Research Hotspots and Trends of Nitrification Inhibitors: A Bibliometric Review from 2004–2023
Abstract
:1. Introduction
2. Bibliometric Analysis
2.1. Data Collection
2.2. Data Visualization
2.3. Publications Outputs
2.4. Country and Institution of the Author
2.5. Prominent Authors and Highly Cited Publications
2.6. Keywords
2.6.1. Keyword Co-Occurrence Analysis
- Cluster A (green)
- Cluster B (red)
- Cluster C (yellow)
- Cluster D (blue)
2.6.2. Burst Detection Analysis
3. The Mechanism and Application of Nitrification Inhibitors
3.1. Classification and Inhibition Mechanism of Nitrification Inhibitors
3.1.1. Hydrocarbon Compounds and Their Derivatives
3.1.2. Sulfur Compounds
3.1.3. Cyanamide Compounds
3.1.4. Nitrogen Heterocyclic Compounds
3.1.5. NO Scavengers
3.1.6. Biological Nitrification Inhibitors
3.1.7. NOB Inhibitors
3.2. Nitrification Inhibitors Commonly Used in Agricultural Production
3.3. Application of Nitrification Inhibitors in Other Fields
3.3.1. Composting
3.3.2. Wastewater Treatment
4. Challenges and Prospects
- Addressing the limitations of current commercial products: Existing commercial nitrification inhibitor products still have limitations, including unstable effects and short duration. Future research should prioritize enhancing the effectiveness of nitrification inhibitors by developing innovative formulations, optimizing processes, and implementing precise management practices. This is essential for enhancing crop yields, lowering fertilizer expenses, and ultimately fostering sustainable agricultural development.
- Delving into the intricate molecular mechanisms of microbial-mediated nitrification: Understanding the molecular mechanisms of microbial-mediated nitrification is crucial for identifying new nitrification inhibitors. This knowledge serves as a foundation for the development of more efficient and specific inhibitors.
- Exploring the biosynthetic pathway of BNIs (Biological Nitrification Inhibitors): In-depth research on the synthesis and secretion of BNIs in plants, along with the understanding of the interaction mechanism between BNIs and soil microorganisms, can improve our understanding and facilitate the development of crop varieties with higher BNI content, as well as optimize agricultural practices. Additionally, insights from BNI research may have the potential to enhance or refine the currently employed chemically synthesized nitrification inhibitors.
- Developing a novel comprehensive system for screening and evaluation: Simplifying the development and testing process of new nitrification inhibitors is crucial for efficiently obtaining potential products on a larger scale. This process may involve steps such as computer-aided design, high-throughput virtual and actual screening, activity assessment of model strains, optimization of structural modifications, environmental and ecotoxicological safety evaluations, and field trials.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The Evolution and Future of Earth’s Nitrogen Cycle. Science 2010, 330, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.N.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seizinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Chadwick, D.R.; Cardenas, L.M.; Dhanoa, M.S.; Donovan, N.; Misselbrook, T.; Williams, J.R.; Thorman, R.E.; McGeough, K.; Watson, C.J.; Bell, M.J.; et al. The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Sci. Total Environ. 2018, 635, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.; Mahmood, A.; Chen, Z.; Li, Q.; Zeng, X.; Liu, Y.; Li, Y. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Corrochano-Monsalve, M.; Huérfano, X.; Menéndez, S.; Torralbo, F.; Fuertes-Mendizábal, T.; Estavillo, J.M.; González-Murua, C. Relationship between tillage management and DMPSA nitrification inhibitor efficiency. Sci. Total Environ. 2020, 718, 134748. [Google Scholar] [CrossRef] [PubMed]
- Dawar, K.; Khan, A.; Sardar, K.; Fahad, S.; Saud, S.; Datta, R.; Danish, S. Effects of the nitrification inhibitor nitrapyrin and mulch on N2O emission and fertilizer use efficiency using 15N tracing techniques. Sci. Total Environ. 2021, 757, 143739. [Google Scholar] [CrossRef]
- Woodward, E.E.; Edwards, T.M.; Givens, C.E.; Kolpin, D.W.; Hladik, M.L. Widespread Use of the Nitrification Inhibitor Nitrapyrin: Assessing Benefits and Costs to Agriculture, Ecosystems, and Environmental Health. Environ. Sci. Technol. 2021, 55, 1345–1353. [Google Scholar] [CrossRef]
- Wang, X.; Bai, J.; Xie, T.; Wang, W.; Yin, S.; Wang, D. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review. Ecotoxicol. Environ. Saf. 2021, 220, 112338. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland: A review. J. Soils Sediments 2016, 16, 1401–1420. [Google Scholar] [CrossRef]
