Turbulent Events Effects: Socioeconomic Changes in Southern Poland as Captured by the LSED Index
Abstract
:1. Introduction
- Which of the analysed factors of socioeconomic development actually contributed to the growth or decline in the level of socioeconomic development in the research area?
- What socioeconomic events of the turbulent times have affected changes in the socioeconomic development of the investigated Polish regions?
2. Background
2.1. Factors Contributing to Growth in Socioeconomic Development
2.2. Monitoring the Level of Socioeconomic Development in a Turbulent Environment
2.3. Indicators and Sustainable Development
3. Materials and Methods
3.1. Research Area
- Małopolskie Voivodeship exhibits a substantial share of tourism in its economy, landscape and topography variability, and a substantial scattering of built-up areas combined with patchworked land;
- Świętokrzyskie Voivodeship’s economy focuses on agriculture. It is dominated by rural areas and a rather uniform (flat) topography. Any developments are dense;
- Śląskie Voivodeship has an industry-based economy and mostly urbanised areas with a hilly or flat topography.
3.2. Selection of Diagnostic Variables
3.3. Indicator Analysis
- Central municipalities (voivodeship capitals): Kraków in Małopolskie, Katowice in Śląskie, and Kielce in Świętokrzyskie. Assigned value: 4;
- Periurban municipalities in a 10 km ring zone around the central municipality. Assigned value: 3;
- Transitional municipalities in a 10 km ring zone around periurban municipalities. Assigned value: 2;
- Peripheral municipalities that is all the remaining municipalities, the most distant to the voivodeship capitals. Assigned value: 1.
4. Results
4.1. Analysis of the Variability of the Aggregate LSED Index
4.2. Assessment of the Socioeconomic Potential of the Municipalities
4.3. In-Depth Analysis of Municipalities with the Highest and the Lowest LSED
5. Discussion
5.1. Turbulent Events Affecting Socioeconomic Development of Municipalities in Poland
5.2. The Need to Identify Problem Areas in Turbulent Times
6. Conclusions
- Municipalities in a region with a dominant industrial function (Śląskie) maintain a constant level of socioeconomic development, while regions with mainly tourist (Małopolskie) or agricultural (Świętokrzyskie) functions exhibit significant disparities among municipalities;
- The highest level of socioeconomic development was found in municipalities in Śląskie Voivodeship and the lowest, in Świętokrzyskie;
- Nearly all municipalities with the lowest LSED (problem areas) in the investigated voivodeships are located on the fringes (except for one);
- The areas with the highest values of LSED (model areas) are mostly core cities and key cities in the regions and—in Małopolskie and Świętokrzyskie—suburban municipalities.
6.1. Theoretical and Practical Implications
6.2. Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Voivodeship | Time Interval | Diagnostic Variable | Total | Decline Potential (DP) | DP Percentage (%) | Increase (%) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 | X17 | X18 | ||||||
Małopolskie | Trend | ↕ | ↓ | ↕ | ↕ | ↕ | ↓ | ↑ | ↕ | ↓ | ↑ | ↑ | ↑ | ↕ | ↕ | ↓ | ↕ | ↓ | ↑ | ↓ | ↕ | ↓ | ↑ |
2018–2021 | 56 | 14 | 0 | 0 | 0 | 0 | 54 | 0 | 29 | 118 | 42 | 68 | 0 | 0 | 39 | 0 | 24 | 58 | 502 | 3276 | 15.32 | 84.68 | |
2012–2018 | 56 | 22 | 0 | 0 | 5 | 15 | 29 | 0 | 71 | 175 | 26 | 34 | 0 | 0 | 75 | 0 | 48 | 51 | 607 | 3276 | 18.53 | 81.47 | |
2006–2012 | 39 | 31 | 4 | 1 | 0 | 56 | 64 | 74 | 34 | 45 | 29 | 55 | 5 | 86 | 31 | 0 | 8 | 22 | 584 | 3276 | 17.83 | 82.17 | |
