Waterlogged Area Identification Models Based on Object-Oriented Image Analysis and Deep Learning Methods in Sloping Croplands of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Technical Flowchart
2.3. Remote Sensing Data Sources and Data Processing
2.4. Object-Based Image Analysis
2.5. Dataset Production
2.6. Building Deep Learning Model
2.7. Accuracy Evaluation
3. Results
3.1. Optimal Segmentation Parameters for Remote Sensing Images
3.2. Conventional Deep Learning Algorithms for Waterlogged Area Recognition
3.3. The Integration of OBIA and Deep Learning for Waterlogged Area Recognition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Han, X.; Cruse, R.M.; Zhang, X.; Hu, W.; Yan, Y.; Guo, M. Morphological Characteristics and Influencing Factors of Permanent Gully and Its Contribution to Regional Soil Loss Based on a Field Investigation of 393 Km2 in Mollisols Region of Northeast China. CATENA 2022, 217, 106467. [Google Scholar] [CrossRef]
- Zhou, P.; Guo, M.; Zhang, X.; Zhang, S.; Qi, J.; Chen, Z.; Wang, L.; Xu, J. Quantifying the Effect of Freeze–Thaw on the Soil Erodibility of Gully Heads of Typical Gullies in the Mollisols Region of Northeast China. CATENA 2023, 228, 107180. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Sarangi, S.K.; Mainuddin, M.; Biswas, J.C.; Bell, R.W.; Hossain, M.B.; Paul, P.L.C.; Kabir, M.J.; Digar, S.; Mandal, S.; et al. A Novel System for Boosting Land Productivity and Income of Smallholder Farmers by Intercropping Vegetables in Waterlogged Paddy Fields in the Coastal Zone of the Ganges Delta. Land Use Policy 2024, 139, 107066. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, Y.; Bailey, R.T. Evaluating Crop-Soil-Water Dynamics in Waterlogged Areas Using a Coupled Groundwater-Agronomic Model. Environ. Model. Softw. 2021, 143, 105130. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, G.; Motavalli, P.P.; Nelson, K.A.; Orlowski, J.M.; Golden, B.R. Impacts and Management Strategies for Crop Production in Waterlogged or Flooded Soils: A Review. Agron. J. 2020, 112, 1475–1501. [Google Scholar] [CrossRef]
- Qamer, F.M.; Abbas, S.; Ahmad, B.; Hussain, A.; Salman, A.; Muhammad, S.; Nawaz, M.; Shrestha, S.; Iqbal, B.; Thapa, S. A Framework for Multi-Sensor Satellite Data to Evaluate Crop Production Losses: The Case Study of 2022 Pakistan Floods. Sci. Rep. 2023, 13, 4240. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Kok, K.; Verburg, P.H.; Cammeraat, L.H. Identification of Vulnerable Areas for Gully Erosion under Different Scenarios of Land Abandonment in Southeast Spain. CATENA 2007, 71, 110–121. [Google Scholar] [CrossRef]
- Guan, Y.; Yang, S.; Zhao, C.; Lou, H.; Chen, K.; Zhang, C.; Wu, B. Monitoring Long-Term Gully Erosion and Topographic Thresholds in the Marginal Zone of the Chinese Loess Plateau. Soil Tillage Res. 2021, 205, 104800. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, Y.; Chen, J.; Yang, X.; Huang, Y.; Song, F.; He, Y.; Tian, Z.; Lin, L.; Cai, C.; et al. Temporal and Spatial Distribution and Development of Permanent Gully in Cropland in the Rolling Hill Region (Phaeozems Area) of Northeast China. CATENA 2024, 235, 107625. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, Y.; Wang, Z.; Li, Y.; Li, F.; Yang, F. Towards Accurate Mapping of Loess Waterworn Gully by Integrating Google Earth Imagery and DEM Using Deep Learning. Int. Soil Water Conserv. Res. 2024, 12, 13–28. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, S.; Hong, Z.; Zhang, Y.; Han, Y.; Zhou, R.; Wang, J.; Yang, S.; Tong, X.; Kuc, T. Sea-Land Segmentation Using Deep Learning Techniques for Landsat-8 OLI Imagery. Mar. Geod. 2020, 43, 105–133. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, Y.; Zhao, D.; Chen, J. Graph-FCN for Image Semantic Segmentation. In Advances in Neural Networks—ISNN 2019, Proceedings of the 16th International Symposium on Neural Networks, ISNN 2019, Moscow, Russia, 10–12 July 2019; Lu, H., Tang, H., Wang, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 97–105. [Google Scholar]
