Streamflow Variation under Climate Conditions Based on a Soil and Water Assessment Tool Model: A Case Study of the Bailong River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Pre-Processing
2.3. FLUS Model
- SSP1–2.6 and the Ecological Protection Scenario (SSP126-EP): Emphasizing ecological preservation, this scenario prioritizes social and economic progress guided by ecological protection, achieving sustainable green development.
- SSP2–4.5 and the Natural Development Scenario (SSP245-ND): This scenario is rooted in the existing trajectory of land use development evolution without significant alterations.
- SSP5–8.5 and the Economic Growth Scenario (SSP585-EG): Focused on economic advancement, this scenario is centered on maximizing economic growth, heavily relying on extensive fossil fuel utilization and economic enhancement [37].
2.4. SWAT Model
3. Results
3.1. Lucc Prediction Based on SSP-RCP Scenarios
3.2. Historical Streamflow in the BRB
3.3. Prediction of Streamflow in the BRB
3.3.1. Interannual Changes in Streamflow from 2040 to 2100
3.3.2. Monthly Changes in Streamflow from 2040 to 2100
4. Discussion
4.1. Analysis of Changes in Streamflow
4.2. Shortcomings and Prospects
- (1)
- Future studies on climate change and its impacts inevitably involve uncertainty. Although employing multiple GCMs can mitigate some of these uncertainties, there are still shortcomings. Subsequent research could select superior-performing climate models to investigate future climate change and its impacts or attempt ensemble modeling methods, such as multi-model median approaches, and ensemble methods based on the allocation of weights according to model performance, to reduce prediction uncertainties further. Moreover, this study focused exclusively on three SSP-RCP scenarios (SSP1–2.6, SSP2–4.5, SSP5–8.5) Subsequent research should consider more climate projection scenarios to reduce the uncertainties associated with climate scenarios.
- (2)
- For the SWAT hydrological model employed in the streamflow prediction process, uncertainty in the input data can lead to uncertainty in the model simulations. Future research should thoroughly investigate the influence of data accuracy and resolution differences on the simulation results. Bosshard et al. (2013) [65] quantitatively calculated the contributions of GCMs, statistical methods, and hydrological models to the uncertainty of short-term and long-term hydrological simulations in the Rhine River Basin based on variance analysis methods. Jung et al. (2011) [66] considered five factors, including GCM structure, future greenhouse gas emission scenarios, LUCC scenarios, natural variability, and hydrological model parameters, to quantify uncertain effects on urban flood changes. The results show that from 2040 to 2069, climate change has a greater impact on basin floods than LUCC.
- (3)
- During the streamflow prediction process, our focus was on examining the response of streamflow in the BRB to the combined effects of climate change and LUCC, with a deliberate exclusion of human activities, like water resource development and utilization from consideration. Indeed, real-world human activities, such as constructing reservoirs, implementing water intake projects, and modifying water usage patterns, have the potential to modify the water cycle within the basin, consequently influencing the generation and development of streamflow. Future research efforts should aim to enhance our comprehension of how climate change, LUCC, water resource management strategies, and human interventions collectively influence streamflow dynamics.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Number | Model Name | Country | Institution | Number of Grids |
---|---|---|---|---|
1 | BCC-CSM2-MR | China | Beijing Climate Center | 160 × 320 |
2 | EC-Earth3-Veg | Europe | EC Earth consortium | 256 × 512 |
3 | GFDL-ESM4 | USA | Geophysical Fluid Dynamics Laboratory | 180 × 288 |