Śląskie | Trend | ↕ | ↑ | ↓ | ↕ | ↓ | ↓ | ↑ | ↕ | ↑ | ↓ | ↑ | ↓ | ↕ | ↑ | ↑ | ↕ | ↑ | ↓ | ↓ | ↕ | ↓ | ↑ |
2018–2021 | 58 | 26 | 5 | 0 | 3 | 2 | 77 | 1 | 29 | 84 | 85 | 71 | 0 | 3 | 3 | 0 | 22 | 31 | 500 | 3006 | 16.63 | 83.37 | |
2012–2018 | 70 | 22 | 6 | 0 | 5 | 13 | 62 | 0 | 65 | 167 | 46 | 78 | 2 | 0 | 0 | 0 | 20 | 58 | 614 | 3006 | 20.43 | 79.57 | |
2006–2012 | 54 | 39 | 11 | 4 | 4 | 18 | 72 | 28 | 59 | 89 | 45 | 73 | 12 | 51 | 51 | 0 | 9 | 21 | 640 | 3006 | 21.29 | 78.71 | |
Świętokrzyskie | Trend | ↓ | ↑ | ↑ | ↑ | ↓ | ↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ↕ | ↑ | ↓ | ↕ | ↓ | ↓ | ↕ | ↕ | ↕ | ↑ |
2018–2021 | 34 | 26 | 13 | 9 | 10 | 6 | 50 | 13 | 29 | 87 | 44 | 26 | 9 | 11 | 31 | 0 | 43 | 61 | 502 | 2106 | 23.84 | 76.16 | |
2012–2018 | 49 | 23 | 8 | 6 | 11 | 33 | 33 | 5 | 37 | 102 | 38 | 35 | 8 | 5 | 38 | 0 | 53 | 86 | 570 | 2106 | 27.07 | 72.93 | |
2006–2012 | 43 | 22 | 6 | 1 | 2 | 12 | 36 | 1 | 10 | 87 | 35 | 45 | 19 | 70 | 14 | 0 | 17 | 43 | 463 | 2106 | 21.98 | 78.02 | |
↑ | a growth in declines in values of diagnostic variables—hindered development | ||||||||||||||||||||||
↑ | a growth in declines in STB diagnostic variables is desirable | ||||||||||||||||||||||
↓ | a reduction in declines in values of diagnostic variables—further development | ||||||||||||||||||||||
↕ | constant trend or no changes | ||||||||||||||||||||||
STB variable | |||||||||||||||||||||||
↑ | a socio-economic growth | ||||||||||||||||||||||
↑ | a slower socio-economic growth |
Appendix B
Voivodeship | Małopolskie | Śląskie | Świętokrzyskie | Total (Number) | Percentage (%) | |||
---|---|---|---|---|---|---|---|---|
Number | Percentage (%) | Number | Percentage (%) | Number | Percentage (%) | |||
No. of municipalities | 182 | 100 | 167 | 100 | 101 | 100 | 450 | 100 |
Model’s potential * | 3276 | 100 | 3006 | 100 | 1818 | 100 | 8100 | 100 |
LSED score | 969.25 | 29.59 | 1015.51 | 33.78 | 533.61 | 29.35 | 2518.36 | 31.09 |
Maximum LSED | 8.58 | 47.67 | 7.66 | 42.56 | 8.46 | 47.00 | 24.7 | 45.7 |
Minimum LSED | 4.06 | 22.56 | 5.06 | 28.11 | 4.38 | 24.33 | 13.5 | 25.0 |
Range | 4.52 | 25.11 | 2.6 | 14.44 | 4.08 | 22.67 | N/A | N/A |
References
- Hannum, E.; Buchmann, C. Global Educational Expansion and Socio-Economic Development: An Assessment of Findings from the Social Sciences. World Dev. 2005, 33, 333–354. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, W.; Cherubini, F.; Pereira, P. Integrate Ecosystem Services into Socio-Economic Development to Enhance Achievement of Sustainable Development Goals in the Post-Pandemic Era. Geogr. Sustain. 2021, 2, 68–73. [Google Scholar] [CrossRef]
- Ansell, C.; Sørensen, E.; Torfing, J. The COVID-19 Pandemic as a Game Changer for Public Administration and Leadership? The Need for Robust Governance Responses to Turbulent Problems. Public Manag. Rev. 2021, 23, 949–960. [Google Scholar] [CrossRef]
- Bazilian, M.; Bradshaw, M.; Gabriel, J.; Goldthau, A.; Westphal, K. Four Scenarios of the Energy Transition: Drivers, Consequences, and Implications for Geopolitics. WIREs Clim. Chang. 2020, 11, e625. [Google Scholar] [CrossRef]
- Hafner, M.; Tagliapietra, S. The Global Energy Transition: A Review of the Existing Literature. In The Geopolitics of the Global Energy Transition; Hafner, M., Tagliapietra, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 73, pp. 1–24. [Google Scholar] [CrossRef]
- Kramarz, T.; Park, S.; Johnson, C. Governing the Dark Side of Renewable Energy: A Typology of Global Displacements. Energy Res. Soc. Sci. 2021, 74, 101902. [Google Scholar] [CrossRef]
- Conversi, D. The Ultimate Challenge: Nationalism and Climate Change. Natl. Pap. 2020, 48, 625–636. [Google Scholar] [CrossRef]