- Byrne, M.P.; Tobin, J.T.; Forrestal, P.J.; Danaher, M.; Nkwonta, C.G.; Richards, K.G.; Cummins, E.; Hogan, S.A.; O’Callaghan, T.F. Urease and Nitrification Inhibitors—As Mitigation Tools for Greenhouse Gas Emissions in Sustainable Dairy Systems: A Review. Sustainability 2020, 12, 6018. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Bian, R.; He, W.; Liu, Y.; Shen, G.; Xie, H.; Feng, Y. Bibliometric analysis of biochar-based organic fertilizers in the past 15 years: Focus on ammonia volatilization and greenhouse gas emissions during composting. Environ. Res. 2024, 243, 117853. [Google Scholar] [CrossRef] [PubMed]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agr. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Pauna, V.H.; Buonocore, E.; Renzi, M.; Russo, G.F.; Franzese, P.P. The issue of microplastics in marine ecosystems: A bibliometric network analysis. Mar. Pollut. Bull. 2019, 149, 110612. [Google Scholar] [CrossRef]
- Mao, G.; Huang, N.; Chen, L.; Wang, H. Research on biomass energy and environment from the past to the future: A bibliometric analysis. Sci. Total Environ. 2018, 635, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Chang. Biol. 2009, 16, 1837–1846. [Google Scholar] [CrossRef]
- Zaman, M.; Saggar, S.; Blennerhassett, J.D.; Singh, J. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biol. Biochem. 2009, 41, 1270–1280. [Google Scholar] [CrossRef]
- Di, H.; Cameron, K.C.; Sherlock, R.R. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions. Soil Use Manag. 2007, 23, 1–9. [Google Scholar] [CrossRef]
- Waltman, L.; Jan van Eck, N.; Noyons, E. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Scheer, C.; Rowlings, D.; Antille, D.L.; Migliorati, M.D.A.; Fuchs, K.; Grace, P. Improving nitrogen use efficiency in irrigated cotton production. Nutr. Cycling Agroecosyst. 2022, 125, 95–106. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Wang, S.; Zhao, X. Legume cover with optimal nitrogen management and nitrification inhibitor enhanced net ecosystem economic benefits of peach orchard. Sci. Total Environ. 2023, 873, 162141. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Shen, D.; Xie, J.; Tang, C.; Jin, B.; Wu, S. Mechanism of urea decomposition catalyzed by Sporosarcina pasteurii urease based on quantum chemical calculations. Mol. Simul. 2021, 47, 1335–1348. [Google Scholar] [CrossRef]
- Cantarella, H.; Otto, R.; Soares, J.R.; Silva, A.G.B. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef]
- Lam, S.K.; Suter, H.; Bai, M.; Walker, C.K.; Davies, R.O.; Mosier, A.R.; Chen, D. Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture. Sci. Total Environ. 2018, 644, 1531–1535. [Google Scholar] [CrossRef]
- Lan, T.; Huang, Y.; Song, X.; Deng, O.; Zhou, W.; Luo, L.; Tang, X.; Zeng, J.; Chen, G.; Gao, X. Biological nitrification inhibitor co-application with urease inhibitor or biochar yield different synergistic interaction effects on NH3 volatilization, N leaching, and N use efficiency in a calcareous soil under rice cropping. Environ. Pollut. 2022, 293, 118499. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Y.; Zhu, J.; Wang, C.; Zhu, Y.; Tian, Q. The New Developments Made in the Autotrophic and Heterotrophic Ammonia Oxidation. IOP Conf. Ser. Earth Environ. Sci. 2018, 178, 012016. [Google Scholar] [CrossRef]
- Molina, V.; Dorador, C.; Fernandez, C.; Bristow, L.A.; Eissler, Y.; Hengst, M.; Hernández, K.L.; Olsen, L.M.; Harrod, C.; Marchant, F.; et al. The activity of nitrifying microorganisms in a high-altitude Andean wetland. FEMS Microbiol. Ecol. 2018, 94, 62. [Google Scholar] [CrossRef]
- Han, S.; Luo, X.; Tan, S.; Wang, J.; Chen, W.; Huang, Q. Soil aggregates impact nitrifying microorganisms in a vertisol under diverse fertilization regimes. Eur. J. Soil Sci. 2019, 71, 536–547. [Google Scholar] [CrossRef]
- Ayiti, O.E.; Ayangbenro, A.S.; Babalola, O.O. Relationship between nitrifying microorganisms and other microorganisms residing in the maize rhizosphere. Arch. Microbiol. 2022, 204, 246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ma, Y.; Yang, X.; Xu, X.; Ni, B.; Li, R.; Meng, F. Investigation of Soil Microbial Communities Involved in N Cycling as Affected by the Long-Term Use of the N Stabilizers DMPP and NBPT. Agronomy 2023, 13, 659. [Google Scholar] [CrossRef]
- Kolovou, M.; Panagiotou, D.; Süße, L.; Loiseleur, O.; Williams, S.J.; Karpouzas, D.G.; Papadopoulou, E.S. Assessing the activity of different plant-derived molecules and potential biological nitrification inhibitors on a range of soil ammonia- and nitrite- oxidizing strains. Appl. Environ. Microbiol. 2023, 89, e01380-23. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Ammonia oxidisers and their inhibition to reduce nitrogen losses in grazed grassland: A review. J. R. Soc. N. Z. 2017, 48, 127–142. [Google Scholar] [CrossRef]
- Thapa, R.B.; Chatterjee, A.; Awale, R.; McGranahan, D.A.; Daigh, A.L.M. Effect of Enhanced Efficiency Fertilizers on Nitrous Oxide Emissions and Crop Yields: A Meta-analysis. Soil Sci. Soc. Am. J. 2016, 80, 1121–1134. [Google Scholar] [CrossRef]