4 | MRI-ESM2-0 | Japan | Meteorological Research Institute | 160 × 320 |
5 | MPI-ESM1-2-HR | Germany | Max-Planck-Institut fiir Meteorologie | 192 × 384 |
6 | NORESM2-MM | Europe | NorESM Climate Modeling Consortium | 192 × 288 |
7 | SAM0-UNICON | Korea | Seoul National University | 192 × 288 |
8 | INM-CM4-8 | Russia | Russian Institute for Numerical Mathematics Climate Model | 120 × 180 |
9 | CNRM-CM6-1 | France | Centre National de Recherches Meteorologiques | 256 × 128 |
10 | MIRCO6 | Japan | Japanese Research Community | 128 × 256 |
References
- Pirnia, A.; Darabi, H.; Choubin, B.; Omidvar, E.; Onyutha, C.; Haghighi, A.T. Contribution of climatic variability and human activities to stream flow changes in the Haraz River basin, northern Iran. J. Hydro-Environ. Res. 2019, 25, 12–24. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021; in press. [Google Scholar]
- Allan, R.P.; Soden, B.J. Atmospheric Warming and the Amplification of Precipitation Extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef]
- Fang, J.; Kong, F.; Fang, J.; Zhao, L. Observed changes in hydrological extremes and flood disaster in Yangtze River Basin: Spatial–temporal variability and climate change impacts. Nat. Hazards 2018, 93, 89–107. [Google Scholar] [CrossRef]
- Zhao, Q.; Ding, Y.; Wang, J.; Gao, H.; Zhang, S.; Zhao, C.; Xu, J.; Han, H.; Shangguan, D. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow. J. Hydrol. 2019, 573, 60–81. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Zhu, R.; Liu, C.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour. Res. 2009, 45, 7. [Google Scholar] [CrossRef]
- Chien, H.; Yeh, P.J.F.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Majone, B.; Avesani, D.; Zulian, P.; Fiori, A.; Bellin, A. Analysis of high streamflow extremes in climate change studies: How do we calibrate hydrological models? Hydrol. Earth Syst. Sci. 2022, 26, 3863–3883. [Google Scholar] [CrossRef]
- Aich, V.; Liersch, S.; Vetter, T.; Fournet, S.; Andersson, J.C.; Calmanti, S.; Weert, F.H.A.; Hattermann, F.F.; Paton, E.N. Flood projections within the Niger River Basin under future land use and climate change. Sci. Total Environ. 2016, 562, 666–677. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Zhang, X.; Leung, L.R.; Liu, C.; Zheng, C.; Guo, Y.; Chiew, F.H.S.; Post, D.; Kong, D.; et al. Future global streamflow declines are probably more severe than previously estimated. Nat. Water 2023, 1, 261–271. [Google Scholar] [CrossRef]
- Stergiadi, M.; Di Marco, N.; Avesani, D.; Righetti, M.; Borga, M. Impact of geology on seasonal hydrological predictability in alpine regions by a sensitivity analysis framework. Water 2020, 12, 2255. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L. The Impacts of Climate Change on the Hydrological Cycle and Water Resource Management. Water 2023, 15, 2342. [Google Scholar] [CrossRef]
- Shiferaw, H.; Gebremedhin, A.; Gebretsadkan, T.; Zenebe, A. Modelling hydrological response under climate change scenarios using SWAT model: The case of Ilala watershed, Northern Ethiopia. Model. Earth Syst. Environ. 2018, 4, 437–449. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Snyder, P.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, H.; Wang, Y.; Zhu, Y. Assessing the impact of climate variability and human activities on streamflow variation. Hydrol. Earth Syst. Sci. 2016, 20, 1547–1560. [Google Scholar] [CrossRef]
- DeFries, R.; Eshleman, K. Land-use change and hydrologic processes: A major focus for the future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Zhou, J.; He, D.; Xie, Y.; Liu, Y.; Yang, Y.; Sheng, H.; Guo, H.; Zhao, L.; Zou, R. Integrated SWAT model and statistical downscaling for estimating streamflow response to climate change in the Lake Dianchi watershed, China. Stoch. Environ. Res. Risk Assess. 2015, 29, 1193–1210. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, K.Z.; Wang, M.J.; Karthikeyan, R. Basin-scale spatial soil erosion variability: Pingshuo opencast mine site in Shanxi Province, Loess Plateau of China. Nat. Hazards 2016, 80, 1213–1230. [Google Scholar] [CrossRef]