- Qi, J.J.; Dauvergne, P. China’s Rising Influence on Climate Governance: Forging a Path for the Global South. Glob. Environ. Chang. 2022, 73, 102484. [Google Scholar] [CrossRef]
- Dobbs, M.; Gravey, V.; Petetin, L. Driving the European Green Deal in Turbulent Times. Politics Gov. 2021, 9, 316–326. [Google Scholar] [CrossRef]
- Nicholson, S.; Reynolds, J.L. Taking Technology Seriously: Introduction to the Special Issue on New Technologies and Global Environmental Politics. Glob. Environ. Politics 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Vecchiato, R. Scenario Planning, Cognition, and Strategic Investment Decisions in a Turbulent Environment. Long Range Plan. 2019, 52, 101865. [Google Scholar] [CrossRef]
- Strader, S.M.; Pingel, T.J.; Ashley, W.S. A Monte Carlo Model for Estimating Tornado Impacts. Meteorol. Appl. 2016, 23, 269–281. [Google Scholar] [CrossRef]
- Brown, C.; Haltiwanger, J.; Lane, J. Economic Turbulence: Is a Volatile Economy Good for America? University of Chicago Press: Chicago, IL, USA, 2006. [Google Scholar]
- Jennings, B.M.; Baernholdt, M.; Hopkinson, S.G. Exploring the Turbulent Nature of Nurses’ Workflow. Nurs. Outlook 2022, 70, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.M.; Appolloni, A.; Cavallaro, F.; D’Adamo, I.; Di Vaio, A.; Ferella, F.; Gastaldi, M.; Ikram, M.; Kumar, N.M.; Martin, M.A.; et al. Development Goals towards Sustainability. Sustainability 2023, 15, 9443. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, B.; Guo, H.; Liu, J. A big data approach to assess progress towards Sustainable Development Goals for cities of varying sizes. Commun. Earth Environ. 2023, 4, 66. [Google Scholar] [CrossRef]
- Kukulska-Kozieł, A. Buildable land overzoning. Have new planning regulations in Poland resolved the issue? Land Use Policy 2023, 124, 106440. [Google Scholar] [CrossRef]
- Garina, E.P.; Andryashina, N.S.; Kuznetsov, V.P.; Romanovskaya, E.V.; Muzayev, M.Z. Formation of the Determinants of Socio-Economic Development of Territories. In The 21st Century from the Positions of Modern Science: Intellectual, Digital and Innovative Aspects; Popkova, E.G., Sergi, B.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 91, pp. 170–178. [Google Scholar] [CrossRef]
- Menhas, R.; Mahmood, S.; Tanchangya, P.; Safdar, M.N.; Hussain, S. Sustainable Development under Belt and Road Initiative: A Case Study of China-Pakistan Economic Corridor’s Socio-Economic Impact on Pakistan. Sustainability 2019, 11, 6143. [Google Scholar] [CrossRef]
- Qadri, S.U.; Raza, M.; Qadri, S.; Mahmood, S.; Ye, C.; Rauf, F.; Taqi, M.; Hossain, M.S. Overflow Effect of COVID-19 Pandemic on Stock Market Performance: A Study Based on Growing Economy. Discret. Dyn. Nat. Soc. 2023, 2023, 9536571. [Google Scholar] [CrossRef]
- Chotchoungchatchai, S.; Marshall, A.I.; Witthayapipopsakul, W.; Panichkriangkrai, W.; Patcharanarumol, W.; Tangcharoensathien, V. Primary Health Care and Sustainable Development Goals. Bull. World Health Organ. 2020, 98, 792–800. [Google Scholar] [CrossRef]
- Pauw, J.; Gericke, N.; Olsson, D.; Berglund, T. The Effectiveness of Education for Sustainable Development. Sustainability 2015, 7, 15693–15717. [Google Scholar] [CrossRef]
- O’Flaherty, J.; Liddy, M. The Impact of Development Education and Education for Sustainable Development Interventions: A Synthesis of the Research. Environ. Educ. Res. 2018, 24, 1031–1049. [Google Scholar] [CrossRef]
- Marcin, K. Intellectual Capital as a Key Factor of Socio-Economic Development of Regions and Countries. Procedia Econ. Financ. 2013, 6, 288–295. [Google Scholar] [CrossRef]