- Ray, A.; Forrestal, P.J.; Nkwonta, C.; Rahman, N.; Byrne, P.; Danaher, M.; Richards, K.G.; Hogan, S.A.; Cummins, E. Modelling potential human exposure to the nitrification inhibitor dicyandiamide through the environment-food pathway. Environ. Impact Assess. Rev. 2023, 101, 107082. [Google Scholar] [CrossRef]
- Menéndez, S.; Barrena, I.; Setién, I.; González-Murua, C.; Estavillo, J.M. Efficiency of nitrification inhibitor DMPP to reduce nitrous oxide emissions under different temperature and moisture conditions. Soil Biol. Biochem. 2012, 53, 82–89. [Google Scholar] [CrossRef]
- Chiodi, A.; Donnellan, T.; Breen, J.; Deane, P.; Hanrahan, K.; Gargiulo, M.; Ó Gallachóir, B.P. Integrating agriculture and energy to assess GHG emissions reduction: A methodological approach. Clim. Policy 2015, 16, 215–236. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.M.; Janzen, H.H.; Kumar, P.; McCarl, B.A.; Ogle, S.M.; O’Mara, F.P.; Rice, C.W.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 2007, 363, 789–813. [Google Scholar] [CrossRef]
- Friedl, J.; Warner, D.; Wang, W.; Rowlings, D.; Grace, P.R.; Scheer, C. Strategies for mitigating N2O and N2 emissions from an intensive sugarcane cropping system. Nutr. Cycling Agroecosyst. 2023, 125, 295–308. [Google Scholar] [CrossRef]
- Guardia, G.; Cangani, M.T.; Sanz-Cobeña, A.; de Lucas, J.; Vallejo, A. Management of pig manure to mitigate NO and yield-scaled N2O emissions in an irrigated Mediterranean crop. Agric. Ecosyst. Environ. 2017, 238, 55–66. [Google Scholar] [CrossRef]
- Lyu, X.; Wang, T.; Ma, Z.; Zhao, C.; Siddique, K.H.M.; Ju, X. Enhanced efficiency nitrogen fertilizers maintain yields and mitigate global warming potential in an intensified spring wheat system. Field Crops Res. 2019, 244, 107624. [Google Scholar] [CrossRef]
- Vilarrasa-Nogué, M.; Teira-Esmatges, M.R.; Pascual, M.; Mir, J.M.V.; Rufat, J. Effect of N dose, fertilisation duration and application of a nitrification inhibitor on GHG emissions from a peach orchard. Sci. Total Environ. 2020, 699, 134042. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Adhya, T.K. Effects of organic nitrification inhibitors on methane and nitrous oxide emission from tropical rice paddy. Atmos. Environ. 2014, 92, 533–545. [Google Scholar] [CrossRef]
- Melisa, M.; Putra, E.T.S.; Hanudin, E. Effects of Urease Inhibitor and Nitrification Inhibitor on the Nitrogen Losses, Physiological Activity, and Oil Palm Yield on Red-Yellow Podzolic. Ilmu Pertan. (Agric. Sci.) 2019, 3, 3. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Sha, Z.; Li, S.; Yang, Q. Adding nitrification inhibitors to N fertilisers induces rhizosphere acidification and enhances P acquisition: A meta-analysis. Eur. J. Agron. 2023, 151, 126967. [Google Scholar] [CrossRef]
- Francis, C.A.; Roberts, K.; Beman, J.M.; Santoro, A.E.; Oakley, B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 2005, 102, 14683–14688. [Google Scholar] [CrossRef] [PubMed]
- van Kessel, M.A.H.J.; Speth, D.R.; Albertsen, M.; Nielsen, P.H.; Op den Camp, H.J.M.; Kartal, B.; Jetten, M.S.M.; Lücker, S. Complete nitrification by a single microorganism. Nature 2015, 528, 555–559. [Google Scholar] [CrossRef]
- Beeckman, F.; Motte, H.; Beeckman, T. Nitrification in agricultural soils: Impact, actors and mitigation. Curr. Opin. Biotechnol. 2018, 50, 166–173. [Google Scholar] [CrossRef]
- Wright, C.; Schatteman, A.; Crombie, A.T.; Murrell, J.C.; Lehtovirta-Morley, L.E. Inhibition of Ammonia Monooxygenase from Ammonia-Oxidizing Archaea by Linear and Aromatic Alkynes. Appl. Environ. Microbiol. 2020, 86, e02388-19. [Google Scholar] [CrossRef] [PubMed]
- Sayavedra-Soto, L.A.; Hommes, N.G.; Alzerreca, J.J.; Arp, D.J.; Norton, J.M.; Klotz, M.G. Transcription of the amoC, amoA and amoB genes in Nitrosomonas europaea and Nitrosospira sp. NpAV. FEMS Microbiol. Lett. 1998, 167, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chen, X.; Wei, W.; Liu, Y.; Wang, D.; Ni, B. A Critical Review on Nitrous Oxide Production by Ammonia-Oxidizing Archaea. Environ. Sci. Technol. 2020, 54, 9175–9190. [Google Scholar] [CrossRef] [PubMed]
- Tolar, B.B.; Herrmann, J.; Bargar, J.R.; van den Bedem, H.; Wakatsuki, S.; Francis, C.A. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea. Environ. Microbiol. Rep. 2017, 9, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Daims, H.; Лебедева, E.V.; Pjevac, P.; Han, P.; Herbold, C.W.; Albertsen, M.; Jehmlich, N.; Palatinszky, M.; Vierheilig, J.; Булаев, А.Г.; et al. Complete nitrification by Nitrospira bacteria. Nature 2015, 528, 504–509. [Google Scholar] [CrossRef]
- Caranto, J.D.; Lancaster, K.M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc. Natl. Acad. Sci USA 2017, 114, 8217–8222. [Google Scholar] [CrossRef] [PubMed]
- Maalcke, W.J.; Dietl, A.; Marritt, S.J.; Butt, J.N.; Jetten, M.S.M.; Keltjens, J.T.; Barends, T.R.M.; Kartal, B. Structural Basis of Biological NO Generation by Octaheme Oxidoreductases. J. Biol. Chem. 2014, 289, 1228–1242. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, J.A.; Stieglmeier, M.; Schleper, C.; Klotz, M.G.; Stein, L.Y. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J. 2016, 10, 1836–1845. [Google Scholar] [CrossRef] [PubMed]