- Li, C.; Fang, H. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. CATENA 2021, 201, 105199. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, K.; He, N.; Zhang, P. Research on land use/cover classification based on RS and GIS. In Proceedings of the 2006 Second International Symposium on Plant Growth Modeling and Applications, Beijing, China, 13–17 November 2006; pp. 244–250. [Google Scholar]
- Cunha, E.; Santos, C.; Silva, R.; Bacani, V.; Pott, A. Future scenarios based on a CA-Markov land use and land cover simulation model for a tropical humid basin in the Cerrado/Atlantic forest ecotone of Brazil. Land Use Policy 2021, 101, 105141. [Google Scholar] [CrossRef]
- Liu, J.; Deng, X. Progress of the research methodologies on the temporal and spatial process of LUCC. Chin. Sci. Bull. 2010, 55, 1354–1362. [Google Scholar] [CrossRef]
- Cao, M.; Tang, G.; Shen, Q.; Wang, Y. A new discovery of transition rules for cellular automata by using cuckoo search algorithm. Int. J. Geogr. Inf. Sci. 2015, 29, 806–824. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef]
- Zhou, Y.; Yue, D.; Liang, G.; Li, S.; Zhao, Y.; Chao, Z.; Meng, X. Risk Assessment of Debris Flow in a Mountain-Basin Area, Western China. Remote Sens. 2022, 14, 2942. [Google Scholar] [CrossRef]
- Li, K.; Yue, D.; Guo, J.; Jiang, F.; Zeng, J.; Zou, M.; Segarra, E. Geohazards mitigation strategies simulation and evaluation based on surface runoff depth: A case study in Bailong River basin. CATENA 2018, 173, 1–8. [Google Scholar] [CrossRef]
- Chen, G.; Meng, X.; Tan, L.; Zhang, F.; Qiao, L. Comparison and combination of different models for optimal landslide susceptibility zonation. Q. J. Eng. Geol. Hydrogeol. 2014, 47, 283–306. [Google Scholar] [CrossRef]
- Huang, M.; Wang, J.; Wang, B.; Liu, D.L.; Feng, P.; Yu, Q.; Pan, X.; Li, S.; Jiang, T. Dominant sources of uncertainty in simulating maize adaptation under future climate scenarios in China. Agric. Syst. 2022, 199, 103411. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2015, 136, 82–95. [Google Scholar] [CrossRef]
- Liu, S.; Yao, Y.; Kuang, X.; Zheng, C. A preliminary investigation on the climate-discharge relationship in the upper region of the Yarlung Zangbo River basin. J. Hydrol. 2021, 603, 127066. [Google Scholar] [CrossRef]
- Wu, T.; Song, L.; Li, W.; Wang, Z.; Zhang, H.; Xin, X.; Zhang, Y.; Zhang, L.; Li, J.; Wu, F.; et al. An overview of BCC climate system model development and application for climate change studies. J. Meteorol. Res. 2014, 28, 34–56. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, Y.; Glade, T.; Zhang, J.; Zhang, Y. Assessing the spatiotemporal impact of climate change on event rainfall characteristics influencing landslide occurrences based on multiple GCM projections in China. Clim. Chang. 2020, 162, 761–779. [Google Scholar] [CrossRef]
- Shan, X.; Yin, J.; Wang, J. Risk assessment of shanghai extreme flooding under the land use change scenario. Nat. Hazards 2022, 110, 1039–1060. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Chiew, F.H.; Ekström, M.; Potter, N.J. Uncertainties of statistical downscaling from predictor selection: Equifinality and transferability. Atmos. Res. 2018, 203, 130–140. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Zhang, W.; Fenicia, F.; Peng, H.; Xu, G. Hydrologic impacts of cascading reservoirs in the middle and lower Hanjiang River basin under climate variability and land use change. J. Hydrol. Reg. Stud. 2022, 44, 101253. [Google Scholar] [CrossRef]
- Wu, H.; Chen, B.; Snelgrove, K.; Lye, L.M. Quantification of Uncertainty Propagation Effects during Statistical Downscaling of Precipitation and Temperature to Hydrological Modeling. J. Environ. Inform. 2019, 34, 139–148. [Google Scholar] [CrossRef]