- Mubangizi, J.C.; Mubangizi, B.C. Poverty, Human Rights Law and Socio-Economic Realities in South Africa. Dev. South. Afr. 2005, 22, 277–290. [Google Scholar] [CrossRef]
- Fedorenko, R.; Yakhneeva, I.; Zaychikova, N.; Lipinsky, D. Evaluating the Socio-Economic Factors Impacting Foreign Trade Development in Port Areas. Sustainability 2021, 13, 8447. [Google Scholar] [CrossRef]
- Reynaud, C.; Miccoli, S. Depopulation and the Aging Population: The Relationship in Italian Municipalities. Sustainability 2018, 10, 1004. [Google Scholar] [CrossRef]
- Azmat, F.; Samaratunge, R. Responsible Entrepreneurship in Developing Countries: Understanding the Realities and Complexities. J. Bus. Ethics 2009, 90, 437–452. [Google Scholar] [CrossRef]
- Lieser, K.; Groh, A.P. The Determinants of International Commercial Real Estate Investment. J. Real. Estate Finan. Econ. 2014, 48, 611–659. [Google Scholar] [CrossRef]
- Stawasz, D.; Rudolf, W. Culture and its impact on the social and economic development of the city of Lodz. Stud. Ekon. 2018, 376, 211–224. [Google Scholar]
- Saidi, S.; Shahbaz, M.; Akhtar, P. The Long-Run Relationships between Transport Energy Consumption, Transport Infrastructure, and Economic Growth in MENA Countries. Transp. Res. Part A Policy Pract. 2018, 111, 78–95. [Google Scholar] [CrossRef]
- Thacker, S.; Adshead, D.; Fay, M.; Hallegatte, S.; Harvey, M.; Meller, H.; O’Regan, N.; Rozenberg, J.; Watkins, G.; Hall, J.W. Infrastructure for Sustainable Development. Nat. Sustain. 2019, 2, 324–331. [Google Scholar] [CrossRef]
- Diaconu, L.; Bayar, Y. Globalization and socio-economic development in post-transition European Union countries: Panel causality and regression analyses. East. J. Eur. Stud. 2020, 11, 45–61. [Google Scholar]
- Anas, T.; Hill, H.; Narjoko, D.; Putra, C.T. The Indonesian Economy in Turbulent Times. Bull. Indones. Econ. Stud. 2022, 58, 241–271. [Google Scholar] [CrossRef]
- Keola, S.; Andersson, M.; Hall, O. Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Polyakova, A.G.; Loginov, M.P.; Serebrennikova, A.I.; Thalassinos, E.I. Design of a Socio-Economic Processes Monitoring System Based on Network Analysis and Big Data. IJEBA 2019, VII, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Shcherbak, V.; Ganushchak-Yefimenko, L.; Nifatova, O.; Fastovets, N.; Plysenko, G.; Lutay, L.; Tkachuk, V.; Ptashchenko, O. Use of Key Indicators to Monitor Sustainable Development of Rural Areas. Glob. J. Environ. Sci. Manag. 2020, 6, 175–190. [Google Scholar] [CrossRef]
- Douvere, F.; Ehler, C.N. The Importance of Monitoring and Evaluation in Adaptive Maritime Spatial Planning. J. Coast. Conserv. 2011, 15, 305–311. [Google Scholar] [CrossRef]
- Marozzi, M. Construction, Robustness Assessment and Application of an Index of Perceived Level of Socio-Economic Threat from Immigrants: A Study of 47 European Countries and Regions. Soc. Indic. Res. 2016, 128, 413–437. [Google Scholar] [CrossRef]
- Manakhova, I.; Domnicheva, A.; Rybakov, O. Well-Being Monitoring for Sustainable Socio-Economic Development. In Proceedings of the International Scientific Conference “Competitive, Sustainable and Secure Development of the Regional Economy: Response to Global Challenges” (CSSDRE 2018), Volgograd, Russia, 18–20 April 2018; Atlantis Press: Volgograd, Russia, 2018. [Google Scholar] [CrossRef]
- Diaz-Chavez, R. Indicators for Socio-Economic Sustainability Assessment. In Socio-Economic Impacts of Bioenergy Production; Rutz, D., Janssen, R., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 17–37. [Google Scholar] [CrossRef]
- Diaz-Chavez, R. Sustainable Development Indicators for Peri-Urban Areas. A Case Study of Mexico City. Ph.D. Thesis, University of Wales Aberystwyth, Aberystwyth, UK, 2003. [Google Scholar]
