Rock Powder Enhances Soil Nutrition and Coffee Quality in Agroforestry Systems
Abstract
:1. Introduction
2. Material and Methods
2.1. Outline of Experiment Locations
2.2. Characterization of Rock Powder
2.3. Experimental Design
2.4. Analysis of Soil Quality
2.5. Coffee Quality Assessments
2.6. Data Analysis
3. Results
3.1. Chemical Alterations in the Soil
3.2. Microbiological Changes in Soil
3.3. Physical Changes to Soil
3.4. Assessment of Coffee Bean Attributes
4. Discussion
4.1. Chemical Changes to the Soil
4.1.1. Microbiological Changes in the Soil
4.1.2. Physical Changes to the Soil
4.2. Electrical Conductivity, pH, Total Titratable Acidity, and Coffee Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, L.E.; Calderon, F.J.; Steenwerth, K.L.; Scow, K.M.; Rolston, D.E. Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma 2003, 114, 305–317. [Google Scholar] [CrossRef]
- Araújo, A.S.F.; Melo, W.J. Soil microbial biomass in organic farming system. Ciência Rural 2010, 40, 2419–2426. [Google Scholar] [CrossRef]
- Jandl, R.; Rodeghiero, M.; Martinez, C.; Cotrufo, M.F.; Bampa, F.; Van Wesemael, B.; Harrison, R.B.; Guerrini, I.A.; Richter, D.d., Jr.; Rustad, L.; et al. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci. Total Environ. 2014, 468–469, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil health in agricultural systems: Philosophical Transactions of the Royal Society. Biol. Sci. 2008, 363, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Rigueiro-Rodríguez, A.; Fernández-Núñez, E.; Gonzalez, M.C.A.; Mosquera-Losada, M.R. Agroforestry Systems in Europe: Productive, Ecological and Social Perspectives. In Agroforestry in Europe—Current Status and Future Prospects; Advances in Agroforestry; Springer: Dordrecht, The Netherlands, 2008; Volume 6, pp. 43–65. [Google Scholar] [CrossRef]
- Vallejo, V.E.; Roldan, F.; Dick, R.P. Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia. Biol. Fertil. Soils 2010, 46, 577–587. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Buresh, R.J.; Mugendi, D.N.; Latt, C.R. Nutrient cycling in tropical agroforestry systems: Myths and science. In Agroforestry in Sustainable Agricultural Systems; Buck, L.E., Lassoie, J.P., Fernandes, E.C.M., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 1–31. [Google Scholar]
- Fixen, P.E.; Johnston, A.M. World fertilizer nutrient reserves: A view to the future. J. Sci. Food Agric. 2012, 92, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Martins, É.S.; Resende, Á.V.; Oliveira, C.G.; Furtini Neto, A.E. Materiais silicáticos como fontes regionais de nutrientes e condicionadores de solos. In Agrominerais Para o Brasil; Fernandes, F.R., Luz, A.B., Castilhos, Z.C., Eds.; CETEM/MCT. 89-104; Centro de Tecnologia Mineral: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Manning, D.C.; Theodoro, S.H. Enabling food security through use of local rocks and minerals. Extr. Ind. Soc. 2018, 7, 480–487. [Google Scholar] [CrossRef]
- Brasil. Instrução Normativa n° 27, de 5 June 2006. 2006. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-27-de-05-06-2006-alterada-pela-in-sda-07-de-12-4-16-republicada-em-2-5-16.pdf (accessed on 1 September 2022).
- Vieira-Megda, M.X.; Mariano, E.; Leite, J.M.; Megda, M.M.; Ocheuze Trivelin, P.C. Chloride ion as nitrification inhibitor and its biocidal potential in soils. Soil Biol. Biochem. 2014, 72, 84–87. [Google Scholar] [CrossRef]
- Pereira, D.G.C.; Santana, I.A.; Megda, M.M.; Megda, M.X.V. Potassium chloride: Impacts on soil microbial activity and nitrogen mineralization. Ciencia Rural 2019, 49, e20180556. [Google Scholar] [CrossRef]
- Brasil. Lei n° 12.890 10th December, de 2013. Available online: http://www.planalto.gov.br/ccivil_03/Ato20112014/2013/Lei/L12890.htm/ (accessed on 1 September 2022).
- Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 5, de 10th March, 2016. Diário Oficial da União. 2016. Available online: https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/21393222/do1-2016-03-14-instrucao-normativa-n-6-de-10-de-marco-de-2016-21393092 (accessed on 1 September 2022).
- Caner, L.; Radtke, L.M.; Vignol-Lelarge, M.L.; Inda, A.V.; Bortoluzzi, E.C.; Mexias, A.S. Basalt and rhyo-dacite weathering and soil clay formation under subtropical climate in southern Brazil. Geoderma 2014, 235, 100–112. [Google Scholar] [CrossRef]
- Theodoro, S.H.; Medeiros, F.P.; Ianniruberto, M.; Jacobson, T.K.B. Soil remineralization and recovery of degraded areas: An experience in the tropical region. J. S. Am. Earth Sci. 2021, 107, 103014. [Google Scholar] [CrossRef]
- Fyfe, W.S.; Leonardos, O.H.; Theodoro, S.H. Sustainable farming with native rocks: The transition without Revolution. An. Acad. Bras. Ciências 2006, 78, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Burbano, D.F.M.; Theodoro, S.H.; Carvalho, A.X.M.; Ramos, C.G. Crushed vulcanic rock as soil remineralizer: A strategy to overcome the global fertilizer crisis. Nat. Resour. Res. 2022, 31, 2197–2210. [Google Scholar] [CrossRef]
- Beerling, D.J.; Kantzas, E.P.; Lomas, M.R.; Wade, P.; Eufrasio, R.M.; Renforth, P.; Sarkar, B.; Andrews, M.G.; James, R.H.; Pearce, C.R.; et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 2020, 583, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Kronberg, B.I.; Leonardos, O.H.; Fyfe, W.S. The use of ground rocks in laterite systems—An improvement to the use of conventional soluble fertilizers. Chem. Geol. 1987, 60, 361–370. [Google Scholar] [CrossRef]
- Manning, D.A. Innovation in resourcing geological materials as crop nutrients. Nat. Resour. Res. 2018, 27, 217–227. [Google Scholar] [CrossRef]
- Van Straaten, P. Distribution of agromineral resources in space and time—A global geological perspective. Pesqui. Agropecuária Bras. 2022, 57, e01453. [Google Scholar] [CrossRef]
- Theodoro, S.H.; Manning, D.A.C.; Carvalho, A.X.M.; Ferrão, F.R.; Almeida, G.R. Soil remineralizer: A new rote to sustentability for Brazil, a giant exporting agro-mineral commoditites. In Routledge Handbook of the Extractive Industries and Sustainable Development, 1st ed.; Yakovleva, N., Nickless, E., Eds.; Taylor & Francis Ltd.: London, UK, 2022; pp. 261–281. [Google Scholar] [CrossRef]
- Silva, N.M.R.M. Diversidade Microbiana e Microbiota Solubilizadora de Fosfato em Solos de Cafezais Orgânicos em Sistemas Agroflorestais e a Pleno Sol. Master’s thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2017. [Google Scholar]
- Dias, K.G.L.; Guimarães, P.T.G.; Carmo, D.L.; Reis, T.H.P.; Lacerda, J.J. Fontes alternativas de potássio em cafeeiros para melhoria da fertilidade do solo, da produtividade e da qualidade de bebida. Pesqui. Agropecuária Bras. 2018, 53, 1355–1362. [Google Scholar] [CrossRef]
- Soares, G.J. Influência da Rochagem no Desenvolvimento de Sistemas Agroflorestais e na Captura de Dióxido de Carbono Atmosférico. Master’s Thesis, University of Brasília, Brasília, Brazil, 2018; 99p. Available online: https://repositorio.unb.br/handle/10482/33088?locale=en (accessed on 27 July 2023).
