The Future Probability of Winter Wheat and Maize Yield Failure in Hungary Based on Long-Term Temporal Patterns
Abstract
:1. Introduction
1.1. Yield Failure in Winter Wheat Production
1.2. Yield Failure in Maize Production
1.3. Goals of the Study
2. Materials and Methods
2.1. Materials and Time Frame of the Study
2.2. Data Source and Processing
2.3. Statistical Method
3. Results
3.1. Yield Failures of Winter Wheat
3.2. Yield Failures of Maize
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huzsvai, L.; Zsembeli, J.; Kovács, E.; Juhász, C. Can Technological Development Compensate for the Unfavorable Impacts of Climate Change? Conclusions from 50 Years of Maize (Zea mays L.) Production in Hungary. Atmosphere 2020, 11, 1350. [Google Scholar] [CrossRef]
- Masingo, D.K. Coping Strategies and Vulnerability of Farmers under the Moderating Effect of Associative Dynamics: Empirical Evidence from Farmers in the Highland Zone of the Baswagha Chiefdom in the Lubero Territory. Appl. Math. Sci. 2023, 17, 109–127. [Google Scholar] [CrossRef]
- Singhal, A.; Jha, S.K. Can the approach of vulnerability assessment facilitate identification of suitable adaptation models for risk reduction? Int. J. Disaster Risk Reduct. 2021, 63, 102469. [Google Scholar] [CrossRef]
- Mukesh, K.; Nath, P.R.; Devendra, M. Agri-Environmental Vulnerability among G-20 Countries: A Composite Index Analysis. Available online: https://ssrn.com/abstract=4502751 (accessed on 7 July 2023).
- Copeland, P.; Pennington, D.; Singh, M.P. Maximizing winter wheat yield through planting date and seeding rate management. Crop Forage Turfgrass Manag. 2023, 9, e20240. [Google Scholar] [CrossRef]
- Groom, Q.J.; Baker, N.R. Analysis of light-induced depressions of photosynthesis in leaves of a wheat crop during the winter. Plant Physiol. 1992, 100, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Vigil, M.F.; Nielsen, D.C. Winter Wheat Yield Depression from Legume Green Fallow. Agron. J. 1998, 90, 727–734. [Google Scholar] [CrossRef]
- Kolesnikov, S.; Zharkova, M.G.; Kazeev, K.S.; Denisova, T.V.; Akimenko, Y.V. The Growth and Development of Winter Wheat in the Conditions of Lead and Oil Pollution. Int. J. Eng. Technol. 2018, 7, 265–267. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, G.; Wang, L.; Wang, S.; Li, Z. Identifying climate risk causing maize (Zea mays L.) yield fluctuation by time-series data. Nat. Hazards 2019, 96, 1213–1222. [Google Scholar] [CrossRef]
- Huang, C.; Qin, A.; Gao, Y.; Ma, S.; Liu, Z.; Zhao, B.; Ning, D.; Zhang, K.; Gong, W.; Sun, M.; et al. Effects of water deficit at different stages on growth and ear quality of waxy maize. Front. Plant Sci. 2023, 14, 1069551. [Google Scholar] [CrossRef]
- Porter, P.M.; Crookston, R.K.; Ford, J.H.; Huggins, D.R.; Lueschen, W.E. Interrupting Yield Depression in Monoculture Corn: Comparative Effectiveness of Grasses and Dicots. J. Agron. 1997, 89, 247–250. [Google Scholar] [CrossRef]
- Ali, M.; Kuswanto, K.; Kustanto, H. Phenomenon of Inbreeding Depression on Maize in Perspective of The Quran. Agrivita J. Agric. Sci. 2019, 41, 385–393. [Google Scholar] [CrossRef]
- Rashmi Jain, R.J.; Bharadwaj, D.N. Heterosis and Inbreeding Depression for Grain Yield and Yield Contributing Characters in Quality Protein Maize. Agric. Commun. 2014, 2, 8–16. [Google Scholar]
- Gaur, S.C.; Singh, S.N.; Tiwari, L.P.; Gaur, L.B. Heterosis and inbreeding depression in the inheritance of grain yield and its components in wheat (Triticum aestivum). Curr. Adv. Agric. Sci. 2014, 6, 186. [Google Scholar] [CrossRef]
- Shen, S.; Li, B.B.; Deng, T.; Xiao, Z.D.; Chen, X.M.; Hu, H. The equilibrium between sugars and ethylene is involved in shading- and drought-induced kernel abortion in maize. Plant Growth Regul. 2020, 91, 101–111. [Google Scholar] [CrossRef]
- Munodawafa, A. Maize grain yield as affected by the severity of soil erosion under semi-arid conditions and granitic sandy soils of Zimbabwe. Phys. Chem. Earth 2011, 36, 963–967. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 2017, 12, 015001. [Google Scholar] [CrossRef]
- Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; van Ittersum, M.K.; Janssen, S.; Rivington, M.; et al. Crop modelling for integrated assessment of risk to food production from climate change. Environ. Model. Softw. 2015, 72, 287–303. [Google Scholar] [CrossRef]
- EC. Risk Management Schemes in EU Agriculture: Dealing with Risk and Volatility EU Agricultural Markets Briefs. 2017. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-isheries/trade/documents/agri-market-brief-12_en.pdf (accessed on 14 March 2024).