- Parro, V.; Puente-Sánchez, F.; Cabrol, N.A.; Gallardo-Carreño, I.; Moreno-Paz, M.; Blanco, Y.; García-Villadangos, M.; Tambley, C.; Tilot, V.; Thompson, C.; et al. Microbiology and Nitrogen Cycle in the Benthic Sediments of a Glacial Oligotrophic Deep Andean Lake as Analog of Ancient Martian Lake-Beds. Front. Microbiol. 2019, 10, 929. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, J.; Cui, Y.; Li, D.; Dai, H.; Guo, Y.; Li, Z.; Zhang, H.; Zhao, M. Metagenomics insights into the selective inhibition of NOB and comammox by phenacetin: Transcriptional activity, nitrogen metabolism and mechanistic understanding. Sci. Total Environ. 2022, 803, 150068. [Google Scholar] [CrossRef]
- Gilch, S.; Vogel, M.; Lorenz, M.; Meyer, O.; Schmidt, I. Interaction of the mechanism-based inactivator acetylene with ammonia monooxygenase of Nitrosomonas europaea. Microbiology 2009, 155, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Dong, Z.; Wang, Z.; Xiao, L.; Zhu, B. The contributions of ammonia oxidizing bacteria and archaea to nitrification-dependent N2O emission in alkaline and neutral purple soils. Sci. Rep. 2022, 12, 19928. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, Z.; Shi, Y.; Chen, L.; Song, Y.; Yang, J. Inhibitory Effects of Aromatic Compounds on Soil Nitrification. Pedosphere 2010, 20, 326–333. [Google Scholar] [CrossRef]
- Lehtovirta-Morley, L.E.; Verhamme, D.T.; Nicol, G.W.; Prosser, J.I. Effect of nitrification inhibitors on the growth and activity of Nitrosotalea devanaterra in culture and soil. Soil Biol. Biochem. 2013, 62, 129–133. [Google Scholar] [CrossRef]
- Shen, T.-M.; Stieglmeier, M.; Dai, J.; Urich, T.; Schleper, C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol. Lett. 2013, 344, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Amberger, A. Research on dicyandiamide as a nitrification inhibitor and future outlook. Commun. Soil Sci. Plant Anal. 1989, 20, 1933–1955. [Google Scholar] [CrossRef]
- Yildirim, S.C.; Walker, R.; Roessner, U.; Wille, U. Assessing the Efficacy, Acute Toxicity, and Binding Modes of the Agricultural Nitrification Inhibitors 3,4-Dimethyl-1H-pyrazole (DMP) and Dicyandiamide (DCD) with Nitrosomonas europaea. ACS Agric. Sci. Technol. 2023, 3, 222–231. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.; Ma, S.; Zheng, X.; Wang, Z.; Lu, C. Effects of commonly used nitrification inhibitors-dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin-on soil nitrogen dynamics and nitrifiers in three typical paddy soils. Geoderma 2020, 380, 114637. [Google Scholar] [CrossRef]
- McCarty, G.W.; Bremner, J.M. Inhibition of nitrification in soil by heterocyclic nitrogen compounds. Biol. Fert. Soils 1989, 8, 204–211. [Google Scholar] [CrossRef]
- Martens-Habbena, W.; Qin, W.; Horak, R.E.A.; Urakawa, H.; Schauer, A.J.; Moffett, J.W.; Armbrust, E.V.; Ingalls, A.E.; Devol, A.H.; Stahl, D.A. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ. Microbiol. 2015, 17, 2261–2274. [Google Scholar] [CrossRef]
- Sauder, L.A.; Ross, A.A.; Neufeld, J.D. Nitric oxide scavengers differentially inhibit ammonia oxidation in ammonia-oxidizing archaea and bacteria. FEMS Microbiol. Lett. 2016, 363, 52. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, G.V.; Ito, O.; Sahrawat, K.L.; Berry, W.L.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rondón, M.A.; Rao, I.M. Scope and Strategies for Regulation of Nitrification in Agricultural Systems-Challenges and Opportunities. Crit. Rev. Plant Sci. 2006, 25, 303–335. [Google Scholar] [CrossRef]
- Sun, L.; Lu, Y.; Yu, F.; Kronzucker, H.J.; Shi, W. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol. 2016, 212, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Otaka, J.; Subbarao, G.V.; Ono, H.; Yoshihashi, T. Biological nitrification inhibition in maize-isolation and identification of hydrophobic inhibitors from root exudates. Biol. Fert. Soils 2021, 58, 251–264. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Nakahara, K.; Ishikawa, T.; Ono, H.; Yoshida, M.; Yoshihashi, T.; Zhu, Y.; Zakir, H.A.; Deshpande, S.; Hash, C.T.; et al. Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 2012, 366, 243–259. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef]
- Wendeborn, S. The Chemistry, Biology, and Modulation of Ammonium Nitrification in Soil. Angew. Chem. 2020, 59, 2182–2202. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhao, Y.; Jiang, H.; Deng, X.; Wang, F.; Tian, M. Rapid Start-Up and Stable Maintenance of Partial Nitrification Process Through Different Inhibitor Addition and Real-Time Aeration Control. Environ. Eng. Sci. 2021, 39, 3. [Google Scholar] [CrossRef]
- Owaes, M.; Gani, K.M.; Kumari, S.; Seyam, M.; Bux, F. Achieving partial nitrification by harnessing basic hydrolysis of sulphide salts amid high dissolved oxygen conditions. J. Environ. Chem. Eng. 2023, 11, 111000. [Google Scholar] [CrossRef]
