Integrated Adaptation Strategies for Human–Leopard Cat Coexistence Management in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Integration of Adaptive Capacity Framework into Human–Wildlife Coexistence
2.2.1. Assets
2.2.2. Flexibility
2.2.3. Social Organisation
2.2.4. Learning
2.2.5. Agency
2.3. Application of the Importance–Performance Analysis
2.4. Questionnaire Design
2.5. Data Collection
2.6. Data Analysis
3. Results
3.1. Respondents’ Characteristics
3.2. Perceived Importance and Performance of Adaptation Strategies
3.3. Importance–Performance Matrix of Adaptation Strategies
3.4. Factors Affecting Respondents’ Willingness to Participate in Adaptation Strategies
4. Discussion
4.1. Prioritised Areas of Adaptation Strategies for Coexistence
4.2. Participatory Behaviours in Adaptation Strategies for Coexistence
4.3. Implications for Adaptation Strategies and Policies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dickman, A.J. Complexities of conflict: The importance of considering social factors for effectively resolving human–wildlife conflict. Anim. Conserv. 2010, 13, 458–466. [Google Scholar] [CrossRef]
- Mekonen, S. Coexistence between human and wildlife: The nature, causes and mitigations of human wildlife conflict around Bale Mountains National Park, Southeast Ethiopia. BMC Ecol. 2020, 20, 51. [Google Scholar] [CrossRef] [PubMed]
- Waters, C.N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A.D.; Poirier, C.; Gałuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.C.; Ellis, M. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016, 351, aad2622. [Google Scholar] [CrossRef] [PubMed]
- Estes, J.A.; Terborgh, J.; Brashares, J.S.; Power, M.E.; Berger, J.; Bond, W.J.; Carpenter, S.R.; Essington, T.E.; Holt, R.D.; Jackson, J.B. Trophic downgrading of planet Earth. Science 2011, 333, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Woodroffe, R.; Thirgood, S.; Rabinowitz, A. People and Wildlife, Conflict or Co-Existence? Cambridge University Press: Cambridge, UK, 2005; Volume 9. [Google Scholar]
- Conover, M.R. Resolving Human-Wildlife Conflicts: The Science of Wildlife Damage Management; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Cardillo, M.; Purvis, A.; Sechrest, W.; Gittleman, J.L.; Bielby, J.; Mace, G.M. Human Population Density and Extinction Risk in the World’s Carnivores. PLoS Biol. 2004, 2, e197. [Google Scholar] [CrossRef] [PubMed]
- Cowie, R.H.; Bouchet, P.; Fontaine, B. The Sixth Mass Extinction: Fact, fiction or speculation? Biol. Rev. Camb. Philos. Soc. 2022, 97, 640–663. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Yáñez, H.; Kim, S.Y.; Che-Castaldo, J.P. Demographic and life history traits explain patterns in species vulnerability to extinction. PLoS ONE 2022, 17, e0263504. [Google Scholar] [CrossRef] [PubMed]
- Wikramanayake, E.; Dinerstein, E.; Seidensticker, J.; Lumpkin, S.; Pandav, B.; Shrestha, M.; Mishra, H.; Ballou, J.; Johnsingh, A.; Chestin, I. A landscape-based conservation strategy to double the wild tiger population. Conserv. Lett. 2011, 4, 219–227. [Google Scholar] [CrossRef]
- Stephens, P.A. Land sparing, land sharing, and the fate of Africa’s lions. Proc. Natl. Acad. Sci. USA 2015, 112, 14753–14754. [Google Scholar] [CrossRef]
- Boron, V.; Xofis, P.; Link, A.; Payan, E.; Tzanopoulos, J. Conserving predators across agricultural landscapes in Colombia: Habitat use and space partitioning by jaguars, pumas, ocelots and jaguarundis. Oryx 2020, 54, 554–563. [Google Scholar] [CrossRef]
- Chen, M.-T.; Liang, Y.-J.; Kuo, C.-C.; Pei, K.J.-C. Home ranges, movements and activity patterns of leopard cats (Prionailurus bengalensis) and threats to them in Taiwan. Mammal Study 2016, 41, 77–86. [Google Scholar] [CrossRef]