- Malta, M.R.; Pereira, R.G.A.; Chagas, S.J.R. Condutividade elétrica e lixiviação do potássio em exsudados de grãos de café: Alguns fatores que podem influenciar nas avaliações. Ciênc. Agrotec. Lavras 2005, 29, 1015–1020. [Google Scholar] [CrossRef]
- Cortez, J.G. Aptidão Climática para Qualidade da Bebida nas Principais Regiões Cafeeiras de Minas Gerais; Informe Agropecuário: Belo Horizonte, Brazil, 1997. [Google Scholar]
- Pimenta, C.J. Qualidade de Café. Lavras: UFLA, 2003. 304 p. PIMENTA, C.J. Qualidade do Café (Coffea arabica. L.) Colhido em Diferentes Estádios de Maturação. Master’s Thesis, Universidade Federal de Lavras, Lavras, Brazil, 1995; 93p. [Google Scholar]
- Prete, C.E.C. Condutividade Elétrica do Exsudato de Grãos de Café (Coffea arabica L.) e Sua Relação com a Qualidade da Bebida. Ph.D Thesis, ESALQ/USP, Piracicaba, Brazil, 1992. [Google Scholar]
- Figueiredo, C.M. O Arco Magmático Brasiliano na Conexão Entre os Orógenos Araçuaí e Ribeira. Master’s Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2009; p. 104. Available online: https://repositorio.ufmg.br/handle/1843/MPBB-7ULNPK (accessed on 3 March 2023).
- USEPA. Method 3052, Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices; United States Environmental Protection Agency: Washington, DC, USA, 1996.
- Silva, F.C. Manual de Análises Químicas de Solos Plantas e Fertilizantes, 2nd ed.; Embrapa Informação Tecnológica: Brasília, Brazil, 2009; 627p. [Google Scholar]
- Mendonça, L.M.L.; Pereira, R.F.A.; Mendes, A.G. Parâmetro bromatológicos de grãos crus e torrados de cultivares de café (Coffea arabica L.). Food Sci. Technol. 2005, 25, 239–243. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Camargo, F.A.O.; Vidor, C. Utilização de micro-ondas na avaliação da biomassa microbiana do solo. Rev. Bras. Ciência Solo 1999, 23, 991–996. [Google Scholar] [CrossRef]
- Borém, F.M.; Coradi, P.C.; Saath, R.; Oliveira, J.A. Qualidade do café natural e despolpado após secagem em terreiro e com altas temperaturas. Ciência Agrotecnologia 2008, 32, 1609–1615. [Google Scholar] [CrossRef]
- Clarke, R.J.; Macrea, R. Coffee: Techonoly; Elsevier Applied Science: Amsterdam, The Netherlands, 1987; 321p. [Google Scholar]
- IAL—Instituto Adolfo Lutz. Métodos Físicoquímicos Para Análise de Alimentos, 4th ed.; Instituto Adolfo Lutz: São Paulo, Brazil, 2008. [Google Scholar]
- Filho, T.L.; Lucia, S.M.D.; Saraiva, S.H.; Sartori, M.A. Composição físico-química e qualidade sensorial de café conilon produzido no Estado do Espírito Santo e submetido a diferentes formas de processamento. Semin. Ciências Agrárias 2013, 34, 1723–1730. [Google Scholar] [CrossRef]
- Carvalho, A.M.X.; Mendes, F.Q.; Mendes, F.Q.; Tavares, L.F. SPEED Stat: A free, intuitive, and minimalist spreadsheet program for statistical analyses of experiments. Crop Breed. Appl. Biotechnol. 2020, 20, e327420312. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Guimarães, P.T.G.; Alvarez, V.H. Recomendação para o Uso de Corretivos e Fertilizantes em Minas Gerais—5ª Aproximação; Ed. Universidade de Viçosa: Viçosa, Brazil, 1999; 359p. [Google Scholar]
- COPAM—Conselho Estadual de Política Ambiental. Resolução nº 166, de 29 de junho de 2011. Diário do Executivo—Minas Gerais. 2011. Available online: http://www.siam.mg.gov.br/sla/download.pdf?idNorma=14670 (accessed on 22 February 2023).