- Zabaleta, A.; Meaurio, M.; Ruiz, E.; Antigüedad, I. Simulation climate change impact on streamflow and sediment yield in a small watershed in the Basque Country, Northern Spain. J. Environ. Qual. 2013, 43, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.T.; Park, S.; Bieger, K.; Arnold, J.G.; Allen, P.M. Enhancing SWAT+ simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines. Environ. Model. Softw. 2020, 126, 104660. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Li, S.; Cao, Y.; Liu, J.; Wang, S. Simulating land use change for sustainable land management in China’s coal resource-based cities under different scenarios. Sci. Total Environ. 2024, 916, 170126. [Google Scholar] [CrossRef]
- Peng, L.; Wang, X.-X. What is the relationship between ecosystem services and urbanization? A case study of the mountainous areas in Southwest China. J. Mt. Sci. 2019, 16, 2867–2881. [Google Scholar] [CrossRef]
- Jiang, X.; Duan, H.; Liao, J.; Song, X.; Xue, X. Land use in the Gan-Lin-Gao Region of middle reaches of Heihe River Basin based on a PLUS-SD coupling model. Arid. Zone Res. 2022, 39, 1246–1258. [Google Scholar]
- Zhang, Z.; Li, X.; Liu, X.; Zhao, K. Dynamic simulation and projection of land use change using system dynamics model in the Chinese Tianshan mountainous region, central Asia. Ecol. Model. 2024, 487, 110564. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Z.; Liang, L.; Zhai, R.; Zhao, H.; Zhang, W. Variable parameter Budyko theory considering climate change factors and its application in water resources prediction of Ganjiang River Basin. Water Resour. Hydropower Eng. 2022, 53, 10. [Google Scholar]
- Gao, P.; Jiang, G.; Wei, Y.; Mu, X.; Wang, F.; Zhao, G.; Sun, W. Streamflow regimes of the Yanhe River under climate and land use change, Loess Plateau, China. Hydrol. Process. 2015, 29, 2402–2413. [Google Scholar] [CrossRef]
- Chase, K.J.; Haj, A.E.; Regan, R.S.; Viger, R.J. Potential effects of climate change on streamflow for seven watersheds in eastern and central Montana. J. Hydrol. Reg. Stud. 2016, 7, 69–81. [Google Scholar] [CrossRef]
- Neupane, R.P.; White, J.D.; Alexander, S.E. Projected hydrologic changes in monsoon-dominated Himalaya Mountain basins with changing climate and deforestation. J. Hydrol. 2015, 525, 216–230. [Google Scholar] [CrossRef]
- Eisner, S.; Flörke, M.; Chamorro, A.; Daggupati, P.; Donnelly, C.; Huang, J.; Hundecha, Y.; Koch, H.; Kalugin, A.; Krylenko, I.; et al. An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Clim. Chang. 2017, 141, 401–417. [Google Scholar] [CrossRef]
- Zheng, H.; Chiew, F.H.S.; Charles, S.; Podger, G. Future climate and streamflow projections across South Asia from CMIP5 global climate models and hydrological modelling. J. Hydrol. 2018, 18, 92–109. [Google Scholar]
- Shrestha, S.; Bhatta, B.; Shrestha, M.; Shrestha, P.K. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Sci. Total Environ. 2018, 643, 1610–1622. [Google Scholar] [CrossRef]
- Wen, X.; Liu, Z.; Lei, X.; Lin, R.; Fang, G.; Tan, Q.; Wang, C.; Tian, Y.; Quan, J. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality. Sci. Total Environ. 2018, 633, 1403–1417. [Google Scholar] [CrossRef] [PubMed]
- Suriya, S.; Mudgal, B. Impact of urbanization on flooding: The Thirusoolam sub watershed—A case study. J. Hydrol. 2012, 412–413, 210–219. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Shi, T.; Qu, X.; Walter, M.T. Effects of urbanization on direct streamflow characteristics in urban functional zones. Sci. Total Environ. 2018, 643, 301–311. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, J.; Yu, J.; Randall, M.; Zhang, Y.; Zhao, T.; Shao, Q. Simulation and assessment of urbanization impacts on streamflow metrics: Insights from landuse changes. J. Hydrol. 2018, 560, 247–258. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Chen, C.; Ge, J. Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China. Atmos. Res. 2016, 178–179, 521–534. [Google Scholar] [CrossRef]