- Woodroffe, R. Predators and people: Using human densities to interpret declines of large carnivores. Anim. Conserv. 2000, 3, 165–173. [Google Scholar] [CrossRef]
- Treves, A.; Karanth, K.U. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 2003, 17, 1491–1499. [Google Scholar] [CrossRef]
- Chiang, P.-J.; Pei, K.J.-C.; Vaughan, M.R.; Li, C.-F.; Chen, M.-T.; Liu, J.-N.; Lin, C.-Y.; Lin, L.-K.; Lai, Y.-C. Is the clouded leopard Neofelis nebulosa extinct in Taiwan, and could it be reintroduced? An assessment of prey and habitat. Oryx 2015, 49, 261–269. [Google Scholar] [CrossRef]
- Forestry Bureau. Terrestrial Wildlife Conservation List; Forestry Bureau, Excecutive Yuan: Taipei, Taiwan, 2020. [Google Scholar]
- Pei, K.J.-C.; Lu, D.-J.; Hwang, M.-H.; Chao, J.-L.; Chen, M.-T. Initiating Community-Involved Conservation Activities for Endangered Leopard Cats in Miaoli, Taiwan; Final Report, Report Taiwan Forestry Bureau Conservation Research, Series No 100-02-08-02, Executive Yuan; Forestry Bureau: Taipei, Taiwan, 2014; p. 72. [Google Scholar]
- Pei, K.J.-C. Present Status and Conservation of Small Carnivores at Low Elevation Mountains in Hsinchu County and Miaoli County (3/3); Final Report, Forestry Bureau Conservation Research Series No. 96-01; Forestry Bureau: Taipei, Taiwan, 2008; p. 88. [Google Scholar]
- St. John, F.A.V.; Mai, C.-H.; Pei, K.J.-C. Evaluating deterrents of illegal behaviour in conservation: Carnivore killing in rural Taiwan. Biol. Conserv. 2015, 189, 86–94. [Google Scholar] [CrossRef]
- Redpath, S.M.; Bhatia, S.; Young, J. Tilting at wildlife: Reconsidering human–wildlife conflict. Oryx 2015, 49, 222–225. [Google Scholar] [CrossRef]
- Redpath, S.; Young, J.; Evely, A.; Adams, W.; Sutherland, W.; Whitehouse, A.; Amar, A.; Lambert, R.; Linnell, J.; Watt, A.; et al. Understanding and Managing Conservation Conflicts. Trends Ecol. Evol. 2013, 28, 100–109. [Google Scholar] [CrossRef]
- Jiren, T.S.; Riechers, M.; Kansky, R.; Fischer, J. Participatory scenario planning to facilitate human–wildlife coexistence. Conserv. Biol. 2021, 35, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Forestry and Nature Conservation Agency. Upgrading of Payments for Ecosystem Services Following “Leopard Cat-Friendly” Incentives, Taking Care of Both Species Habitat Conservation and the Economy; Forestry and Nature Conservation Agency: Taipei, Taiwan, 2020. [Google Scholar]
- Chen, W.-L.; van der Meer, E.; Pei, K.J.-C. Determinants of attitudes towards wildlife in rural Taiwan and its implications for leopard cat (Prionailurus bengalensis) conservation performance payment. Wildl. Res. 2022, 50, 248–259. [Google Scholar] [CrossRef]
- Bautista, C.; Revilla, E.; Naves, J.; Albrecht, J.; Fernández, N.; Olszańska, A.; Adamec, M.; Berezowska-Cnota, T.; Ciucci, P.; Groff, C.; et al. Large carnivore damage in Europe: Analysis of compensation and prevention programs. Biol. Conserv. 2019, 235, 308–316. [Google Scholar] [CrossRef]
- Kansky, R.; Kidd, M.; Knight, A.T. A wildlife tolerance model and case study for understanding human wildlife conflicts. Biol. Conserv. 2016, 201, 137–145. [Google Scholar] [CrossRef]
- Okello, M.M. Land use changes and human–wildlife conflicts in the Amboseli Area, Kenya. Hum. Dimens. Wildl. 2005, 10, 19–28. [Google Scholar] [CrossRef]
- Chen, W.-L. Masters Thesis: Attitude toward Leopard Cat (Prionailurus bengalensis) and the Conservation Payment Program of Residents in Yuanli, Sanyi and Zhoulan Townships, Miaoli County. Master’s Thesis, School of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu Township, Taiwan, 2020. [Google Scholar]
- Miaoli County. Government Household Registration Service. Household and Population Data in Villages of Miaoli County. 2018. Available online: https://mlhr.miaoli.gov.tw/ (accessed on 11 April 2024).