- De Beenhouwer, M.; Muleta, D.; Peeters, B.; Van Geel, M.; Lievens, B.; Honnay, O. DNA pyrosequencing evidence for large diversity differences between natural and managed coffee mycorrhizal fungal communities. Agron. Sustain. Dev. 2014, 35, 241–249. [Google Scholar] [CrossRef]
- Jakobsen, I.; Hammer, E.C. Nutrient dynamics in arbuscular mycorrhizal networks. In Mycorrhizal Networks; Horton, T.R., Ed.; Springer: Dordrecht, The Netherlands, 2015; pp. 91–131. [Google Scholar] [CrossRef]
- Carvalho, A.M.X. Rochagem e Suas Interações no Ambiente Solo: Contribuições para Aplicação em Agroecossistemas sob Manejo Agroecológico. Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2012; 116p. Available online: http://locus.ufv.br/handle/123456789/1631 (accessed on 22 February 2023).
- Gillman, G.P.; Burkett, D.C.; Coventry, R.J. A laboratory study of application of basalt dust to highly weathered soils: Effect on soil cation chemistry. Aust. J. Soil Res. 2001, 39, 799–811. [Google Scholar] [CrossRef]
- Boniao, R.D.; Shamshuddin, J.; Van Ranst, E.; Zauyah, S.; Omar, S.R.S. Changes in chemical properties and growth of corn in volcanic soils treated with peat, ground basalt pyroclastics, and calcium silicate. Commun. Soil Sci. Plant Anal. 2002, 33, 1219–1233. [Google Scholar] [CrossRef]
- Maia, S.M.F.; Xavier, F.A.S.; Oliveira, T.S.; Sá Mendonça, E.; Filho, J.A.A. Impactos de sistemas agroflorestais e convencional sobre a qualidade do solo no semiárido cearense. Rev. Árvore 2006, 30, 837–848. [Google Scholar] [CrossRef]
- Swoboda, P.; Döring, T.F.; Hamer, M. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Sci. Total Environ. 2022, 807, 150976. [Google Scholar] [CrossRef]
- Dafydd EM, O.; Samuel, R.; Both, S.; Goodall, T.; Majalap-Lee, N.; Ostle, N.J.; McNamara, N.P. Soil Microbial Community and Litter Quality Controls on Decomposition Across a Tropical Forest Disturbance Gradient. Front. For. Glob. Change 2020, 3, 81. Available online: https://www.frontiersin.org/articles/10.3389/ffgc.2020.00081 (accessed on 20 March 2023).
- Formoso, M.L.L. Some topics on geochemistry of weathering: A review. Acad. Bras. Ciências 2006, 78, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Dalmora, A.C.; Müller Kautzmann, R.; Staub, J.; Homrich Schneider, I.A. Crushed amygdaloidal basalt rock and its effects on tomato production. LADEE 2022, 3, 1–10. [Google Scholar] [CrossRef]
- Melo, V.F.; Castilho, R.M.V.; Pinto, L.S. Reserva mineral do solo. In Química e mineralogia do solo. Parte I; Melo, V.F., Alleoni, R.F.S., Eds.; SBCS: Viçosa, Brazil, 2009; 695p. [Google Scholar]
- Tavakkoli, E.; English, P.; Guppy, C.N. Interaction of Silicon and Phosphorus Mitigate Manganese Toxicity in Rice in a Highly Weathered Soil. Soil Sci. Plant Anal. 2011, 42, 503–513. [Google Scholar] [CrossRef]
