Assessment of Mercury Contamination in Water and Soil from Informal Artisanal Gold Mining: Implications for Environmental and Human Health in Darmali Area, Sudan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Analytical Procedure
2.3.1. Sample Preparation
2.3.2. Total Mercury (THg) Analysis
2.3.3. Quality Assurance
2.4. Geo-Accumulation Index
Class | Value | Soil Quality |
---|---|---|
0 | Igeo ≤ 0 | Unpolluted |
1 | 0 < Igeo ≤ 1 | Unpolluted to moderately polluted |
2 | 1 < Igeo ≤ 2 | Moderately polluted |
3 | 2 < Igeo ≤ 3 | Moderately to heavily polluted |
4 | 3 < Igeo ≤ 4 | Heavily polluted |
5 | 4 < Igeo ≤ 5 | Heavily to extremely polluted |
6 | 5 < Igeo | Extremely polluted |
2.5. Risk Assessment
Parameters | Unit | Children | Adults | Reference | |
---|---|---|---|---|---|
Cs | Mercury concentration in soil samples | mg/kg | - | - | This Study |
Cw | Mercury concentration in water samples | mg/L | - | - | This Study |
BW | Body weight | Kg | 15 | 70 | [44] |
AT | Averaging time | Days | 2190 | 10,950 | [44] |
EF | Exposure frequency | days/year | 350 | 250 | [44] |
ED | Exposure duration | Years | 6 | 30 | [44] |
IRs | Ingestion rate of soil | mg/day | 200 | 100 | [44] |
IRa | Ingestion rate of air | m3/day | 10 | 10.4 | [44] |
IRw | Ingestion rate of water | L/day | 2 | 3.45 | [45] |
GI | Gastrointestinal adsorption factor | - | 1 | 1 | [44] |
PEF | Particulate emission factor | m3/kg | 1.30 × 109 | 3.22 × 108 | [44] |
VF | Volitilisation factor | m3/kg | 8028.297 | 8028.297 | [44] |
SA | Surface area exposed skin | cm2 | 2100 | 13,110 | [44] |
AF | Skin adherence factor | mg/cm2/day | 0.2 | 0.07 | [44] |
ABS | Dermal absorption factor | - | 0.1 | 0.1 | [44] |
CF | Conversion factor | - | 0.000001 | 0.000001 | [44] |
RfDo | Reference dosage (Oral) | mg/kgbw/day | 0.0003 | 0.0003 | [44] |
RfDi | Reference dosage (Inhalation) | mg/kgbw/day | 0.000086 | 0.000086 | [44] |
RfDd | Reference dosage (Dermal) | mg/kgbw/day | 0.0003 | 0.0003 | [44] |
2.6. Statistical Analysis
3. Results and Discussion
3.1. Mercury Analysis
3.1.1. Mercury Concentration in Soil and Tailings
3.1.2. Mercury Concentration in Water Samples
3.2. Geo-Accumulation Index (Igeo)
3.3. Health Risk Assessment
3.4. Recommendations
3.5. Limitations and Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global Mercury Emissions to the Atmosphere from Anthropogenic and Natural Sources. Atmos. Meas. Tech. 2010, 10, 5951–5964. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Global Mercury Assessment 2018; UN Environment Programme; Chemicals and Health Branch: Geneva, Switzerland, 2019; ISBN 978-92-807-3744-8. [Google Scholar]
- Prescott, G.W.; Baird, M.; Geenen, S.; Nkuba, B.; Phelps, J.; Webb, E.L. Formalizing Artisanal and Small-Scale Gold Mining: A Grand Challenge of the Minamata Convention. One Earth 2022, 5, 242–251. [Google Scholar] [CrossRef]
- UNIDO; UNITAR. HCENR Minamata Convention Initial Assessment Project for the Sudan; Unpublished Report; Higher Council for Environment and Natural Resources: Khartoum, Sudan, 2021. [Google Scholar]
- Hilson, G.; Monhemius, A.J. Alternatives to Cyanide in the Gold Mining Industry: What Prospects for the Future? J. Clean. Prod. 2006, 14, 1158–1167. [Google Scholar] [CrossRef]
- Department of Energy, Mines, Industry Regulation and Safety; Government of Western Australia. Cyanide Found in “Environmentally Friendly” Leaching Agents. Available online: https://www.dmp.wa.gov.au/News/Cyanide-found-in-18598.aspx (accessed on 18 February 2024).