- Król, K. Assessment of the Cultural Heritage Potential in Poland. Sustainability 2021, 13, 6637. [Google Scholar] [CrossRef]
- Diaz-Chavez, R.A. Measuring sustainability in peri-urban areas. In The Peri-Urban Interface in Developing Areas: Approaches to Sustainable Natural and Human Resource Use; McGregor, D., Simon, D., Thompson, D., Eds.; Earthscan: London, UK, 2006; pp. 246–265. [Google Scholar]
- Gonzalez-Garcia, S.; Manteiga, R.; Moreira, M.T.; Feijoo, G. Assessing the Sustainability of Spanish Cities Considering Environmental and Socio-Economic Indicators. J. Clean. Prod. 2018, 178, 599–610. [Google Scholar] [CrossRef]
- Kiselakova, D.; Stec, M.; Grzebyk, M.; Sofrankova, B. A Multidimensional Evaluation of the Sustainable Development of European Union Countries—An Empirical Study. JOC 2020, 12, 56–73. [Google Scholar] [CrossRef]
- Realizing the Future We Want for All. Report to the Secretary-General. United Nations. New York, June 2012. Available online: https://www.undp.org/publications/realizing-future-we-want-all (accessed on 21 November 2023).
- Strezov, V.; Evans, A.; Evans, T.J. Assessment of the Economic, Social and Environmental Dimensions of the Indicators for Sustainable Development. Sustain. Dev. 2017, 25, 242–253. [Google Scholar] [CrossRef]
- Barska, A.; Jędrzejczak-Gas, J. Indicator Analysis of the Economic Development of Polish Regions in the Context of the Implementation of the Concept of Sustainable Development. Eur. J. Sustain. Dev. 2019, 8, 210. [Google Scholar] [CrossRef]
- Walesiak, M. Problemy decyzyjne w procesie klasyfikacji zbioru obiektów. Prace Naukowe Akademii Ekonomicznej We Wrocławiu. Ekonometria 2004, 13, 52–71. [Google Scholar]
- Aldenderfer, M.S.; Blashfield, R. Cluster Analysis; Sage Publications: Thousand Oaks, CA, USA, 1984. [Google Scholar]
- Cieślak, M. Dobór syndromu zmiennych do porządkowania liniowego obiektów wielowymiarowych. Pr. Nauk. Akad. Ekon. We Wrocławiu 1986, 328, 19–27. [Google Scholar]
- Dudzińska, M.; Bacior, S.; Prus, B. Considering the Level of Socio-Economic Development of Rural Areas in the Context of Infrastructural and Traditional Consolidations in Poland. Land Use Policy 2018, 79, 759–773. [Google Scholar] [CrossRef]
- Kukula, K.; Bogocz, D. Zero unitarization method and its application in ranking research in agriculture. Economic and Regional Studies. Econ. Reg. Stud. 2014, 7, 5–13. [Google Scholar]
- Paluch, L.; Sroka, W. Socio-economic and environmental determinants of sustainable development of rural communes in Malopolska province. Acta Sci. Polonorum. Oeconomia 2013, 12, 65–76. [Google Scholar]
- Prus, B.; Król, K. Evaluation of using selected taxonomic methods to classify socio-economic phenomena. Acta Sci. Pol. Form. Circumiectus 2017, 2, 179–197. [Google Scholar] [CrossRef]
- Puertas, R.; Marti, L. Renewable Energy Production Capacity and Consumption in Europe. Sci. Total Environ. 2022, 853, 158592. [Google Scholar] [CrossRef]
- Sompolska-Rzechuła, A. Infrastruktura wodno-sanitarna na obszarach wiejskich a rozwój gospodarczy w ujęciu regionalnym. Rocz. Nauk. Ekon. Rol. I Rozw. Obsz. Wiej. 2016, 103, 41–54. [Google Scholar]
- Wójcik-Leń, J.; Leń, P.; Mika, M.; Kryszk, H.; Kotlarz, P. Studies Regarding Correct Selection of Statistical Methods for the Needs of Increasing the Efficiency of Identification of Land for Consolidation—A Case Study in Poland. Land Use Policy 2019, 87, 104064. [Google Scholar] [CrossRef]
- Local Data Bank. Statistics Poland. Available online: https://portal.geo.stat.gov.pl/en/home/data/local-data-bank/ (accessed on 21 November 2023).