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Grothmann, T.; Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Chang. 2005, 15, 199–213. [Google Scholar] [CrossRef]
- Cinner, J.E.; Adger, W.N.; Allison, E.H.; Barnes, M.L.; Brown, K.; Cohen, P.J.; Gelcich, S.; Hicks, C.C.; Hughes, T.P.; Lau, J. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Chang. 2018, 8, 117–123. [Google Scholar] [CrossRef]
- Suryawan, I.W.K.; Lee, C.-H. Community preferences in carbon reduction: Unveiling the importance of adaptive capacity for solid waste management. Ecol. Indic. 2023, 157, 111226. [Google Scholar] [CrossRef]
- Berry, P.; Ogawa-Onishi, Y.; McVey, A. The vulnerability of threatened species: Adaptive capability and adaptation opportunity. Biology 2013, 2, 872–893. [Google Scholar] [CrossRef]
- Ives, C.D.; Kendal, D. The role of social values in the management of ecological systems. J. Environ. Manag. 2014, 144, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, P.S.; Folke, C.; Carroll, S.P. Evolution in the Anthropocene: Informing governance and policy. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 527–546. [Google Scholar] [CrossRef]
- Gittleman, J.L. Carnivore Conservation; Cambridge University Press: Cambridge, UK, 2001; Volume 5. [Google Scholar]
- Reidinger, R.F., Jr.; Miller, J.E. Wildlife Damage Management: Prevention, Problem Solving, and Conflict Resolution; JHU Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Ravenelle, J.; Nyhus, P.J. Global patterns and trends in human–wildlife conflict compensation. Conserv. Biol. 2017, 31, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtner, K.; Gruber, B. A conceptual framework for damage compensation schemes. Biol. Conserv. 2007, 134, 354–360. [Google Scholar] [CrossRef]
- Pywell, R.F.; Heard, M.S.; Woodcock, B.A.; Hinsley, S.; Ridding, L.; Nowakowski, M.; Bullock, J.M. Wildlife-friendly farming increases crop yield: Evidence for ecological intensification. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151740. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.M.; Lahkar, B.P.; Subedi, N.; Nyirenda, V.R.; Lichtenfeld, L.L.; Jakoby, O. Seasonality, crop type and crop phenology influence crop damage by wildlife herbivores in Africa and Asia. Biodivers. Conserv. 2018, 27, 2029–2050. [Google Scholar] [CrossRef]
- Fischer, J.; Brosi, B.; Daily, G.C.; Ehrlich, P.R.; Goldman, R.; Goldstein, J.; Lindenmayer, D.B.; Manning, A.D.; Mooney, H.A.; Pejchar, L. Should agricultural policies encourage land sparing or wildlife-friendly farming? Front. Ecol. Environ. 2008, 6, 380–385. [Google Scholar] [CrossRef]
- Kremen, C. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann. N. Y. Acad. Sci. 2015, 1355, 52–76. [Google Scholar] [CrossRef]
- Best, I.N.; Shaner, P.-J.L.; Pei, K.J.-C.; Kuo, C.-C. Farmers & rsquo; Knowledge, Attitudes, and Control Practices of Rodents in an Agricultural Area of Taiwan. Agronomy 2022, 12, 1169. [Google Scholar]
- Brown, P.R.; Khamphoukeo, K. Changes in farmers’ knowledge, attitudes and practices after implementation of ecologically-based rodent management in the uplands of Lao PDR. Crop Prot. 2010, 29, 577–582. [Google Scholar] [CrossRef]
- Jones, C.R.; Lorica, R.P.; Villegas, J.M.; Ramal, A.F.; Horgan, F.G.; Singleton, G.R.; Stuart, A.M. The stadium effect: Rodent damage patterns in rice fields explored using giving-up densities. Integr. Zool. 2017, 12, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Bond, J.; Mkutu, K. Exploring the hidden costs of human–wildlife conflict in northern Kenya. Afr. Stud. Rev. 2018, 61, 33–54. [Google Scholar] [CrossRef]