- Veiga, M.M.; Nunes, D.; Klein, B.; Shandro, J.A.; Velasquez, P.C.; Sousa, R.N. Mill Leaching: A Viable Substitute for Mercury Amalgamation in the Artisanal Gold Mining Sector? J. Clean. Prod. 2009, 17, 1373–1381. [Google Scholar] [CrossRef]
- Drace, K.; Kiefer, A.M.; Veiga, M.M. Cyanidation of Mercury-Contaminated Tailings: Potential Health Effects and Environmental Justice. Curr. Environ. Health Rep. 2016, 3, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Seney, C.S.; Bridges, C.C.; Aljic, S.; Moore, M.E.; Orr, S.E.; Barnes, M.C.; Joshee, L.; Uchakina, O.N.; Bellott, B.J.; McKallip, R.J.; et al. Reaction of Cyanide with Hg0-Contaminated Gold Mining Tailings Produces Soluble Mercuric Cyanide Complexes. Chem. Res. Toxicol. 2020, 33, 2834–2844. [Google Scholar] [CrossRef] [PubMed]
- Veiga, M.M.; Angeloci, G.; Hitch, M.; Velasquez-Lopez, P.C. Processing Centres in Artisanal Gold Mining. J. Clean. Prod. 2014, 64, 535–544. [Google Scholar] [CrossRef]
- Velásquez-López, P.C.; Veiga, M.M.; Klein, B.; Shandro, J.A.; Hall, K. Cyanidation of Mercury-Rich Tailings in Artisanal and Small-Scale Gold Mining: Identifying Strategies to Manage Environmental Risks in Southern Ecuador. J. Clean. Prod. 2011, 19, 1125–1133. [Google Scholar] [CrossRef]
- Syed, S. Recovery of Gold from Secondary Sources—A Review. Hydrometallurgy 2011, 115–116, 30–51. [Google Scholar] [CrossRef]
- Adams The Mechanisms of Adsorption of Hg(CN)2 and HGCl2 on to Activated Carbon. Hydrometallurgy 1991, 26, 201–210. [CrossRef]
- Aliprandini, P.; Veiga, M.M.; Marshall, B.G.; Scarazzato, T.; Espinosa, D.C. Investigation of Mercury Cyanide Adsorption from Synthetic Wastewater Aqueous Solution on Granular Activated Carbon. J. Water Process. Eng. 2020, 34, 101154. [Google Scholar] [CrossRef]
- Kantarcı, S.; Alp, I. Removal of Mercury from Cyanide Leach Solution Using Potassium Amyl Xanthate (PAX). Sep. Purif. Technol. 2023, 309, 123036. [Google Scholar] [CrossRef]
- US EPA. Basic Information about Mercury. Available online: https://www.epa.gov/mercury/basic-information-about-mercury (accessed on 19 February 2024).