- Xu, G.; Xu, X.; Yang, F.; Liu, S.; Gao, Y. Partial nitrification adjusted by hydroxylamine in aerobic granules under high DO and ambient temperature and subsequent Anammox for low C/N wastewater treatment. Chem. Eng. J. 2012, 213, 338–345. [Google Scholar] [CrossRef]
- Zaman, M.; Ahmed, A.; Santoro, D.; Walton, J.; Nakhla, G. Suppression of nitrite oxidizing bacteria by hydrogen peroxide for energy reduction in municipal wastewater treatment. J. Environ. Chem. Eng. 2023, 11, 110782. [Google Scholar] [CrossRef]
- Sun, D.; Tang, X.; Li, J.; Liu, M.; Hou, L.; Yin, G.; Chen, C.; Zhao, Q.; Klümpe, U.; Han, P. Chlorate as a comammox Nitrospira specific inhibitor reveals nitrification and N2O production activity in coastal wetland. Soil Biol. Biochem. 2022, 173, 108782. [Google Scholar] [CrossRef]
- Duncan, E.G.; O’Sullivan, C.A.; Simonsen, A.K.; Roper, M.M.; Treble, K.; Whisson, K. A composite guanyl thiourea (GTU), dicyandiamide (DCD) inhibitor improves the efficacy of nitrification inhibition in soil. Chemosphere 2016, 163, 1–5. [Google Scholar] [CrossRef]
- Wolt, J.D. Nitrapyrin Behavior in Soils and Environmental Considerations. J. Environ. Qual. 2000, 29, 367–379. [Google Scholar] [CrossRef]
- Ren, B.; Ma, Z.; Zhao, B.; Liu, P.; Zhang, J. Influences of split application and nitrification inhibitor on nitrogen losses, grain yield, and net income for summer maize production. Front. Plant Sci. 2022, 13, 982373. [Google Scholar] [CrossRef] [PubMed]
- Casali, L.; Broll, V.; Ciurili, S.; Braga, D.; Emmerling, F.; Gepioni, F. Facilitating Nitrification Inhibition through Green, Mechanochemical Synthesis of a Novel Nitrapyrin Complex. Cryst. Growth Des. 2021, 21, 5792–5799. [Google Scholar] [CrossRef]
- Cerrato, M.E.; Blackmer, A.M. Effects of Nitrapyrin on Corn Yields and Recovery of Ammonium-N at 18 Site-Years in Iowa. J. Prod. Agric. 1990, 3, 513–521. [Google Scholar] [CrossRef]
- Minet, E.; Ledgard, S.; Grant, J.; Murphy, J.; Król, D.; Lanigan, G.; Luo, J.; Richards, K.G. Feeding dicyandiamide (DCD) to cattle: An effective method to reduce N2O emissions from urine patches in a heavy-textured soil under temperate climatic conditions. Sci. Total Environ. 2018, 615, 1319–1331. [Google Scholar] [CrossRef]
- O’Connor, P.J.; Minogue, D.; Lewis, E.; Lynch, M.B.; Hennessy, D. Applying urine collected from non-lactating dairy cows dosed with dicyandiamide to lysimeters and grass plots: Effects on nitrous oxide emissions, nitrate leaching and herbage production. J. Agric. Sci. 2015, 154, 674–688. [Google Scholar] [CrossRef]
- Taggert, B.I.; Walker, C.K.; Chen, D.; Wille, U. Substituted 1,2,3-triazoles: A new class of nitrification inhibitors. Sci. Rep. 2021, 11, 14980. [Google Scholar] [CrossRef]
- Pasda, G.; Hähndel, R.; Zerulla, W. Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. Biol. Fert. Soils 2001, 34, 85–97. [Google Scholar] [CrossRef]
- Tufail, M.A.; Irfan, M.; Umar, W.; Wakeel, A.; Schmitz. R.A. Mediation of gaseous emissions and improving plant productivity by DCD and DMPP nitrification inhibitors: Meta-analysis of last three decades. Environ. Sci. Pollut. Res. 2023, 30, 64719–64735. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.K.; Suter, H.; Davies, R.O.; Bai, M.; Mosier, A.R.; Sun, J.; Chen, D. Direct and indirect greenhouse gas emissions from two intensive vegetable farms applied with a nitrification inhibitor. Soil Biol. Biochem. 2018, 116, 48–51. [Google Scholar] [CrossRef]
- Martínez-Alcántara, B.; Quiñones, A.; Polo, C.; Primo-Millo, E.; Legaz, F. Use of Nitrification Inhibitor DMPP to Improve Nitrogen Uptake Efficiency in Citrus Trees. J. Agric. Sci. 2013, 5, 2. [Google Scholar] [CrossRef]
- Wang, F.; Ge, S.; Lyu, M.; Liu, J.; Li, M.; Jiang, Y.; Xu, X.; Xing, Y.; Cao, H.; Zhu, Z.; et al. DMPP reduces nitrogen fertilizer application rate, improves fruit quality, and reduces environmental cost of intensive apple production in China. Sci. Total Environ. 2022, 802, 149813. [Google Scholar] [CrossRef] [PubMed]
- Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.O.; Iroh, I.N.; Ezeogu, L.I. Composting technology in waste stabilization: On the methods, challenges and future prospects. J. Environ. Manag. 2017, 190, 140–157. [Google Scholar] [CrossRef]
- Cáceres, R.; Malińska, K.; Marfà, O. Nitrification within composting: A review. Waste Manag. 2018, 72, 119–137. [Google Scholar] [CrossRef]
- Hoang, H.-G.; Thuy, B.T.P.; Lin, C.; Vo, D.-V.N.; Tran, H.-T.; Bahari, M.B.; Le, V.G.; Vu, C.T. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere 2022, 300, 134514. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.V.; Higarashi, M.M.; da Silveira Nicoloso, R.; Coldebella, A. Use of Dicyandiamide to Reduce Nitrogen Loss and Nitrous Oxide Emission During Mechanically Turned Co-composting of Swine Slurry with Sawdust. Waste Biomass Valorization 2019, 11, 2567–2579. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, X.; Zhang, M.; Misselbrook, T.; Bai, Z.; Ma, L. Nitrifier denitrification dominates nitrous oxide production in composting and can be inhibited by a bioelectrochemical nitrification inhibitor. Bioresour. Technol. 2021, 341, 125851. [Google Scholar] [CrossRef]