- Finger, R. Biases in Farm-Level Yield Risk Analysis due to Data Aggregation. Ger. J. Agric. Econ. 2012, 61, 30–43. [Google Scholar] [CrossRef]
- Heimfarth, L.E.; Finger, R.; Musshoff, O. Hedging weather risk on aggregated and individual farm-level. Agric. Financ. Rev. 2012, 72, 471–487. [Google Scholar] [CrossRef]
- Webber, H.; Gaiser, T.; Oomen, R.; Teixeira, E.; Zhao, G.; Wallach, D.; Zimmermann, A.; Ewert, F. Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe. Environ. Res. Lett. 2016, 11, 074007. [Google Scholar] [CrossRef]
- Ben-Ari, T.; Boé, J.; Ciais, P.; Lecerf, R.; Van der Velde, M.; Makowski, D. Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nat. Commun. 2018, 9, 1627. [Google Scholar] [CrossRef]
- Webber, H.; Lischeid, G.; Sommer, M.; Finger, R.; Nendel, C.; Gaiser, T.; Ewert, F. No perfect storm for crop yield failure in Germany. Environ. Res. Lett. 2020, 15, 104012. [Google Scholar] [CrossRef]
- Wald, A.; Wolfowitz, J. On a test whether two samples are from the same population. Ann. Math. Stat. 1940, 11, 147–162. [Google Scholar] [CrossRef]
- Eddoughri, F.; Lkammarte, F.Z.; El Jarroudi, M.; Lahlali, R.; Karmaoui, A.; Yacoubi Khebiza, M.; Messouli, M. Analysis of the Vulnerability of Agriculture to Climate and Anthropogenic Impacts in the Beni Mellal-Khénifra Region, Morocco. Sustainability 2022, 14, 13166. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Papadopoulou, C.-I.; Loizou, E.; Chatzitheodoridis, F. Risk, Vulnerability, and Resilience in Agriculture and Their Impact on Sustainable Rural Economy Development: A Case Study of Greece. Agriculture 2023, 13, 1222. [Google Scholar] [CrossRef]
- Ribeiro, A.F.S.; Russo, A.; Gouveia, C.M.; Páscoa, P.; Zscheischler, J. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences 2020, 17, 4815–4830. [Google Scholar] [CrossRef]
- Goulart, H.M.D.; van der Wiel, K.; Folberth, C.; Balkovic, J.; van den Hurk, B. Weather-induced crop failure events under climate change: A storyline approach. Earth Syst. Dyn. 2021, 12, 1503–1527. [Google Scholar] [CrossRef]
- Anderson, W.B.; Seager, R.; Baethgen, W.; Cane, M.; You, L. Synchronous crop failures and climate-forced production variability. Sci. Adv. 2019, 5, eaaw1976. [Google Scholar] [CrossRef]
- Li, H.; Keune, J.; Smessaert, F.; Nieto, R.; Gimeno, L.; Miralles, D.G. Land–atmosphere feedbacks contribute to crop failure in global rainfed breadbaskets. NPJ Clim. Atmos. Sci. 2023, 6, 51. [Google Scholar] [CrossRef]
- Stella, T.; Webber, H.; Olesen, J.E.; Ruane, A.C.; Fronzek, S.; Bregaglio, S.; Mamidanna, S.; Bindi, M.; Collins, B.; Faye, B.; et al. Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change. Environ. Res. Lett. 2021, 16, 104033. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, L.; Kirkham, M.B.; Welch, S.M.; Nielsen-Gammon, J.W.; Bai, G.U.S. winter wheat yield loss attributed to compound hot-dry-windy events. Nat. Commun. 2022, 13, 7233. [Google Scholar] [CrossRef] [PubMed]
- Iwańska, M.; Stępień, M. The effect of soil and weather conditions on yields of winter wheat in multi-environmental trials. Biom. Lett. 2019, 56, 263–279. [Google Scholar] [CrossRef]
- Jin, Z.; Zhuang, Q.; Tan, Z.; Dukes, J.S.; Zheng, B.; Melillo, J.M. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Chang. Biol. 2016, 22, 3112–3126. [Google Scholar] [CrossRef]
- Obour, P.B.; Arthur, I.K.; Owusu, K. The 2020 Maize Production Failure in Ghana: A Case Study of Ejura-Sekyedumase Municipality. Sustainability 2022, 14, 3514. [Google Scholar] [CrossRef]
Crop | Period | Loss at Least | Annual Probability (p) |
---|---|---|---|
Winter wheat | 1926–1960 | 15% | 0.26 |
30% | 0.03 | ||
1985–2023 | 15% | 0.13 | |
30% | 0.05 | ||
Maize | 1926–1960 | 15% | 0.26 |
30% | 0.11 | ||
1985–2023 | 15% | 0.31 | |
30% | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huzsvai, L.; Juhász, C.; Seddik, L.; Kovács, G.; Zsembeli, J. The Future Probability of Winter Wheat and Maize Yield Failure in Hungary Based on Long-Term Temporal Patterns. Sustainability 2024, 16, 3962. https://doi.org/10.3390/su16103962
Huzsvai L, Juhász C, Seddik L, Kovács G, Zsembeli J. The Future Probability of Winter Wheat and Maize Yield Failure in Hungary Based on Long-Term Temporal Patterns. Sustainability. 2024; 16(10):3962. https://doi.org/10.3390/su16103962
Chicago/Turabian StyleHuzsvai, László, Csaba Juhász, Loujaine Seddik, Györgyi Kovács, and József Zsembeli. 2024. "The Future Probability of Winter Wheat and Maize Yield Failure in Hungary Based on Long-Term Temporal Patterns" Sustainability 16, no. 10: 3962. https://doi.org/10.3390/su16103962
APA StyleHuzsvai, L., Juhász, C., Seddik, L., Kovács, G., & Zsembeli, J. (2024). The Future Probability of Winter Wheat and Maize Yield Failure in Hungary Based on Long-Term Temporal Patterns. Sustainability, 16(10), 3962. https://doi.org/10.3390/su16103962