- Pylak, K.; Kogler, D.F. Successful Economic Diversification in Less Developed Regions: Long-Term Trends in Turbulent Times. Reg. Stud. 2021, 55, 465–478. [Google Scholar] [CrossRef]
- Shipton, L.; Dauvergne, P. Understanding Environmental Politics in a Turbulent Era. In Global Environmental Politics in a Turbulent Era; Dauvergne, P., Shipton, L., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2023; pp. 1–11. [Google Scholar] [CrossRef]
- Kojder, A. Systemic Transformation in Poland: 1989–1997. Pol. Sociol. Rev. 1998, 123, 247–266. [Google Scholar]
- The Conference Board. Economy, Strategy & Finance Center. Available online: https://www.conference-board.org/us/economy-strategy-finance (accessed on 21 November 2023).
- Weresa, M.A. (Ed.) Poland—Competitiveness Report 2014: A Decade in the European Union; The Warsaw School of Economics: Warszawa, Poland, 2014. [Google Scholar]
- Wójcik, P. Was Poland the next Spain? Parallel Analysis of Regional Convergence Patterns after Accession to the European Union. Equilibrium 2017, 12, 593–611. [Google Scholar] [CrossRef]
- Adamowicz, M.; Adamowicz, T. The World Financial Crisis and The Polish Economy. Zesz. Nauk. SGGW W Warszawie—Probl. Rol. Swiat. 2019, 19, 5–21. [Google Scholar] [CrossRef]
- Drozdowicz-Bieć, M. Reasons Why Poland Avoided the 2007–2009 Recession. Pr. I Mater. 2011, 86, 39–66. [Google Scholar]
- Wyrzykowski, M. Experiencing the Unimaginable: The Collapse of the Rule of Law in Poland. Hague J. Rule Law 2019, 11, 417–422. [Google Scholar] [CrossRef]
- Nundy, S.; Ghosh, A.; Mesloub, A.; Albaqawy, G.A.; Alnaim, M.M. Impact of COVID-19 Pandemic on Socio-Economic, Energy-Environment and Transport Sector Globally and Sustainable Development Goal (SDG). J. Clean. Prod. 2021, 312, 127705. [Google Scholar] [CrossRef]
- Gursoy, D.; Chi, C.G. Effects of COVID-19 Pandemic on Hospitality Industry: Review of the Current Situations and a Research Agenda. J. Hosp. Mark. Manag. 2020, 29, 527–529. [Google Scholar] [CrossRef]
- Kallbekken, S.; Sælen, H. Public Support for Air Travel Restrictions to Address COVID-19 or Climate Change. Transp. Res. Part D Transp. Environ. 2021, 93, 102767. [Google Scholar] [CrossRef]
- Haryatie, E.; Sutrasna, Y.; Hermanto, D. Strategy of the ministry of economic coordinator in the national economic recovery effort during the Covid-19 pandemic. Int. J. Soc. Sci. 2023, 2, 2295–2302. [Google Scholar] [CrossRef]
- Noszczyk, T.; Gorzelany, J.; Kukulska-Kozieł, A.; Hernik, J. The Impact of the COVID-19 Pandemic on the Importance of Urban Green Spaces to the Public. Land Use Policy 2022, 113, 105925. [Google Scholar] [CrossRef] [PubMed]
- Martinico-Perez, M.F.G.; Schandl, H.; Fishman, T.; Tanikawa, H. The Socio-Economic Metabolism of an Emerging Economy: Monitoring Progress of Decoupling of Economic Growth and Environmental Pressures in the Philippines. Ecol. Econ. 2018, 147, 155–166. [Google Scholar] [CrossRef]
- Malganova, I.; Zagladina, H. Regional Socio-Economic Development on the Basis of Scenario Forecasting Method. Procedia Econ. Financ. 2015, 24, 371–375. [Google Scholar] [CrossRef]
- Shi, K.; Wu, L. Forecasting Air Quality Considering the Socio-Economic Development in Xingtai. Sustain. Cities Soc. 2020, 61, 102337. [Google Scholar] [CrossRef]
- Gorzelany, J.; Noszczyk, T.; Kukulska-Kozieł, A.; Hernik, J. Urban Green Spaces Management during the COVID-19 Pandemic: Experiences from Kraków, Poland. Land Degrad. Dev. 2023, 34, 423–440. [Google Scholar] [CrossRef]