- Jiang, J.; Kang, K.; Wang, C.; Sun, X.; Dang, S.; Wang, N.; Wang, Y.; Zhang, C.; Yan, G.; Li, Y. Evaluation of total greenhouse gas emissions during sewage sludge composting by the different dicyandiamide added forms: Mixing, surface broadcasting, and their combination. Waste Manag. 2018, 81, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Ma, X.; Tang, Q.; Yang, J.; Li, G.; Schuchardt, F. Combined use of nitrification inhibitor and struvite crystallization to reduce the NH3 and N2O emissions during composting. Bioresour. Technol. 2016, 217, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Yu, D.; Wang, Y.; Zhang, X.; Dong, W.; Zhang, X.; Guo, F.; Li, Y.; Zhang, C.; Yan, G. Use of additives in composting informed by experience from agriculture: Effects of nitrogen fertilizer synergists on gaseous nitrogen emissions and corresponding genes (amoA and nirS). Bioresour. Technol. 2021, 319, 124127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sui, Q.; Li, K.; Chen, M.; Tong, J.; Qi, L.; Wei, Y. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting. Environ. Sci. Pollut. Res. 2015, 23, 1324–1334. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, Y.; Chen, S.; Li, D.; Tang, H.; Chadwick, D.R.; Li, S.; Li, W.; Li, G. Effects of phosphogypsum, superphosphate, and dicyandiamide on gaseous emission and compost quality during sewage sludge composting. Bioresour. Technol. 2018, 270, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Kosgey, K.; Zungu, P.V.; Bux, F.; Kumari, S. Biological nitrogen removal from low carbon wastewater. Front. Microbiol. 2022, 13, 968812. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Qiu, S.; Bi, Q.; Chen, Z.; Zhang, X.; Ge, S. Start-up and maintenance of indigenous microalgae-bacteria consortium treating toilet wastewater through partial nitrification and nitrite-type denitrification. Water Res. 2023, 239, 120029. [Google Scholar] [CrossRef] [PubMed]
- Wade, M.J.; Wolkowicz, G.S.K. Bifurcation Analysis of an Impulsive System Describing Partial Nitritation and Anammox in a Hybrid Reactor. Environ. Sci. Technol. 2021, 55, 2099–2109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, M.; Duan, H.; Yuan, Z.; Hu, S. A 20-Year Journey of Partial Nitritation and Anammox (PN/A): From Sidestream toward Mainstream. Environ. Sci. Technol. 2022, 56, 7522–7531. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, J.; Wu, Z.; Li, Z.; Zhang, Y.; Zhang, H. Work along both lines: The p-chloro-m-cresol achieved stable and long-term partial nitrification and inhibited the enrichment of resistance genes. Chem. Eng. J. 2023, 460, 141711. [Google Scholar] [CrossRef]
- Kim, S.-S. Effective partial nitrification and denitrification via nitrite with inhibitor removal basin for high strength ammonium wastewater treatment. Korean J. Chem. Eng. 2014, 32, 303–307. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, J.; Zhang, D.; Dai, H.; Zhao, Y.; Li, D.; Cui, Y.; Duan, W.; Wu, Z. Achieving stable and long-term partial nitrification of domestic wastewater by side-stream sludge treatment using a novel nitrite oxidation inhibitor chloroxylenol. Bioresour. Technol. 2021, 342, 125999. [Google Scholar] [CrossRef] [PubMed]
- Saud, S.; Wang, D.; Fahad, S. Improved Nitrogen Use Efficiency and Greenhouse Gas Emissions in Agricultural Soils as Producers of Biological Nitrification Inhibitors. Front. Plant Sci. 2022, 13, 854195. [Google Scholar] [CrossRef] [PubMed]
- Beeckman, F.; Drozdzecki, A.; De Knijf, A.; Corrochano-Monsalve, M.; Bodé, S.; Blom, P.; Goeminne, G.; González-Murua, C.; Lücker, S.; Boeckx, P.; et al. Drug discovery-based approach identifies new nitrification inhibitors. J. Environ. Manag. 2023, 346, 118996. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cai, Z.; Zhang, J.; Müller, C. The controlling factors and the role of soil heterotrophic nitrification from a global review. Appl. Soil Ecol. 2023, 182, 104698. [Google Scholar] [CrossRef]
- Zhu, T.; Meng, T.; Zhang, J.; Zhong, W.; Müller, C.; Cai, Z. Fungi-dominant heterotrophic nitrification in a subtropical forest soil of China. J. Soils Sediments 2014, 15, 705–709. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Müller, C.; Cai, Z. The Mechanisms of High N2O Emissions from Greenhouse Vegetable Field Soils. Clean-Soil Air Water 2017, 45, 1600210. [Google Scholar] [CrossRef]
- Li, R.; Suter, H.; Hayden, H.L.; He, J.; Chen, D. Nitrate production is mainly heterotrophic in an acid dairy soil with high organic content in Australia. Biol. Fert. Soils 2015, 51, 891–896. [Google Scholar] [CrossRef]
- Martikainen, P.J. Heterotrophic nitrification—An eternal mystery in the nitrogen cycle. Soil Biol. Biochem. 2022, 168, 108611. [Google Scholar] [CrossRef]
Rank | Journal | Index | IF | JCI | TC | NP | ACP | PY Start | ||
---|---|---|---|---|---|---|---|---|---|---|