- Santos, L.F.d.; Sodré, F.F.; Martins, É.d.S.; Figueiredo, C.C.d.; Busato, J.G. Efeitos de biotita sienito sobre os níveis de nutrientes e cargas elétricas em Latossolo de Cerrado: Effects of finely ground biotite syenite. Pesqui. Agropecuária Trop. 2021, 51, e66691. Available online: https://www.revistas.ufg.br/pat/article/view/66691 (accessed on 5 February 2023). [CrossRef]
- Owino-Gerroh, C.; Gascho, G.L. Effect of silicon on low pH soil phosphorus sorption and uptake and growth of maize. Commun. Soil Sci. Plant Anal. 2004, 35, 2369–2379. [Google Scholar] [CrossRef]
- Pozza, A.A.; Costa, E.S.; Guilherme, L.G.; Marques, J.J.M.; Motta, P.F. Retenção e dessorção competitivas de ânions inorgânicos em gibbsite natural de solo. Pesqui. Agropecuária Bras. 2007, 42, 1627–1633. [Google Scholar] [CrossRef]
- Notaro, K.A.; Medeiros, E.V.; Duda, G.P.; Silva, A.O.; Moura, P.M. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude. Sci. Agric. 2014, 71, 87–95. [Google Scholar] [CrossRef]
- Nigussi, A.; Kissi, E. The contribution of coffee agroecosystem to soil fertility in Southwestern Ethiopia. Environmental Science. Afr. J. Agric. Res. 2012, 7, 74–81. [Google Scholar] [CrossRef]
- Miyaji, F.; Kono, Y.; Suyama, Y. Formation and structure of zinc-substituted calcium hydroxyapatite. Mater. Res. Bull. 2005, 40, 209–220. [Google Scholar] [CrossRef]
- Ren, F.; Xin, R.; Ge, X.; Leng, Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 2009, 5, 3141–3149. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils; Alloway, B.J., Ed.; Blackie Academic & Professional: London, UK, 2013. [Google Scholar]
- Linhares, L.A.; Egreja Filho, F.B.; Oliveira, C.V.; Bellis, V.M. Adsorção de cádmio e chumbo em solos tropicais altamente intemperizados. Pesqui. Agropecuária Bras. 2009, 44, 291–299. [Google Scholar] [CrossRef]
- Novais, R.F.; Mello, J.W.V. Relação Solo-Planta. In Fertilidade do Solo; Novais, R.F., de Barros, N.F., Fontes, R.L.F., Cantarutti, R.B., Lima, J.C., Eds.; Universidade Viçosa: Viçosa, Brazil, 2007; pp. 133–205. [Google Scholar]
- Silva, M.L.S.; Vitti, G.C. Fracionamento de metais pesados em solo contaminado antes e após cultivo de arroz. Química Nova 2008, 31, 1385–1391. [Google Scholar] [CrossRef]
- Menezes, J.M.T.; Van Leeuwen, J.; Valeri, S.V.; Cruz, M.P.; Leandro, R.C. Comparison of soils used for agroforestry and of remaining forests, in northern Rondônia State, Brazil. Rev. Bras. Ciência Solo 2008, 32, 893–898. [Google Scholar] [CrossRef]
- Chander, K.; Goyal, S.; Nandal, D. Soil organic matter, microbial biomass and enzyme activities in a tropical agroforestry system. Biol. Fertil. Soils 1998, 27, 168–172. [Google Scholar] [CrossRef]
- Prasad, R.; Arunachalam, A.; Shukla, A.; Singh, P.; Gupta, A.; Saroj, N.K.; Tripathi, V.D. Field management practices in agroforestry systems influence organic carbon and biological properties of soil. Agrofor. Syst. 2023, 97, 1375–1390. [Google Scholar] [CrossRef]
- Satter, M.A.; Hanafi, M.M.; Mahmud, T.M.; Azizah, H. Influence of arbuscular mycorrhiza and phosphate rock on uptake of major nutrients by Acacia mangium seedlings on degraded soil. Biol. Fertil. Soils 2006, 42, 345–349. [Google Scholar] [CrossRef]