- Zuo, D.; Xu, Z.; Yao, W.; Jin, S.; Xiao, P.; Ran, D. Assessing the effects of changes in land use and climate on streamflow and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, K.; Dong, Z. Effects of climate change and human activities on streamflow in the Beichuan River Basin in the northeastern Tibetan Plateau, China. CATENA 2019, 176, 81–93. [Google Scholar] [CrossRef]
- Yang, W.; Long, D.; Bai, P. Impacts of future land cover and climate changes on streamflow in the mostly afforested river basin in North China. J. Hydrol. 2019, 570, 201–219. [Google Scholar] [CrossRef]
- Guo, Y.; Fang, G.; Xu, Y.-P.; Tian, X.; Xie, J. Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East China. Sci. Total Environ. 2019, 710, 136275. [Google Scholar] [CrossRef]
- Shi, X. Study on Distributed Hydrological Simulation and Drought Evaluation Method in Luanhe River Basin Based on SWAT Model; University of Chinese Academy of Sciences: Beijing, China, 2013. [Google Scholar]
- Bai, X.; Zhao, W. Impacts of climate change and anthropogenic stressors on streamflow variations in major river basins in China since 1950. Sci. Total Environ. 2023, 898, 165349. [Google Scholar] [CrossRef]
- Bosshard, T.; Carambia, M.; Goergen, K.; Kotlarski, S.; Krahe, P.; Zappa, M.; Schär, C. Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour. Res. 2013, 49, 1523–1536. [Google Scholar] [CrossRef]
- Jung, I.-W.; Chang, H.; Moradkhani, H. Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection and urban development effects. Hydrol. Earth Syst. Sci. 2011, 15, 617–633. [Google Scholar] [CrossRef]
Station | East Longitude | North Latitude | Year |
---|---|---|---|
Wudu | 104°55′ | 33°23′ | 2005–2020 |
Bikou | 105°15′ | 32°45′ | 2005–2020 |
Category | Data Type | Original Resolution | Source |
---|---|---|---|
Socioeconomic factors | Population | 1 km | http://www.resdc.cn (accessed on 1 April 2024) |
GDP | 1 km | http://www.resdc.cn (accessed on 1 April 2024) | |
Proximity to Settlements | Shpfile | http://www.ngcc.cn/ngcc/ (accessed on 1 April 2024) | |
Proximity to railways | |||
Proximity to highways | |||
Proximity to primary roads | |||
Proximity to secondary roads | |||
Proximity to tertiary roads | |||
Environmental elements | Precipitation | 1 km | http://www.resdc.cn (accessed on 1 April 2024) |
Temperature | 1 km | http://www.resdc.cn (accessed on 1 April 2024) | |
Elevation | 30 m | http://www.giscloud.cn/ (accessed on 1 April 2024) | |
Slope | 30 m | http://www.giscloud.cn/ (accessed on 1 April 2024) | |
Primary rivers and water bodies | Shpfile | http://www.ngcc.cn/ngcc/ (accessed on 1 April 2024) | |
Soil type | 1 km | http://www.ncdc.ac.cn (accessed on 1 April 2024) | |
Soil content | 1 km | https://www.fao.org/home/en/ (accessed on 1 April 2024) | |
Soil organic matter | 1 km | https://www.fao.org/home/en/ (accessed on 1 April 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhou, Y.; Yue, D.; Zhao, Y. Streamflow Variation under Climate Conditions Based on a Soil and Water Assessment Tool Model: A Case Study of the Bailong River Basin. Sustainability 2024, 16, 3901. https://doi.org/10.3390/su16103901
Li S, Zhou Y, Yue D, Zhao Y. Streamflow Variation under Climate Conditions Based on a Soil and Water Assessment Tool Model: A Case Study of the Bailong River Basin. Sustainability. 2024; 16(10):3901. https://doi.org/10.3390/su16103901
Chicago/Turabian StyleLi, Shuangying, Yanyan Zhou, Dongxia Yue, and Yan Zhao. 2024. "Streamflow Variation under Climate Conditions Based on a Soil and Water Assessment Tool Model: A Case Study of the Bailong River Basin" Sustainability 16, no. 10: 3901. https://doi.org/10.3390/su16103901
APA StyleLi, S., Zhou, Y., Yue, D., & Zhao, Y. (2024). Streamflow Variation under Climate Conditions Based on a Soil and Water Assessment Tool Model: A Case Study of the Bailong River Basin. Sustainability, 16(10), 3901. https://doi.org/10.3390/su16103901