- Alalwan, N.; Abozeid, A.; ElHabshy, A.A.; Alzahrani, A. Efficient 3D Deep Learning Model for Medical Image Semantic Segmentation. Alex. Eng. J. 2021, 60, 1231–1239. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, B.; Feng, H.; Wu, S.; Yang, J.; Zou, Y.; Siddique, K.H.M. Ephemeral Gully Recognition and Accuracy Evaluation Using Deep Learning in the Hilly and Gully Region of the Loess Plateau in China. Int. Soil Water Conserv. Res. 2022, 10, 371–381. [Google Scholar] [CrossRef]
- Singh, G.; Singh, S.; Sethi, G.K.; Sood, V. Detection and Mapping of Agriculture Seasonal Variations with Deep Learning–Based Change Detection Using Sentinel-2 Data. Arab. J. Geosci. 2022, 15, 825. [Google Scholar] [CrossRef]
- Efthimiou, N.; Psomiadis, E.; Papanikolaou, I.; Soulis, K.X.; Borrelli, P.; Panagos, P. A New High Resolution Object-Oriented Approach to Define the Spatiotemporal Dynamics of the Cover-Management Factor in Soil Erosion Modelling. CATENA 2022, 213, 106149. [Google Scholar] [CrossRef]
- Diaz-Varela, R.A.; Zarco-Tejada, P.J.; Angileri, V.; Loudjani, P. Automatic Identification of Agricultural Terraces through Object-Oriented Analysis of Very High Resolution DSMs and Multispectral Imagery Obtained from an Unmanned Aerial Vehicle. J. Environ. Manag. 2014, 134, 117–126. [Google Scholar] [CrossRef]
- Hossain, M.D.; Chen, D. Segmentation for Object-Based Image Analysis (OBIA): A Review of Algorithms and Challenges from Remote Sensing Perspective. ISPRS J. Photogramm. Remote Sens. 2019, 150, 115–134. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, K.; Lin, Y.; Guo, S.; Sun, Y.; Chen, X.; Lai, R.; Zhang, H. A Comparison between Pixel-Based Deep Learning and Object-Based Image Analysis (OBIA) for Individual Detection of Cabbage Plants Based on UAV Visible-Light Images. Comput. Electron. Agric. 2023, 209, 107822. [Google Scholar] [CrossRef]
- Saeed, M.U.; Bin, W.; Sheng, J.; Albarakati, H.M.; Dastgir, A. MSFF: An Automated Multi-Scale Feature Fusion Deep Learning Model for Spine Fracture Segmentation Using MRI. Biomed. Signal Process. Control. 2024, 91, 105943. [Google Scholar] [CrossRef]
- Wei, S.; Luo, M.; Zhu, L.; Yang, Z. Using Object-Oriented Coupled Deep Learning Approach for Typical Object Inspection of Transmission Channel. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103137. [Google Scholar] [CrossRef]
- Kotera, A.; Nagano, T.; Hanittinan, P.; Koontanakulvong, S. Assessing the Degree of Flood Damage to Rice Crops in the Chao Phraya Delta, Thailand, Using MODIS Satellite Imaging. Paddy Water Environ. 2016, 14, 271–280. [Google Scholar] [CrossRef]
- Guan, H.; Huang, J.; Li, L.; Li, X.; Miao, S.; Su, W.; Ma, Y.; Niu, Q.; Huang, H. Improved Gaussian Mixture Model to Map the Flooded Crops of VV and VH Polarization Data. Remote Sens. Environ. 2023, 295, 113714. [Google Scholar] [CrossRef]
- Keyport, R.N.; Oommen, T.; Martha, T.R.; Sajinkumar, K.S.; Gierke, J.S. A Comparative Analysis of Pixel- and Object-Based Detection of Landslides from Very High-Resolution Images. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 1–11. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A Tool to Estimate Scale Parameter for Multiresolution Image Segmentation of Remotely Sensed Data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Z.; Wang, X.; Zhao, X.; Yi, L.; Hu, S. Object-Based Mapping of Gullies Using Optical Images: A Case Study in the Black Soil Region, Northeast of China. Remote Sens. 2020, 12, 487. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4510–4520. [Google Scholar]