h | g | m | ||||||||
1 | Agriculture, Ecosystems & Environment | 45 | 75 | 2.250 | 6.6 | 1.71 | 5976 | 108 | 55.33 | 2005 |
2 | Science of the Total Environment | 36 | 56 | 3.000 | 9.8 | 1.68 | 3781 | 123 | 30.74 | 2013 |
3 | Soil Biology & Biochemistry | 32 | 56 | 1.524 | 9.7 | 2.02 | 3439 | 56 | 61.41 | 2004 |
4 | Biology and Fertility of Soils | 27 | 44 | 1.286 | 6.5 | 1.35 | 2066 | 62 | 33.32 | 2004 |
5 | Plant and Soil | 23 | 42 | 1.150 | 4.9 | 1.27 | 1793 | 48 | 37.35 | 2005 |
6 | Agronomy Journal | 18 | 31 | 0.900 | 2.1 | 0.78 | 1058 | 48 | 22.04 | 2005 |
7 | Field Crops Research | 18 | 21 | 1.385 | 5.8 | 1.96 | 1579 | 21 | 75.19 | 2012 |
8 | Chemosphere | 17 | 21 | 0.850 | 8.8 | 1.55 | 829 | 21 | 39.48 | 2005 |
9 | Geoderma | 17 | 27 | 1.417 | 6.1 | 1.55 | 774 | 31 | 24.97 | 2013 |
10 | Journal of Soils and Sediments | 17 | 30 | 1.133 | 3.6 | 0.72 | 937 | 40 | 23.43 | 2010 |
Rank | Author | Institution | Index | TC | NP | ACP | PY Start | ||
---|---|---|---|---|---|---|---|---|---|
h | g | m | |||||||
1 | Di, Hong J. | Lincoln University—New Zealand | 35 | 66 | 1.667 | 4482 | 80 | 56.03 | 2004 |
2 | Cameron, Keith C. | Lincoln University—New Zealand | 32 | 63 | 1.524 | 4099 | 70 | 58.56 | 2004 |
3 | De Klein, Cecile A. M. | AgResearch—New Zealand | 23 | 29 | 1.15 | 1271 | 29 | 43.83 | 2005 |
4 | He Jizheng | Fujian Normal University | 21 | 32 | 1.313 | 2285 | 32 | 71.41 | 2009 |
5 | Vallejo, Antonio | Universidad Politécnica de Madrid | 21 | 30 | 1.05 | 1864 | 30 | 62.13 | 2005 |
6 | Chen, Deli | Tsinghua University | 19 | 33 | 1.267 | 1757 | 33 | 53.24 | 2010 |
7 | Saggar, Surinder | Landcare Research—New Zealand | 19 | 33 | 1.118 | 1373 | 33 | 41.61 | 2008 |
8 | Zaman, Mohammad | Food & Agriculture Organization of the United Nations (FAO) | 19 | 34 | 1.118 | 1550 | 34 | 45.59 | 2008 |
9 | Chadwick, David R. | Bangor University | 18 | 27 | 1.200 | 916 | 27 | 33.93 | 2010 |
10 | Ledgard, Stewart F. | AgResearch—New Zealand | 18 | 21 | 0.900 | 806 | 21 | 38.38 | 2005 |
Rank | Author | Journal | Year | DOI | TLC | Authors Keywords |
---|---|---|---|---|---|---|
1 | Akiyama, Hiroko | Global Change Biology | 2010 | 10.1111/j.1365-2486.2009.02031.x | 170 | Controlled-release fertilizer, nitrification inhibitor, polymer-coated fertilizers, slow-release fertilizer, urease inhibitor |
2 | Zaman, Mohammad | Soil Biology & Biochemistry | 2009 | 10.1016/j.soilbio.2009.03.011 | 140 | Agrotain, DCD, inhibitors, mitigation, NH3, N2O, pasture, pH, urine |
3 | Di, Hong J. | Soil Use and Management | 2007 | 10.1111/j.1475-2743.2006.00057.x | 120 | Nitrous oxide, greenhouse gas, mitigation, grassland, nitrification inhibitor, dicyandiamide |
4 | Kelliher, Francis M. | Soil Biology & Biochemistry | 2008 | 10.1016/j.soilbio.2008.03.013 | 102 | Dicyandiamide (DCD), DCD degradation, Temperature, nitrous oxide, nitrification inhibitor, bovine urine |
5 | Di, Hong J. | Agriculture, Ecosystems & Environment | 2005 | 10.1016/j.agee.2005.03.006 | 99 | Nitrate leaching, pasture yield, dairy pastures, water quality, environment, soil, nitrification inhibitor, dicyandiamide, cation leaching |
6 | Menéndez, Sergio | Soil Biology & Biochemistry | 2012 | 10.1016/j.soilbio.2012.04.026 | 93 | Carbon dioxide (CO2), 3,4-Dimethylpyrazole phosphate (DMPP), methane (CH4), nitrification inhibitor, Nitrous oxide (N2O), water-filled pore space (WFPS) |
7 | Zaman, Mohammad | Agriculture, Ecosystems & Environment | 2010 | 10.1016/j.agee.2009.07.010 | 89 | Agrotain, DCD, inhibitors, mitigation, nitrogen, NH3, N2O, NO3-, pasture, urine |
8 | Di, Hong J. | Australia Journal of Soil Research | 2004 | 10.1071/SR04050 | 87 | Nitrogen, nitrate, leaching, pastures, dairying, water quality |
9 | Hatch, D. | Biology and Fertility of Soils | 2005 | 10.1007/s00374-005-0836-9 | 80 | Nitrous oxide, slurry, greenhouse gases, air quality, nitrification inhibitor |
10 | Zaman, Mohammad | Biology and Fertility of Soils | 2008 | 10.1007/s00374-007-0252-4 | 79 | Urea, urease inhibitor (NBPT), nitrification inhibitor (DCD), NH3 and N2O emissions, NO3- leaching, pasture |
Cluster A | NC | APY | AC | Cluster B | NC | APY | AC | Cluster C | NC | APY | AC | Cluster D | NC | APY | AC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
nitrification inhibitor | 1192 | 2017.07 | 28.87 | DMPP | 430 | 2017.99 | 26.49 | DCD | 583 | 2016.25 | 32.85 | N2O emission | 849 | 2017.56 | 32.16 |
soil | 497 | 2016.68 | 28.13 | nitrate | 247 | 2016.11 | 28.63 | temperature | 150 | 2016.10 | 26.25 | N2O | 468 | 2017.27 | 34.38 |
fertilizer | 281 | 2016.87 | 32.36 | nitrification | 227 | 2016.42 | 39.42 | grassland | 133 | 2015.71 | 33.97 | greenhouse gas emission | 312 | 2018.20 | 32.89 |
ammonia volatilization | 228 | 2017.82 | 32.46 | nitrogen | 202 | 2015.91 | 29.99 | agriculture | 130 | 2015.41 | 35.91 | denitrification | 271 | 2016.63 | 31.67 |
yield | 223 | 2018.11 | 19.99 | AOB | 188 | 2017.92 | 41.88 | pasture | 81 | 2014.70 | 34.94 | agricultural soil | 138 | 2018.73 | 28.39 |