- Kim, M.-K.; Zoh, K.-D. Fate and Transport of Mercury in Environmental Media and Human Exposure. J. Prev. Med. Public Health 2012, 45, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Gworek, B.; Dmuchowski, W.; Baczewska-Dąbrowska, A.H. Mercury in the Terrestrial Environment: A Review. Environ. Sci. Eur. 2020, 32, 128. [Google Scholar] [CrossRef]
- Ali, M.; Elhagwa, A.; Elfaki, J.; Sulieman, M. Influence of the Artisanal Gold Mining on Soil Contamination with Heavy Metals: A Case Study from Dar-Mali locality, North of Atbara, River Nile State, Sudan. Eurasian J. Soil Sci. (EJSS) 2017, 6, 28. [Google Scholar] [CrossRef]
- Azizi, M.; Faz, A.; Zornoza, R.; Martínez-Martínez, S.; Shahrokh, V.; Acosta, J. Environmental Pollution and Depth Distribution of Metal(loid)s and Rare Earth Elements in Mine Tailing. J. Environ. Chem. Eng. 2022, 10, 107526. [Google Scholar] [CrossRef]
- Chen, T.; Wong, J.; Zhou, H.; Wong, M. Assessment of Trace Metal Distribution and Contamination in Surface Soils of Hong Kong. Environ. Pollut. 1997, 96, 61–68. [Google Scholar] [CrossRef]
- Hartmann, A.; Jasechko, S.; Filippini, M.; Garvelmann, J.; Goldscheider, N.; Kralik, M.; Kunstmann, H.; Ladouche, B.; Lange, J.; Lucianetti, G.; et al. Risk of Groundwater Contamination Widely Underestimated Because of Fast Flow into Aquifers. Proc. Natl. Acad. Sci. USA 2021, 118, e2024492118. [Google Scholar] [CrossRef]
- Abdo, G.; Salih, A. Challenges Facing Groundwater Management in Sudan. In Proceedings of the Annual Conference of Postgraduate Studies and Scientific Research, Khartoum, Sudan, 17–20 February 2012. [Google Scholar]
- Eltayib, S.H. Numerical Modeling of the Groundwater Flow in the Area Around Atbara Town, River Nile State, Sudan. Int. J. Earth Sci. Knowl. Appl. 2021, 3, 151–157. [Google Scholar]
- Food and Agriculture Organization of the United Nations Rome. Government of Sudan The Sudan 2020 Flood Impact Rapid Assessment. 2020. Available online: https://www.fao.org/fileadmin/user_upload/emergencies/docs/The%20Sudan%20Flood%20Impact%20Assessment.pdf (accessed on 16 March 2024).
- Hudson-Edwards, K.A.; Macklin, M.G.; Brewer, P.A.; Dennis, I.A. Assessment of Metal Mining-Contaminated River Sediments in England and Wales; Environment Agency: Bristol, UK, 2008.
- Elwaleed, A.; Jeong, H.; Abdelbagi, A.H.; Quynh, N.T.; Agusa, T.; Ishibashi, Y.; Arizono, K. Human Health Risk Assessment from Mercury-Contaminated Soil and Water in Abu Hamad Mining Market, Sudan. Toxics 2024, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Elhagwa, A.; Elfaki, J. An Investigation of Mercury Distribution in the Soils Around Gold Mining Area at Dar-Mali Locality, River Nile State, Sudan. Eurasian J. Soil Sci. (EJSS) 2018, 7, 365–372. [Google Scholar] [CrossRef]
- Ali, S.; Elfaki, J.; Adam, M.; Dafalla, M.; Ahmed, H.; Ali, M. Assessment of heavy metals contamination in the Nile River water and adjacent sediments: A case study from Khartoum City and Nile River State, Sudan. Eurasian J. Soil Sci. (EJSS) 2017, 6, 285. [Google Scholar] [CrossRef]
- Elkrail, A.; Awad, T.; Yousif, Y. Numerical Simulation of Groundwater Flow in Southeast of El Damer Town, River Nile State—Sudan. Am. J. Earth Sci. 2014, 1, 21–24. [Google Scholar]
- Eltayib, S.H.M.A. Hydrochemical Characteristic and Ground Water Quality of the Aquifers in Area around Aldamer Town-River Nile Sate–Central Sudan. Int. J. Geol. Agric. Environ. Sci. 2019, 7, 14–21. [Google Scholar]
- Ahmed, S.H.M. Hydrogeological Assessment Based on Groundwater Flow Modelling around Atbara Town. Master’s Thesis, Sudan Academy of Science, Khartoum, Sudan, 2010. [Google Scholar]
- Environmental Monitoring Systems Laboratory. Determination of mercury in water by cold vapor atomic absorption spectrometry. In Methods for the Determination of Metals in Environmental Samples; Elsevier: Amsterdam, The Netherlands, 1996; pp. 305–322. ISBN 978-0-8155-1398-8. [Google Scholar]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Reimann, C.; de Caritat, P. Chemical Elements in the Environment; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-642-72018-5. [Google Scholar]
- Martínez, L.L.G.; Poleto, C. Assessment of Diffuse Pollution Associated with Metals in Urban Sediments Using the Geoaccumulation Index (Igeo). J. Soils Sediments 2014, 14, 1251–1257. [Google Scholar] [CrossRef]
- National Academy of Sciences. Risk Assessment: Evaluating Risks to Human Health and Safety. In Occupational Health and Safety in the Care and Use of Nonhuman Primates; National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- US Environmental Protection Agency (US EPA). Definitions and General Principles for Exposure Assessment; US Environmental Protection Agency: Washington, DC, USA, 1992.