- Guirado, E.; Blanco-Sacristán, J.; Rodríguez-Caballero, E.; Tabik, S.; Alcaraz-Segura, D.; Martínez-Valderrama, J.; Cabello, J. Mask R-CNN and OBIA Fusion Improves the Segmentation of Scattered Vegetation in Very High-Resolution Optical Sensors. Sensors 2021, 21, 320. [Google Scholar] [CrossRef]
- Azeez, O.S.; Shafri, H.Z.M.; Alias, A.H.; Haron, N.A.B. Integration of Object-Based Image Analysis and Convolutional Neural Network for the Classification of High-Resolution Satellite Image: A Comparative Assessment. Appl. Sci. 2022, 12, 10890. [Google Scholar] [CrossRef]
- Robson, B.A.; Bolch, T.; MacDonell, S.; Hölbling, D.; Rastner, P.; Schaffer, N. Automated Detection of Rock Glaciers Using Deep Learning and Object-Based Image Analysis. Remote Sens. Environ. 2020, 250, 112033. [Google Scholar] [CrossRef]
- Guirado, E.; Tabik, S.; Alcaraz-Segura, D.; Cabello, J.; Herrera, F. Deep-Learning Versus OBIA for Scattered Shrub Detection with Google Earth Imagery: Ziziphus Lotus as Case Study. Remote Sens. 2017, 9, 1220. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Sutaji, D.; Yıldız, O. LEMOXINET: Lite Ensemble MobileNetV2 and Xception Models to Predict Plant Disease. Ecol. Inform. 2022, 70, 101698. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Pratim Adhikary, P.; Kumar Shit, P. Gully Erosion Susceptibility Mapping and Prioritization of Gully-Dominant Sub-Watersheds Using Machine Learning Algorithms: Evidence from the Silabati River (Tropical River, India). Adv. Space Res. 2024, 73, 1653–1666. [Google Scholar] [CrossRef]
- Bammou, Y.; Benzougagh, B.; Abdessalam, O.; Brahim, I.; Kader, S.; Spalevic, V.; Sestras, P.; Ercişli, S. Machine Learning Models for Gully Erosion Susceptibility Assessment in the Tensift Catchment, Haouz Plain, Morocco for Sustainable Development. J. Afr. Earth Sci. 2024, 213, 105229. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S.; Emery, W.J. Object-Based Convolutional Neural Network for High-Resolution Imagery Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3386–3396. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Shahabi, H.; Crivellari, A.; Homayouni, S.; Blaschke, T.; Ghamisi, P. Landslide Detection Using Deep Learning and Object-Based Image Analysis. Landslides 2022, 19, 929–939. [Google Scholar] [CrossRef]
- Sicard, P.; Coulibaly, F.; Lameiro, M.; Araminiene, V.; De Marco, A.; Sorrentino, B.; Anav, A.; Manzini, J.; Hoshika, Y.; Moura, B.B.; et al. Object-Based Classification of Urban Plant Species from Very High-Resolution Satellite Imagery. Urban For. Urban Green. 2023, 81, 127866. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Li, T.; Lu, S.; Yin, Z.; Liu, X.; Li, X.; Zheng, W. U-Net-STN: A Novel End-to-End Lake Boundary Prediction Model. Land 2023, 12, 1602. [Google Scholar] [CrossRef]
- Tiwari, A.; Silver, M.; Karnieli, A. A Deep Learning Approach for Automatic Identification of Ancient Agricultural Water Harvesting Systems. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103270. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Su, L.; Fan, H.; Zhou, L.; Tian, Y. Identification of Topographic Factors for Gully Erosion Susceptibility and Their Spatial Modelling Using Machine Learning in the Black Soil Region of Northeast China. Ecol. Indic. 2022, 143, 109376. [Google Scholar] [CrossRef]