oxide emission | 219 | 2018.22 | 33.88 | community structure | 149 | 2018.74 | 31.11 | urine | 78 | 2014.56 | 36.09 | NO | 126 | 2016.96 | 46.62 |
urea | 158 | 2017.22 | 27.47 | archaea | 127 | 2018.06 | 27.69 | urine patch | 69 | 2016.71 | 38.13 | ammonia | 124 | 2017.32 | 35.57 |
urease inhibitor | 153 | 2018.74 | 29.93 | oxidation | 127 | 2016.04 | 39.09 | microbial biomass | 65 | 2016.75 | 38.97 | mitigation | 124 | 2015.34 | 51.65 |
management | 152 | 2017.49 | 22.93 | AOA | 112 | 2018.09 | 39.07 | cattle urine | 63 | 2016.25 | 33.24 | CO2 | 110 | 2017.27 | 33.78 |
loss | 138 | 2016.57 | 31.28 | ammonium | 112 | 2015.68 | 17.40 | nitrate leaching | 63 | 2015.57 | 31.75 | greenhouse gas | 95 | 2017.08 | 38.06 |
nitrogen use efficiency | 134 | 2018.31 | 32.65 | bacteria | 103 | 2018.17 | 24.51 | grazed grassland | 57 | 2015.37 | 59.33 | fluxe | 88 | 2016.09 | 36.05 |
emission | 125 | 2018.47 | 25.66 | growth | 88 | 2016.90 | 23.34 | animal urine | 44 | 2014.77 | 50.39 | impact | 87 | 2018.63 | 22.32 |
efficiency | 122 | 2018.36 | 23.00 | abundance | 80 | 2018.98 | 39.01 | grazed pasture | 41 | 2014.56 | 30.78 | methane | 68 | 2013.96 | 35.79 |
wheat | 112 | 2017.15 | 21.13 | diversity | 71 | 2017.79 | 37.18 | pasture soil | 39 | 2017.38 | 27.05 | methane emission | 68 | 2016.46 | 44.12 |
use efficiency | 111 | 2018.47 | 22.60 | fertilization | 71 | 2018.65 | 21.93 | New Zealand | 36 | 2014.81 | 77.28 | manure | 65 | 2017.29 | 39.35 |
field | 107 | 2016.93 | 30.54 | nitrifier denitrification | 66 | 2018.91 | 27.91 | degradation | 35 | 2016.26 | 15.71 | cattle slurry | 47 | 2015.43 | 44.13 |
NBPT | 102 | 2017.54 | 38.08 | carbon | 61 | 2017.97 | 22.30 | emission factor | 34 | 2016.97 | 50.56 | pig slurry | 41 | 2014.32 | 32.73 |
urease | 88 | 2019.19 | 19.92 | BNI | 59 | 2019.15 | 28.15 | fate | 27 | 2015.74 | 32.63 | climate change | 40 | 2018.05 | 38.00 |
nitrogen fertilizer | 86 | 2017.21 | 27.77 | mineralization | 59 | 2016.80 | 12.44 | different rate | 26 | 2016.62 | 30.77 | tillage | 37 | 2016.62 | 27.84 |
system | 80 | 2017.89 | 22.71 | organic matter | 59 | 2017.88 | 22.85 | mineral nitrogen | 24 | 2016.33 | 27.33 | ammonia emission | 33 | 2018.03 | 44.91 |
Keywords | Year | Strength | Begin | End | 2004–2023 |
---|---|---|---|---|---|
nitrogen | 2004 | 7.27 | 2004 | 2009 | ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
ammonium | 2004 | 6.26 | 2004 | 2009 | ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
water quality | 2004 | 5.16 | 2004 | 2011 | ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
denitrification | 2005 | 7.71 | 2005 | 2011 | ▂ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
methane | 2005 | 6.03 | 2005 | 2014 | ▂ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
grazed pasture | 2006 | 11.07 | 2006 | 2016 | ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
agriculture | 2004 | 7.54 | 2006 | 2012 | ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
temperature | 2006 | 5.92 | 2006 | 2015 | ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
grassland | 2004 | 6.64 | 2007 | 2016 | ▂ ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
urine | 2008 | 13.04 | 2008 | 2016 | ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
New Zealand | 2008 | 6.72 | 2008 | 2016 | ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
fluxe | 2005 | 5.27 | 2010 | 2013 | ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
oxidation | 2004 | 5.02 | 2012 | 2013 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
urine patches | 2011 | 6.71 | 2013 | 2015 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
rate | 2013 | 5.05 | 2013 | 2015 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
dairy pasture | 2005 | 5.64 | 2014 | 2016 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
dynamics | 2005 | 5.2 | 2014 | 2015 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
phosphorus | 2013 | 5.01 | 2019 | 2021 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▂ ▂ |
strategy | 2017 | 7.06 | 2020 | 2023 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▃ |
urease | 2005 | 6.28 | 2021 | 2023 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Liu, G.; Chen, Q. Research Hotspots and Trends of Nitrification Inhibitors: A Bibliometric Review from 2004–2023. Sustainability 2024, 16, 3906. https://doi.org/10.3390/su16103906
Shi H, Liu G, Chen Q. Research Hotspots and Trends of Nitrification Inhibitors: A Bibliometric Review from 2004–2023. Sustainability. 2024; 16(10):3906. https://doi.org/10.3390/su16103906
Chicago/Turabian StyleShi, Huai, Guohong Liu, and Qianqian Chen. 2024. "Research Hotspots and Trends of Nitrification Inhibitors: A Bibliometric Review from 2004–2023" Sustainability 16, no. 10: 3906. https://doi.org/10.3390/su16103906
APA StyleShi, H., Liu, G., & Chen, Q. (2024). Research Hotspots and Trends of Nitrification Inhibitors: A Bibliometric Review from 2004–2023. Sustainability, 16(10), 3906. https://doi.org/10.3390/su16103906