1% | 35.7% | 0.0% |
Traceability | 29.6% | 24.5% | 9.2% | 1.0% | 35.7% | 0.0% |
Functionality | ||||||
Standardization | 25.5% | 19.4% | 17.3% | 9.2% | 27.6% | 1.0% |
Data Authority | 39.8% | 23.5% | 10.2% | 9.2% | 16.3% | 1.0% |
Verifiability | 4.1% | 5.1% | 3.1% | 44.9% | 41.8% | 1.0% |
Connectivity | 10.2% | 8.2% | 17.3% | 11.2% | 52.0% | 1.0% |
Characteristic | Cat. | CS | TS | CS+ | CS− | Sig. |
---|---|---|---|---|---|---|
Economy | ||||||
Salary | M | 11.2% | 71.4% | 0.38 | −0.51 | Yes |
Cost Savings | O | 1.0% | 86.7% | 0.73 | −0.54 | No |
Market Perspective | I | 15.3% | 58.1% | 0.47 | −0.34 | Yes |
Usefulness | ||||||
Work Simplification | O | 1.0% | 95.9% | 0.79 | −0.57 | No |
Knowledge Transfer | I | 4.1% | 60.2% | 0.34 | −0.42 | No |
Multi-target Optimization | A | 13.2% | 85.7% | 0.79 | −0.40 | Yes |
Recognition | O | 8.2% | 71.4% | 0.51 | −0.57 | No |
Operability | ||||||
Integrability | O | 12.2% | 82.6% | 0.63 | −0.60 | Yes |
Time Efficiency | M | 5.1% | 73.5% | 0.46 | −0.52 | No |
Traceability | I | 6.1% | 63.3% | 0.34 | −0.55 | No |
Functionality | ||||||
Standardization | I | 2.1% | 62.2% | 0.41 | −0.50 | No |
Data Authority | M | 16.3% | 73.5% | 0.38 | −0.70 | Yes |
Verifiability | R | 3.1% | 12.3% | 0.15 | −0.17 | No |
Connectivity | I | 34.7% | 35.7% | 0.29 | −0.21 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Münster, P.; Grabkowsky, B. Kano Model Analysis of Digital On-Farm Technologies for Climate Adaptation and Mitigation in Livestock Farming. Sustainability 2024, 16, 268. https://doi.org/10.3390/su16010268
Münster P, Grabkowsky B. Kano Model Analysis of Digital On-Farm Technologies for Climate Adaptation and Mitigation in Livestock Farming. Sustainability. 2024; 16(1):268. https://doi.org/10.3390/su16010268
Chicago/Turabian StyleMünster, Pia, and Barbara Grabkowsky. 2024. "Kano Model Analysis of Digital On-Farm Technologies for Climate Adaptation and Mitigation in Livestock Farming" Sustainability 16, no. 1: 268. https://doi.org/10.3390/su16010268
APA StyleMünster, P., & Grabkowsky, B. (2024). Kano Model Analysis of Digital On-Farm Technologies for Climate Adaptation and Mitigation in Livestock Farming. Sustainability, 16(1), 268. https://doi.org/10.3390/su16010268