- Barua, M.; Bhagwat, S.A.; Jadhav, S. The hidden dimensions of human–wildlife conflict: Health impacts, opportunity and transaction costs. Biol. Conserv. 2013, 157, 309–316. [Google Scholar] [CrossRef]
- Roe, D.; Booker, F.; Day, M.; Zhou, W.; Allebone-Webb, S.; Hill, N.A.; Kumpel, N.; Petrokofsky, G.; Redford, K.; Russell, D. Are alternative livelihood projects effective at reducing local threats to specified elements of biodiversity and/or improving or maintaining the conservation status of those elements? Environ. Evid. 2015, 4, 22. [Google Scholar] [CrossRef]
- Wright, J.H.; Hill, N.A.O.; Roe, D.; Rowcliffe, J.M.; Kümpel, N.F.; Day, M.; Booker, F.; Milner-Gulland, E.J. Reframing the concept of alternative livelihoods. Conserv. Biol. 2016, 30, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Young, J.C.; Searle, K.; Butler, A.; Simmons, P.; Watt, A.D.; Jordan, A. The role of trust in the resolution of conservation conflicts. Biol. Conserv. 2016, 195, 196–202. [Google Scholar] [CrossRef]
- Barnes, M.L.; Bodin, Ö.; Guerrero, A.M.; McAllister, R.R.; Alexander, S.M.; Robins, G. The social structural foundations of adaptation and transformation in social–ecological systems. Ecol. Soc. 2017, 22, 16. [Google Scholar] [CrossRef]
- Treves, A.; Wallace, R.B.; Naughton-Treves, L.; Morales, A. Co-Managing Human–Wildlife Conflicts: A Review. Hum. Dimens. Wildl. 2006, 11, 383–396. [Google Scholar] [CrossRef]
- Baruch-Mordo, S.; Breck, S.W.; Wilson, K.R.; Broderick, J. The carrot or the stick? evaluation of education and enforcement as management tools for human-wildlife conflicts. PLoS ONE 2011, 6, e15681. [Google Scholar] [CrossRef]
- Marker, L.L.; Boast, L.K. Human–wildlife conflict 10 years later: Lessons learned and their application to cheetah conservation. Hum. Dimens. Wildl. 2015, 20, 302–309. [Google Scholar] [CrossRef]
- McCracken, M.E.; Woodcock, B.A.; Lobley, M.; Pywell, R.F.; Saratsi, E.; Swetnam, R.D.; Mortimer, S.R.; Harris, S.J.; Winter, M.; Hinsley, S.; et al. Social and ecological drivers of success in agri-environment schemes: The roles of farmers and environmental context. J. Appl. Ecol. 2015, 52, 696–705. [Google Scholar] [CrossRef]
- Pandey, A. Study on the cancer by chemical pesticides exposure to pesticide applicators, farm workers and consumers: Urgent need for safer eco-friendly pesticides. World J. Adv. Res. Rev. 2023, 17, 121–125. [Google Scholar] [CrossRef]
- Babasaheb, M.J.S. 14 Eco-Friendly Agriculture: A Demand of Future. In Recent Trends and Latest Innovations in Life Sciences Volume-I; Global Academy: Lewes, DE, USA, 2022; p. 114. [Google Scholar]
- Madden, F.M. The growing conflict between humans and wildlife: Law and policy as contributing and mitigating factors. J. Int. Wildl. Law Policy 2008, 11, 189–206. [Google Scholar] [CrossRef]
- Larson, L.R.; Conway, A.L.; Hernandez, S.M.; Carroll, J.P. Human-wildlife conflict, conservation attitudes, and a potential role for citizen science in Sierra Leone, Africa. Conserv. Soc. 2016, 14, 205–217. [Google Scholar] [CrossRef]
- Scholz, A.; Bonzon, K.; Fujita, R.; Benjamin, N.; Woodling, N.; Black, P.; Steinback, C. Participatory socioeconomic analysis: Drawing on fishermen’s knowledge for marine protected area planning in California. Mar. Policy 2004, 28, 335–349. [Google Scholar] [CrossRef]
- Noga, S.R.; Kolawole, O.D.; Thakadu, O.T.; Masunga, G.S. ‘Wildlife officials only care about animals’: Farmers’ perceptions of a Ministry-based extension delivery system in mitigating human-wildlife conflicts in the Okavango Delta, Botswana. J. Rural. Stud. 2018, 61, 216–226. [Google Scholar] [CrossRef]