- US EPA. Exposure Assessment Tools by Routes–Inhalation. Available online: https://www.epa.gov/expobox/exposure-assessment-tools-routes-inhalation (accessed on 21 January 2024).
- Agency for Toxic Substances and Disease Registry (ATSDR). Calculating Hazard Quotients and Cancer Risk Estimates. Available online: https://www.atsdr.cdc.gov/pha-guidance/conducting_scientific_evaluations/epcs_and_exposure_calculations/hazardquotients_cancerrisk.html (accessed on 26 February 2024).
- Wongsasuluk, P.; Chotpantarat, S.; Siriwong, W.; Robson, M. Heavy Metal Contamination and Human Health Risk Assessment in Drinking Water from Shallow Groundwater Wells in an Agricultural Area in Ubon Ratchathani Province, Thailand. Environ. Geochem. Health 2013, 36, 169–182. [Google Scholar] [CrossRef]
- Department of Environmental Affairs (DEA). Framework for the Management of Contaminated Land, South Africa; Department of Environmental Affairs (DEA): Pretoria, South Africa, 2010; p. 79.
- Bortey-Sam, N.; Nakayama, S.M.M.; Ikenaka, Y.; Akoto, O.; Baidoo, E.; Mizukawa, H.; Ishizuka, M. Health Risk Assessment of Heavy Metals and Metalloid in Drinking Water from Communities Near Gold Mines in Tarkwa, Ghana. Environ. Monit. Assess. 2015, 187, 397. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment (CCME). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health—Mercury (Inorganic); Canadian Environmental Quality Guidelines; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 1999.
- Morgan, H.; De Búrca, R.; Martin, I.; Jeffries, J. Soil Guideline Values for Mercury in Soil; Soil Science Report; Environment Agency: Bristol, UK, 2009.
- National Environment Protection Council (NEPC). National Environment Protection (Assessment of Site Contamination) Measure 1999. 1999. Available online: https://www.nepc.gov.au/nepms/assessment-site-contamination (accessed on 20 February 2024).
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, WEB version; WHO: Geneva, Switzerland, 2017; ISBN 978 92 4 154761 1. [Google Scholar]
- Ministry of Health, Labour and Welfare (MHLW). Drinking Water Quality Standards in Japan; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2015.
- Park, J.-D.; Zheng, W. Human Exposure and Health Effects of Inorganic and Elemental Mercury. J. Prev. Med. Public Health 2012, 45, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Risher, J. Toxicological Profile for Mercury; United States; Agency for Toxic Substances and Disease Registry, Research Triangle Institute, Ed.; Toxicological Profiles; U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry: Washington, DC, USA, 1999.