- Chen, W.; Lei, X.; Chakrabortty, R.; Chandra Pal, S.; Sahana, M.; Janizadeh, S. Evaluation of Different Boosting Ensemble Machine Learning Models and Novel Deep Learning and Boosting Framework for Head-Cut Gully Erosion Susceptibility. J. Environ. Manag. 2021, 284, 112015. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Jiao, J.; Chen, Y.; Chen, T.; Zhao, C.; Zhao, W.; Shang, T.; Xu, Q.; Wang, H.; et al. Gully Erosion Susceptibility Maps and Influence Factor Analysis in the Lhasa River Basin on the Tibetan Plateau, Based on Machine Learning Algorithms. CATENA 2024, 235, 107695. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, W.; Ren, Z.; Zhao, Y.; Liao, Y.; Ge, Y.; Wang, J.; He, J.; Gu, Y.; Wang, Y.; et al. Multi-Scale Feature Fusion and Transformer Network for Urban Green Space Segmentation from High-Resolution Remote Sensing Images. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103514. [Google Scholar] [CrossRef]
Data Sources | Time | Spatial Resolution (m) | Area (km2) | Center Coordinate | Application Description |
---|---|---|---|---|---|
Google Maps | October 2021 | 0.20 | 105.51 | 126°42′36″ E, 47°22′12″ N | Training and validation data |
Mapbox | July 2022 | 0.30 | 171.72 | 126°45′02″ E, 47°27′05″ N | |
Google Maps | July 2022 | 0.30 | 316.26 | 127°00′00″ E, 47°24′36″ N | |
Mapbox | October 2021 | 0.30 | 316.26 | 127°00′00″ E, 47°24′36″ N | |
Jilin-1 | October 2022 | 0.50 | 52.41 | 126°50′24″ E, 47°22′12″ N | Prediction data |
Mapbox | July 2022 | 0.30 | 52.41 | 126°50′24″ E, 47°22′12″ N |
Approach | Models | Backbones | Epochs | Time (min/epoch) |
---|---|---|---|---|
Deep Learning | SE-FCN8s | VGG19 | 100 | 4.4 |
U-Net | — | 100 | 4.1 | |
DeepLabV3+ | MobileNetV2 | 80 | 3.9 | |
DeepLabV3+ | Xception | 80 | 6.4 | |
FC-DenseNet103 | — | 50 | 41.7 | |
OBIA and Deep Learning | SE-FCN8s | VGG19 | 100 | 5.1 |
U-Net | — | 100 | 4.2 | |
DeepLabV3+ | MobileNetV2 | 80 | 4.7 | |
DeepLabV3+ | Xception | 80 | 7.5 | |
FC-DenseNet103 | — | 50 | 42.7 |
Models | Epochs | Precision (%) | Recall (%) | F1-Score (%) | Kappa | Area Accuracy (%) |
---|---|---|---|---|---|---|
SE-FCN8s | 100 | 59.1 | 41.5 | 48.8 | 0.41 | 95.5 |
U-Net | 100 | 59.1 | 34.8 | 43.8 | 0.37 | 95.4 |
MobileNetV2 | 80 | 59.4 | 47.2 | 52.6 | 0.46 | 96.9 |
Xception | 80 | 60.9 | 47.5 | 53.4 | 0.47 | 97.0 |
FC-DenseNet103 | 50 | 54.6 | 48.0 | 51.1 | 0.43 | 96.3 |
Research | Method | Accuracy | Application Scenarios | Image Resolution |
---|---|---|---|---|
This study | OBIA + multiple deep learning models | F1-score: 53–60% | Waterlogged area identification | 0.3–0.5 m |
Wei et al. [21] | OBIA + FCN8s | F1-score: 83% | Land use identification | 0.5 m |
Zhao et al. [37] | OBIA + CNN | Precision: 70% | Land use identification | 0.5m |
Ghorbanzadeh et al. [38] | OBIA + ResU-Net | F1-score: 76% | Landslide detection | 10 m |
Guan et al. [23] | OBIA + Gaussian Mixture Model (GMM) | F1-score: 84% | Flooded crops identification | 10 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, P.; Wang, S.; Wang, M.; Ma, R.; Tian, Z.; Liang, Y.; Shi, X. Waterlogged Area Identification Models Based on Object-Oriented Image Analysis and Deep Learning Methods in Sloping Croplands of Northeast China. Sustainability 2024, 16, 3917. https://doi.org/10.3390/su16103917
Xie P, Wang S, Wang M, Ma R, Tian Z, Liang Y, Shi X. Waterlogged Area Identification Models Based on Object-Oriented Image Analysis and Deep Learning Methods in Sloping Croplands of Northeast China. Sustainability. 2024; 16(10):3917. https://doi.org/10.3390/su16103917
Chicago/Turabian StyleXie, Peng, Shihang Wang, Meiyan Wang, Rui Ma, Zhiyuan Tian, Yin Liang, and Xuezheng Shi. 2024. "Waterlogged Area Identification Models Based on Object-Oriented Image Analysis and Deep Learning Methods in Sloping Croplands of Northeast China" Sustainability 16, no. 10: 3917. https://doi.org/10.3390/su16103917
APA StyleXie, P., Wang, S., Wang, M., Ma, R., Tian, Z., Liang, Y., & Shi, X. (2024). Waterlogged Area Identification Models Based on Object-Oriented Image Analysis and Deep Learning Methods in Sloping Croplands of Northeast China. Sustainability, 16(10), 3917. https://doi.org/10.3390/su16103917