- McCool, S.F. Building Consensus: Legitimate Hope or Seductive Paradox? US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2000. [Google Scholar]
- Harrison, C.; Burgess, J. Valuing nature in context: The contribution of common-good approaches. Biodivers. Conserv. 2000, 9, 1115–1130. [Google Scholar] [CrossRef]
- Ehrhart, S.; Schraml, U. Adaptive co-management of conservation conflicts—An interactional experiment in the context of German national parks. Heliyon 2018, 4, e00890. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Young, J.; McMyn, I.; Leyshon, B.; Graham, I.; Walker, I.; Baxter, J.; Dodd, J.; Warburton, C. Evaluating adaptive co-management as conservation conflict resolution: Learning from seals and salmon. J. Environ. Manag. 2015, 160, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Armitage, D.R.; Plummer, R.; Berkes, F.; Arthur, R.I.; Charles, A.T.; Davidson-Hunt, I.J.; Diduck, A.P.; Doubleday, N.C.; Johnson, D.S.; Marschke, M.; et al. Adaptive co-management for social–ecological complexity. Front. Ecol. Environ. 2009, 7, 95–102. [Google Scholar] [CrossRef]
- Olko, J.; Hędrzak, M.; Cent, J.; Subel, A. Cooperation in the Polish national parks and their neighborhood in a view of different stakeholders–a long way ahead? Innov. Eur. J. Soc. Sci. Res. 2011, 24, 295–312. [Google Scholar] [CrossRef]
- Zurba, M.; Ross, H.; Izurieta, A.; Rist, P.; Bock, E.; Berkes, F. Building co-management as a process: Problem solving through partnerships in Aboriginal Country, Australia. Environ. Manag. 2012, 49, 1130–1142. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; EL, B.; DGC, K.; RM, W.; Yusuf, A.S. Building Capacity for Adaption Pathways in Eastern Indonesian Islands: Synthesis and Lessons Learned. Clim. Risk Manag. 2016, 12, 1–10. [Google Scholar] [CrossRef]
- Martilla, J.A.; James, J.C. Importance-performance analysis. J. Mark. 1977, 41, 77–79. [Google Scholar] [CrossRef]
- Azzopardi, E.; Nash, R. A critical evaluation of importance–performance analysis. Tour. Manag. 2013, 35, 222–233. [Google Scholar] [CrossRef]
- Tonge, J.; Moore, S.A. Importance-satisfaction analysis for marine-park hinterlands: A Western Australian case study. Tour. Manag. 2007, 28, 768–776. [Google Scholar] [CrossRef]
- Wade, D.J.; Eagles, P.F. The use of importance–performance analysis and market segmentation for tourism management in parks and protected areas: An application to Tanzania’s national parks. J. Ecotourism 2003, 2, 196–212. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, N.; Wang, S.; Yu, J.; Zhao, W.; Fu, B. A multiple importance–satisfaction analysis framework for the sustainable management of protected areas: Integrating ecosystem services and basic needs. Ecosyst. Serv. 2020, 46, 101219. [Google Scholar] [CrossRef]
- Hunt, K.S.; Scott, D.; Richardson, S. Positioning public recreation and park offerings using importance-performance analysis. J. Park Recreat. Adm. 2003, 21, 3. [Google Scholar]
- Chen, H.-C.; Tseng, T.-P.; Cheng, K.; Sriarkarin, S.; Xu, W.; Ferdin, A.E.; Nguyen, V.V.; Zong, C.; Lee, C.-H. Conducting an evaluation framework of importance-performance analysis for sustainable forest management in a rural area. Forests 2021, 12, 1357. [Google Scholar] [CrossRef]
- Hua, J.; Chen, W.Y. Prioritizing urban rivers’ ecosystem services: An importance-performance analysis. Cities 2019, 94, 11–23. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Pandey, R. Importance-performance analysis of ecosystem services in tribal communities of the Barind region, Eastern India. Ecosyst. Serv. 2022, 55, 101431. [Google Scholar] [CrossRef]