- Wang, J.; Ren, C.; Cheng, H.; Zou, Y.; Bughio, A.M.; Li, Q. Conversion of rainforest into agroforestry and monoculture plantation in China: Consequences for soil phosphorus forms and microbial Community. Sci. Total Environ. 2017, 595, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Quirk, J.; Beerling, D.J.; Banwart, S.A.; Kakonyi, G.; Romero-Gonzalez, M.E.; Leake, J.R. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biol. Lett. 2012, 8, 1006–1011. [Google Scholar] [CrossRef]
- Nunes, L.P.L.; Dias, L.E.; Jucksch, I.; Barros, N.F.; Kasuya, M.C.M.; Correia, M.E.F. Impacto do monocultivo de café sobre os indicadores biológicos do solo na zona da mata mineira. Ciência Rural 2009, 39, 2467–2474. [Google Scholar] [CrossRef]
- Campos, B.C.; Reinert, D.J.; Nicolodi, R.; Ruedell, J.; Petrere, C. Estabilidade estrutural de um Latossolo vermelho-escuro distrófico após sete anos de rotação de culturas e sistemas de manejo de solo. Rev. Bras. Ciência Solo 1995, 19, 121–126. [Google Scholar]
- Franco, F.S.; Couto, L.; Carvalho, A.F.; Jucksch, I.; Filho, E.I.F.; Silva, E.; Neto, J.A.M. Quantificação de erosão em sistemas agroflorestais e convencionais na zona da mata de Minas Gerais. Rev. Árvore 2002, 26, 751–760. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Fernandes-Filho, E.I.; Daher, M.; Gomes, L.C.; Cardoso, I.M.; Fernandes, R.B.A.; Schaefer, C.E.G.R. Microclimate and soil and water loss in shaded and unshaded agroforestry coffee systems. Agroforest Syst. 2021, 95, 119–134. [Google Scholar] [CrossRef]
- Young, A. Agroforestry takes root in Ethiopia. Agrofor. Today 1989, 1, 13–16. [Google Scholar]
- Narain, P.; Singh, R.K.; Sindhwal, N.S.; Joshie, P. Water balance and water efficiency of different land uses in western Himalayan valley region. Agric. For. Meteorol. 1998, 37, 225–240. [Google Scholar] [CrossRef]
- Toledo, V.M.; Moguel, P. Coffee and Sustainability: The Multiple Values of Traditional Shaded Coffee. J. Sustain. Agric. 2012, 36, 353–377. [Google Scholar] [CrossRef]
- Bote, A.D.; Vos, J. Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS Wagening. J. Life Sci. 2017, 83, 39–46. [Google Scholar] [CrossRef]
- Romero, J.C.P.; Romero, J.P.; Gomes, F.P. Condutividade elétrica (CE) do exsudato de grãos de Coffea arabica em 18 cultivares analisados no período de 1993 a 2002. Rev. Agric. Piracicaba 2003, 78, 293–302. [Google Scholar] [CrossRef]
- DaMatta, F.M. Restrições ecofisiológicas na produção de café com e sem sombra: Uma revisão. Field Crops Res. 2004, 86, 99–114. [Google Scholar] [CrossRef]
- Clemente, J.M.; Cirillo, M.A.; Malta, M.R.; Caixeta, F.; Pereira, C.C.; Rosa, S.F. Effects of nitrogen and potassium on the chemical composition of coffee beans and on beverage quality. Acta Scientiarum. Agronomy 2015, 37, 297–305. [Google Scholar] [CrossRef]