- Lowe, P.; Phillipson, J.; Proctor, A.; Gkartzios, M. Expertise in Rural Development: A Conceptual and Empirical Analysis. World Dev. 2019, 116, 28–37. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Territory Spatial Planning and National Governance System in China. Land Use Policy 2021, 102, 105288. [Google Scholar] [CrossRef]
- Siljander, M.; Kuronen, T.; Johansson, T.; Munyao, M.N.; Pellikka, P.K.E. Primates on the Farm—Spatial Patterns of Human–Wildlife Conflict in Forest-Agricultural Landscape Mosaic in Taita Hills, Kenya. Appl. Geogr. 2020, 117, 102185. [Google Scholar] [CrossRef]
Variable Code | Diagnostic Variable Designation | Unit | Type of Variable |
---|---|---|---|
X1 | Agriculture and hunting (municipal expenditures) | [PLN] | LDB |
X2 | Community services and environment protection (municipal expenditures) | [PLN] | LDB |
X3 | Length of active sewerage system | [km] | LDB |
X4 | Total per capita income | [PLN] | LDB |
X5 | Budgetary income of municipalities and towns with district status, independent income | [PLN] | LDB |
X6 | Length of active water distribution system managed or administered by the municipality | [km] | LDB |
X7 | Water consumption by the national economy and population during the year per capita | [dam3] | SDB |
X8 | Elderly dependency rate | [persons] | SDB |
X9 | New flats per 1000 persons | [–] | LDB |
X10 | Total unemployed registered in municipalities | [persons] | SDB |
X11 | Working population according to a different category than the classification of business activities: working population in municipalities by sex | [persons] | LDB |
X12 | Total mixed waste collected in a year per capita | [t] | LDB |
X13 | Registered national economy entities per 1000 persons | [–] | LDB |
X14 | Elderly population over 65 to total population | [persons] | SDB |
X15 | Living area of new flats per 1000 persons | [m2] | LDB |
X16 | Distance to voivodeship capital (core city) | [–] | SDB |
X17 | Land cover change | [–] | LDB |
X18 | Growth in anthropogenic areas | [–] | LDB |
Level 1 | Level 2 | |
---|---|---|
Artificial surfaces | 1.1. | Urban fabric |
1.2. | Industrial, commercial, and transport units | |
1.3. | Mine, dump, and construction sites | |
1.4. | Artificial, non-agricultural vegetated areas | |
Agricultural areas | 2.1. | Arable land |
2.2. | Permanent crops | |
2.3. | Pastures | |
2.4. | Heterogeneous agricultural areas | |
Forest and seminatural areas | 3.1. | Forests |
3.2. | Shrub and/or herbaceous vegetation associations | |
3.3. | Open spaces with little or no vegetation | |
Wetlands | 4.1. | Inland wetlands |
4.2. | Coastal wetlands | |
Water bodies | 5.1. | Inland waters |
5.2. | Marine waters |
Małopolskie Voivodeship | |||||||
---|---|---|---|---|---|---|---|
Rank | Municipality | 2006 | 2012 | 2018 | 2021 | Average for 2006–2021 | Percentage (%) * |
Municipalities with the highest LSED (model areas) | |||||||
1 | Kraków (1) | 8.87016 | 8.613165 | 8.567362 | 8.258815 | 8.58 | 47.65 |
2 | Mucharz (2) | 7.155955 | 6.362138 | 7.280348 | 6.337516 | 6.78 | 37.69 |
3 | Zakopane (1) | 6.873251 | 6.425827 | 6.856306 | 6.391696 | 6.64 | 36.87 |
4 | Michałowice (2) | 6.305934 | 6.682243 | 6.536411 | 6.550244 | 6.52 | 36.22 |
5 | Zielonki (2) | 6.255813 | 6.321124 | 6.698127 | 6.63506 | 6.48 | 35.99 |
6 | Wielka Wieś (2) | 5.422531 | 6.196229 | 6.958621 | 7.066122 | 6.41 | 35.62 |