- Nguyen, V.V.; Phan, T.T.T.; Ferdin, A.E.; Lee, C.-H. Conducting importance–performance analysis for human–elephant conflict management surrounding a national park in Vietnam. Forests 2021, 12, 1458. [Google Scholar] [CrossRef]
- Suhardono, S.; Fitria, L.; Septiariva, I.Y.; Sari, M.M.; Ulhasanah, N.; Prayogo, W.; Arifianingsih, N.N.; Buana, D.M.A.; Suryawan, I.W.K. Community-centric importance and performance evaluation of human-orangutan conflict management in Aceh, Indonesia. Trees For. People 2024, 15, 100510. [Google Scholar] [CrossRef]
- Newing, H. Conducting Research in Conservation: Social Science Methods and Practice; Routledge: London, UK, 2010. [Google Scholar]
- Jay-Russell, M.T.; Hake, A.F.; Bengson, Y.; Thiptara, A.; Nguyen, T. Prevalence and characterization of Escherichia coli and Salmonella strains isolated from stray dog and coyote feces in a major leafy greens production region at the United States-Mexico border. PLoS ONE 2014, 9, e113433. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.; Sjöström, M. Subsidized fencing of livestock as a means of increasing tolerance for wolves. Ecol. Soc. 2011, 16, 10. [Google Scholar] [CrossRef]
- Kumar, A.; Paliwal, R. Feral dogs of Spiti Valley, Himachal Pradesh: An emerging threat for wildlife and human life. Curr. Sci. 2015, 108, 1799–1800. [Google Scholar]
- Contreras-Abarca, R.; Crespin, S.J.; Moreira-Arce, D.; Simonetti, J.A. Redefining feral dogs in biodiversity conservation. Biol. Conserv. 2022, 265, 109434. [Google Scholar] [CrossRef]
- Espinosa, S.; Jacobson, S.K. Human-wildlife conflict and environmental education: Evaluating a community program to protect the Andean bear in Ecuador. J. Environ. Educ. 2012, 43, 55–65. [Google Scholar] [CrossRef]
- Decker, D.J.; Lauber, T.B.; Siemer, W.F. Human-Wildlife Conflict Management; Cornell University: Ithaca, NY, USA, 2002. [Google Scholar]
- Anthony, B.P.; Scott, P.; Antypas, A. Sitting on the fence? Policies and practices in managing human-wildlife conflict in Limpopo Province, South Africa. Conserv. Soc. 2010, 8, 225–240. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Taplin, R.H. Competitive importance-performance analysis of an Australian wildlife park. Tour. Manag. 2012, 33, 29–37. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Yeh, S.-C.; Liang, S.-W.; Fang, W.-T.; Tsai, H.-M. A national investigation of teachers’ environmental literacy as a reference for promoting environmental education in Taiwan. J. Environ. Educ. 2015, 46, 114–132. [Google Scholar] [CrossRef]
- Hsu, S.-J. The effects of an environmental education program on responsible environmental behavior and associated environmental literacy variables in Taiwanese college students. J. Environ. Educ. 2004, 35, 37–48. [Google Scholar] [CrossRef]
- Durant, S.M.; Becker, M.S.; Creel, S.; Bashir, S.; Dickman, A.J.; Beudels-Jamar, R.C.; Lichtenfeld, L.; Hilborn, R.; Wall, J.; Wittemyer, G. Developing fencing policies for dryland ecosystems. J. Appl. Ecol. 2015, 52, 544–551. [Google Scholar] [CrossRef]
- Hart, A. The fence-the welfare implications of the loss of the true wild. In Animal Welfare in a Changing World; CAB International: Wallingford, UK, 2018; pp. 35–45. [Google Scholar]
- Long, K.; Robley, A. Cost Effective Feral Animal Exclusion Fencing for Areas of High Conservation Value in Australia: A Report; Victoria Department of Sustainability and Environment: Melbourne, VIC, Australia, 2004. [Google Scholar]
- Neef, A.; Matevosyan, A.; LU, D.-J. Resistance to Decentralised Natural Resource Governance: Taiwan’s Chiku Wildlife Refuge. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4724615 (accessed on 11 April 2024).