- Coker, E.A.; Nkuah, B.C.; Amoanimaah, S.A.; Oppong, J.B.; Gyamfi, O.; Ansah, E.; Ababio, K.A.; Wemegah, D.D.; Borquaye, L.S.; Darko, G. Human Exposure to Mercury in the Atmosphere and Soils in Konongo: An Age-Old Mining Centre in the Ashanti Region of Ghana. Environ. Geochem. Health 2022, 45, 3555–3565. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, A.; Álvarez, R.; Charlesworth, S.; De Miguel, E.; Loredo, J. Risk Assessment of Soils Contaminated by Mercury Mining, Northern Spain. J. Environ. Monit. 2010, 13, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Link, P.M.; Piontek, F.; Scheffran, J.; Schilling, J. On Foes and Flows: Vulnerabilities, Adaptive Capacities and Transboundary Relations in the Nile River Basin in Times of Climate Change. L’Europe Form. 2013, 365, 99–138. [Google Scholar] [CrossRef]
- Davis, G.; Ibrahim, M. Removal of Barriers to Introduction of Cleaner Artisanal Gold Mining and Extraction Technologies, Blue Nile State, Sudan; Global Mercury Programme GMP; United Nations Industrial Development Organization: Khartoum, Sudan, 2007. [Google Scholar]
- Baldewsingh, G.K.; Wickliffe, J.K.; van Eer, E.D.; Shankar, A.; Hindori-Mohangoo, A.D.; Harville, E.W.; Covert, H.H.; Shi, L.; Lichtveld, M.Y.; Zijlmans, W.C. Prenatal Mercury Exposure in Pregnant Women from Suriname’s Interior and Its Effects on Birth Outcomes. Int. J. Environ. Res. Public Health 2020, 17, 4032. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Lv, Y.; Wei, Y.; Liu, Z.; Li, X.; Zhou, J.; Liu, Y.; Zhao, F.; Chen, C.; Gu, H.; et al. Association of Blood Mercury Exposure with Depressive Symptoms in the Chinese Oldest Old. Ecotoxicol. Environ. Saf. 2022, 243, 113976. [Google Scholar] [CrossRef] [PubMed]
- Adranyi, E.; Stringer, L.C.; Altink, H. The Impacts of Artisanal and Small-Scale Gold Mining on Rural Livelihood Trajectories: Insights from Ghana. Extr. Ind. Soc. 2023, 14, 101273. [Google Scholar] [CrossRef]
- Ali, H.; Etang Ndip, A.; Fuje, H.N.; Touray, S. Agricultural Productivity and Poverty in Rural Sudan; The World Bank: Washington, DC, USA, 2022. [Google Scholar]
- Fadlallah, M.A.; Pal, I.; Hoe, V.C. Determinants of Perceived Risk among Artisanal Gold Miners: A Case Study of Berber Locality, Sudan. Extr. Ind. Soc. 2020, 7, 748–757. [Google Scholar] [CrossRef]
- World Gold Council. Lessons Learned on Managing the Interface between Large-Scale and Artisanal and Small-Scale Gold Mining; World Gold Council: London, UK, 2022. [Google Scholar]
- Hilson, G.; Zolnikov, T.R.; Ortiz, D.R.; Kumah, C. Formalizing Artisanal Gold Mining under the Minamata Convention: Previewing the Challenge in Sub-Saharan Africa. Environ. Sci. Policy 2018, 85, 123–131. [Google Scholar] [CrossRef]
- Siegel, S.; Veiga, M.M. The myth of Alternative Livelihoods: Artisanal Mining, Gold and Poverty. Int. J. Environ. Pollut. 2010, 41, 272. [Google Scholar] [CrossRef]