Municipalities with the lowest LSED (problem areas) | |||||||
178 | Wietrzychowice (2) | 3.877112 | 4.40204 | 4.425403 | 4.67112 | 4.34 | 24.13 |
179 | Kozłów (2) | 4.020516 | 4.234999 | 4.381591 | 4.60335 | 4.31 | 23.95 |
180 | Radziemice (2) | 3.947113 | 4.222017 | 4.270877 | 4.737846 | 4.29 | 23.86 |
181 | Gręboszów (2) | 3.920253 | 4.213141 | 4.276446 | 4.310924 | 4.18 | 23.22 |
182 | Słaboszów (2) | 3.858796 | 3.990011 | 4.034311 | 4.338272 | 4.06 | 22.53 |
Śląskie Voivodeship | |||||||
Municipalities with the highest LSED (model areas) | |||||||
1 | Gliwice (1) | 8.017773 | 8.012679 | 7.686603 | 6.940416 | 7.66 | 42.58 |
2 | Katowice (1) | 7.580392 | 7.300473 | 8.178297 | 7.21119 | 7.57 | 42.04 |
3 | Bielsko-Biała (1) | 7.991302 | 8.090002 | 7.321302 | 6.64324 | 7.51 | 41.73 |
4 | Rybnik (1) | 7.848313 | 7.468648 | 7.159499 | 6.649321 | 7.28 | 40.45 |
Municipalities with the lowest LSED (problem areas) | |||||||
162 | Będzin (1) | 6.006029 | 5.449189 | 5.245441 | 4.878435 | 5.3947733 | 29.97 |
163 | Przyrów (2) | 5.178392 | 5.548366 | 5.644653 | 5.061427 | 5.36 | 29.77 |
164 | Łaziska Górne (1) | 5.226781 | 5.804004 | 5.287344 | 5.110349 | 5.36 | 29.76 |
165 | Irządze (2) | 4.990853 | 4.822829 | 5.830856 | 5.615629 | 5.32 | 29.53 |
166 | Dąbrowa Zielona (2) | 4.870187 | 5.107365 | 5.611285 | 5.29363 | 5.22 | 29.00 |
167 | Koniecpol (3) | 5.076839 | 5.088317 | 5.216197 | 4.869811 | 5.06 | 28.13 |
Świętokrzyskie Voivodeship | |||||||
Municipalities with the highest LSED (model areas) | |||||||
1 | Kielce (1) | 8.751332 | 8.521683 | 8.568724 | 8.016937 | 8.46 | 47.03 |
2 | Nowiny (2) | 6.504277 | 6.990864 | 6.086851 | 6.374502 | 6.49 | 36.05 |
3 | Sandomierz (1) | 6.718439 | 6.882495 | 5.578658 | 5.85485 | 6.26 | 34.77 |
4 | Miedziana Góra (2) | 5.873577 | 6.699218 | 6.158201 | 6.138744 | 6.22 | 34.54 |
5 | Busko-Zdrój (3) | 6.423144 | 6.08959 | 6.254384 | 6.091996 | 6.21 | 34.53 |
Municipalities with the lowest LSED (problem areas) | |||||||
97 | Stąporków (3) | 4.491491 | 4.853752 | 4.439446 | 4.574043 | 4.59 | 25.50 |
98 | Tarłów (2) | 4.423021 | 4.695179 | 4.622971 | 4.503819 | 4.56 | 25.34 |
99 | Czarnocin (2) | 4.271622 | 4.417235 | 4.324348 | 5.04688 | 4.52 | 25.08 |
100 | Bejsce (2) | 4.055953 | 4.29708 | 4.725434 | 4.731595 | 4.45 | 24.74 |
101 | Działoszyce (3) | 4.075643 | 4.298015 | 4.516458 | 4.62653 | 4.38 | 24.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Król, K.; Kukulska-Kozieł, A.; Cegielska, K.; Salata, T.; Hernik, J. Turbulent Events Effects: Socioeconomic Changes in Southern Poland as Captured by the LSED Index. Sustainability 2024, 16, 38. https://doi.org/10.3390/su16010038
Król K, Kukulska-Kozieł A, Cegielska K, Salata T, Hernik J. Turbulent Events Effects: Socioeconomic Changes in Southern Poland as Captured by the LSED Index. Sustainability. 2024; 16(1):38. https://doi.org/10.3390/su16010038
Chicago/Turabian StyleKról, Karol, Anita Kukulska-Kozieł, Katarzyna Cegielska, Tomasz Salata, and Józef Hernik. 2024. "Turbulent Events Effects: Socioeconomic Changes in Southern Poland as Captured by the LSED Index" Sustainability 16, no. 1: 38. https://doi.org/10.3390/su16010038
APA StyleKról, K., Kukulska-Kozieł, A., Cegielska, K., Salata, T., & Hernik, J. (2024). Turbulent Events Effects: Socioeconomic Changes in Southern Poland as Captured by the LSED Index. Sustainability, 16(1), 38. https://doi.org/10.3390/su16010038