- Silva, P.A.; Oliveira, M.G.; Coelho, P.O.; Silva, J.A.C. Quality of coffee cultivated in Campos Gerais, Minas Gerais. Acta Sci. Technol. 2016, 38, 1–5. [Google Scholar] [CrossRef]
- Filho, T.L.; Lucia, S.M.D.; Saraiva, S.H.; Lima, R.M. Características físico-químicas de bebidas de café tipo expresso preparadas a partir de blends de café arábica e conilon. Rev. Ceres 2015, 62, 333–339. [Google Scholar] [CrossRef]
- Silva, C.F.; Pereira, M.G.; Gomes, J.H.G.; Fontes, M.A.; Silva, E.M.R. Enzyme Activity, Glomalin, and Soil Organic Carbon in Agroforestry Systems. Floresta Ambiente 2020, 27, e20170716. [Google Scholar] [CrossRef]
- Sivetz, M.; Desrosier, N.W. Physical and chemical aspects of coffee. In Coffee Techonology; AVI Publishing Company: Westport, DC, USA, 1979; pp. 527–575. [Google Scholar]
- Voilley, A.; Sauvageot, F.; Simatos, D.; Wojcik, G. Influence of some processing conditions on the quality of coffee brew. J. Food Process. Preserv. 2007, 5, 135–143. [Google Scholar] [CrossRef]
Properties | Species |
---|---|
Arboreal | |
Red-Yellow Argisol (RYA) | Inga sp., Persea americana, Eugenia uniflora, Malpighia emarginata, Leucaena leucocephala, Citrus limon, Artocarpus heterophyllus, Schizolobium parahyba, Acnistus arborescens, Theobroma grandiflorum, Solanum sargentum, Hymenaea sp., Averrhoa carambola, Eriobotrya japonica. |
Herbaceous | |
Lablab purpureus, musa, Carica papaya, Saccharum officinarum, Xanthosoma sagittifolium, Ricinus communis, Ilex paraguariensis, Maytenus ilicifolia, Cucurbita. | |
Yellow Latosol (YL) | Arboreal |
Solanum sargentum, Leucaena leucocephala, Acnistus arborescens, Handroanthus albus. | |
Herbaceous | |
Musa, Lablab purpureus. |
pH | P | K | Ca2+ | Mg2+ | Al3+ | H+Al | SB A | T B | T C | V D | |
---|---|---|---|---|---|---|---|---|---|---|---|
(H2O) | (mg dm−³) | ------------------- (cmolc dm−³) ----------------- | % | ||||||||
AFSRYA | 5.35 | 2.8 | 112.0 | 2.97 | 0.77 | 0.0 | 4.3 | 4.00 | 4.03 | 8.33 | 57 |
FSRYA | 5.40 | 1.2 | 50.0 | 2.18 | 0.84 | 0.0 | 3.7 | 3.15 | 3.15 | 6.85 | 46 |
AFSYL | 5.71 | 10.1 | 87.0 | 2.61 | 0.74 | 0.0 | 2.7 | 3.57 | 3.57 | 6.27 | 48 |
FSYL | 5.84 | 1.2 | 116.0 | 2.38 | 0.96 | 0.0 | 3.3 | 3.64 | 3.64 | 6.94 | 52 |
MO E | P-rem F | B | Cu | Mn | Fe | Zn | Cr | Ni | Cd | Pb | |
(dag kg−1) | (mg L−1) | ------------------------------- (mg kg−1) ----------------------------------------- | |||||||||
AFSRYA | 2.33 | 28.0 | 0.28 | 1.54 | 56.5 | 39.5 | 2.14 | 0.02 | 1.21 | 0.36 | 2.42 |
FSRYA | 5.58 | 21.5 | 0.32 | 1.41 | 169.8 | 61.0 | 2.60 | 0.24 | 1.69 | 0.39 | 0.71 |
AFSYL | 1.55 | 36.8 | 0.31 | 0.85 | 85.4 | 27.3 | 3.12 | 0.02 | 0.87 | 0.01 | 1.06 |
FSYL | 2.71 | 25.3 | 0.32 | 1.51 | 34.8 | 48.1 | 1.85 | nd 7 | 0.96 | 0.26 | 4.74 |
Macroelements (%) | |||||||
---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O | CaO | MgO | K2O | P2O5 | MnO |
56.0 | 17.4 | 8.84 | 4.99 | 2.54 | 3.74 | 0.58 | 0.14 |
Microelements (mg kg−1) | |||||||
Li | Co | Cu | Zn | Ni | Cd | Cr | Pb |