- Osei, L.; Yeboah, T.; Kumi, E.; Antoh, E.F. Government’s Ban on Artisanal and Small-Scale Mining, Youth Livelihoods and Imagined Futures in Ghana. Resour. Policy 2021, 71, 102008. [Google Scholar] [CrossRef]
- Achina-Obeng, R.; Aram, S.A. Informal Artisanal and Small-Scale Gold Mining (ASGM) in Ghana: Assessing Environmental Impacts, Reasons for Engagement, and Mitigation Strategies. Resour. Policy 2022, 78, 102907. [Google Scholar] [CrossRef]
Land-Use | Statistics | Adults | Children | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HQing * | HQDer * | HQInh * | HQVap * | HI | HQing * | HQDer * | HQInh * | HQVap * | HI | ||
Tailings (n = 6) | Min | 0.017 | 0.015 | 1.87 × 10−5 | 0.75 | 0.78 | 0.217 | 0.045 | 2.91 × 10−5 | 4.70 | 4.97 |
Max | 0.041 | 0.04 | 4.62 × 10−5 | 1.86 | 1.93 | 0.536 | 0.112 | 7.19 × 10−5 | 11.6 | 12.29 | |
Median | 0.032 | 0.03 | 3.58 × 10−5 | 1.44 | 1.5 | 0.42 | 0.087 | 5.58 × 10−5 | 9.03 | 9.53 | |
Agricultural areas (n = 18) | Min | 3.36 × 10−5 | 3.08 × 10−5 | 3.78 × 10−8 | 0.0015 | 0 | 0.0004 | 9.22 × 10−5 | 5.89 × 10−8 | 0.01 | 0.01 |
Max | 0.0005 | 0.0005 | 6.04 × 10−7 | 0.024 | 0.03 | 0.007 | 0.0015 | 9.4 × 10−7 | 0.15 | 0.16 | |
Median | 0.0002 | 0.0002 | 2.09 × 10−7 | 0.008 | 0.01 | 0.002 | 0.0005 | 3.25 × 10−7 | 0.053 | 0.06 | |
Residential (n = 10) | Min | 6.61 × 10−5 | 6.07 × 10−5 | 7.45 × 10−8 | 0.003 | 0 | 0.0008 | 0.0002 | 1.16 × 10−7 | 0.019 | 0.02 |
Max | 0.0004 | 0.0003 | 4.06 × 10−7 | 0.017 | 0.02 | 0.0047 | 0.001 | 6.32 × 10−7 | 0.10 | 0.11 | |
Median | 0.0001 | 0.0001 | 1.62 × 10−7 | 0.007 | 0.01 | 0.0019 | 0.0004 | 2.51 × 10−7 | 0.04 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elwaleed, A.; Jeong, H.; Abdelbagi, A.H.; Thi Quynh, N.; Nugraha, W.C.; Agusa, T.; Ishibashi, Y.; Arizono, K. Assessment of Mercury Contamination in Water and Soil from Informal Artisanal Gold Mining: Implications for Environmental and Human Health in Darmali Area, Sudan. Sustainability 2024, 16, 3931. https://doi.org/10.3390/su16103931
Elwaleed A, Jeong H, Abdelbagi AH, Thi Quynh N, Nugraha WC, Agusa T, Ishibashi Y, Arizono K. Assessment of Mercury Contamination in Water and Soil from Informal Artisanal Gold Mining: Implications for Environmental and Human Health in Darmali Area, Sudan. Sustainability. 2024; 16(10):3931. https://doi.org/10.3390/su16103931
Chicago/Turabian StyleElwaleed, Ahmed, Huiho Jeong, Ali H. Abdelbagi, Nguyen Thi Quynh, Willy Cahya Nugraha, Tetsuro Agusa, Yasuhiro Ishibashi, and Koji Arizono. 2024. "Assessment of Mercury Contamination in Water and Soil from Informal Artisanal Gold Mining: Implications for Environmental and Human Health in Darmali Area, Sudan" Sustainability 16, no. 10: 3931. https://doi.org/10.3390/su16103931
APA StyleElwaleed, A., Jeong, H., Abdelbagi, A. H., Thi Quynh, N., Nugraha, W. C., Agusa, T., Ishibashi, Y., & Arizono, K. (2024). Assessment of Mercury Contamination in Water and Soil from Informal Artisanal Gold Mining: Implications for Environmental and Human Health in Darmali Area, Sudan. Sustainability, 16(10), 3931. https://doi.org/10.3390/su16103931