12.0 | 13.0 | 15.0 | 85.0 | <3 | <3 | 1.0 | 9.0 |
pH | SB | H+Al | CEC Potencial | SOM | ||
---|---|---|---|---|---|---|
Prop. | System | (H2O) | -------------------(cmolc dm−3)-------------------- | (dag kg−1) | ||
AFS+ | 6.82 a | 10.31 a | 1.33 a | 11.63 a | 6.55 a | |
RYA | AFS− | 6.31 a | 7.10 b | 2.00 a | 9.10 ab | 3.75 b |
FS+ | 6.10 a | 5.73 b | 2.28 a | 8.01 b | 2.55 b | |
FS− | 6.78 a | 7.40 b | 1.58 a | 8.98 ab | 3.85 b | |
AFS+ | 6.94 a | 12.11 a | 1.05 a | 3.16 a | 3.65 a | |
YL | AFS− | 6.67 ab | 8.15 b | 1.68 a | 9.83 b | 4.86 a |
FS+ | 6.62 ab | 6.94 b | 1.95 a | 8.89 b | 4.27 a | |
FS− | 6.12 b | 5.54 b | 2.43 a | 7.97 b | 5.22 a |
Cu | Mn | Fe | Zn | Ni | Cr | Cd | Pb | ||
---|---|---|---|---|---|---|---|---|---|
Prop. | System | ------------------------------------mg kg−1 -------------------------------------- | |||||||
AFS+ | 2.19 a | 71.23 a | 25.3 a | 23.78 a | 1.26 a | 0.05 a | 0.16 a | 0.4 a | |
RYA | AFS− | 1.53 ab | 72.75 a | 20.95 a | 12.78 a | 0.40 b | 0.02 a | 0.23 a | 0.02 a |
FS+ | 1.25 b | 64.05 a | 17.35 a | 9.55 a | 0.04 b | 0.00 a | 0.19 a | 0.22 a | |
FS− | 0.89 b | 43.25 a | 23.35 a | 4.44 b | 0.03 b | 0.00 a | 0.18 a | 0.6 a | |
AFS+ | 2.81 a | 147.25 a | 23.38 a | 22.29 a | 1.33 a | 0.02 bc | 0.00 a | 0.52 a | |
YL | AFS− | 0.82 b | 66.18 b | 43.95 a | 3.73 b | 0.15 b | 0.30 a | 0.00 a | 2.03 a |
FS+ | 0.84 b | 25.43 b | 29.98 a | 2.69 b | 0.35 a | 0.27 ab | 0.02 a | 1.44 a | |
FS− | 1.20 b | 68.35 b | 34.88 a | 2.56 b | 0.50 b | 0.03 c | 0.02 a | 1.84 a |
Microbial Respiration | Cmic | ||
---|---|---|---|
Prop. | System | (mg kg−1 of Soil) | (mg kg−1) |
AFS+ | 8.27 a | 8.48 ab | |
RYA | AFS− | 8.11 a | 9.05 a |
FS+ | 4.49 b | 6.55 b | |
FS− | 4.77 b | 8.20 b | |
AFS+ | 7.68 a | 8.93 a | |
YL | AFS− | 7.85 a | 9.11 a |
FS+ | 5.18 b | 9.98 a | |
FS− | 5.52 b | 9.27 a | |
C.V (%) | 10.01 | 41.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeiros, F.d.P.; Carvalho, A.M.X.d.; Gindri Ramos, C.; Dotto, G.L.; Cardoso, I.M.; Theodoro, S.H. Rock Powder Enhances Soil Nutrition and Coffee Quality in Agroforestry Systems. Sustainability 2024, 16, 354. https://doi.org/10.3390/su16010354
Medeiros FdP, Carvalho AMXd, Gindri Ramos C, Dotto GL, Cardoso IM, Theodoro SH. Rock Powder Enhances Soil Nutrition and Coffee Quality in Agroforestry Systems. Sustainability. 2024; 16(1):354. https://doi.org/10.3390/su16010354
Chicago/Turabian StyleMedeiros, Fernanda de Paula, André M. X. de Carvalho, Claudete Gindri Ramos, Guilherme Luiz Dotto, Irene Maria Cardoso, and Suzi Huff Theodoro. 2024. "Rock Powder Enhances Soil Nutrition and Coffee Quality in Agroforestry Systems" Sustainability 16, no. 1: 354. https://doi.org/10.3390/su16010354
APA StyleMedeiros, F. d. P., Carvalho, A. M. X. d., Gindri Ramos, C., Dotto, G. L., Cardoso, I. M., & Theodoro, S. H. (2024). Rock Powder Enhances Soil Nutrition and Coffee Quality in Agroforestry Systems. Sustainability, 16(1), 354. https://doi.org/10.3390/su16010354