- Tang, S.-Y.; Tang, C.-P. Local governance and environmental conservation: Gravel politics and the preservation of an endangered bird species in Taiwan. Environ. Plan. A 2004, 36, 173–189. [Google Scholar] [CrossRef]
- McBeath, G.A.; Leng, T.-K. Governance of Biodiversity Conservation in China and Taiwan; Edward Elgar Publishing: Cheltenham, UK, 2006. [Google Scholar]
- Holling, C.S.; Meffe, G.K. Command and control and the pathology of natural resource management. Conserv. Biol. 1996, 10, 328–337. [Google Scholar] [CrossRef]
- Oakland, J.S. Total Organizational Excellence: Achieving World-Class Performance; Routledge: London, UK, 2007. [Google Scholar]
- Lane, M.B. Decentralization or privatization of environmental governance? Forest conflict and bioregional assessment in Australia. J. Rural. Stud. 2003, 19, 283–294. [Google Scholar] [CrossRef]
- KC, B.; Chapagain, B.; Kelly, M. Mapping and analyzing human–wildlife conflicts communication network to promote conservation success in protected areas: Evidence from Nepal. Environ. Dev. Sustain. 2024, 26, 8839–8858. [Google Scholar] [CrossRef]
- Zabel, A.; Holm-Müller, K. Conservation performance payments for carnivore conservation in Sweden. Conserv. Biol. 2008, 22, 247–251. [Google Scholar] [CrossRef]
- Suryawanshi, K.R.; Bhatia, S.; Bhatnagar, Y.V.; Redpath, S.; Mishra, C. Multiscale factors affecting human attitudes toward snow leopards and wolves. Conserv. Biol. 2014, 28, 1657–1666. [Google Scholar] [CrossRef] [PubMed]
- Best, I.; Pei, K.J.-C. Factors influencing local attitudes towards the conservation of leopard cats Prionailurus bengalensis in rural Taiwan. Oryx 2019, 54, 866–872. [Google Scholar] [CrossRef]
- Mojo, D.; Rothschuh, J.; Alebachew, M. Farmers’ perceptions of the impacts of human–wildlife conflict on their livelihood and natural resource management efforts in Cheha Woreda of Guraghe Zone, Ethiopia. Hum. Wildl. Interact. 2014, 8, 67–77. [Google Scholar]
- Lobley, M.; Saratsi, E.; Winter, M.; Bullock, J. Training farmers in agri-environmental management: The case of Environmental Stewardship in lowland England. Int. J. Agric. Manag. 2013, 3, 12–20. [Google Scholar]
- De Snoo, G.R.; Herzon, I.; Staats, H.; Burton, R.J.; Schindler, S.; van Dijk, J.; Lokhorst, A.M.; Bullock, J.M.; Lobley, M.; Wrbka, T. Toward effective nature conservation on farmland: Making farmers matter. Conserv. Lett. 2013, 6, 66–72. [Google Scholar] [CrossRef]
- Bhatia, S.; Redpath, S.M.; Suryawanshi, K.; Mishra, C. Beyond conflict: Exploring the spectrum of human–wildlife interactions and their underlying mechanisms. Oryx 2020, 54, 621–628. [Google Scholar] [CrossRef]
- Massé, F. The political ecology of human-wildlife conflict: Producing wilderness, insecurity, and displacement in the Limpopo National Park. Conserv. Soc. 2016, 14, 100–111. [Google Scholar] [CrossRef]
- Dickman, A.J.; Hazzah, L. Money, myths and man-eaters: Complexities of human–wildlife conflict. In Problematic Wildlife: A Cross-Disciplinary Approach; Springer: Cham, Switzerland, 2016; pp. 339–356. [Google Scholar]
- Carter, N.H.; Linnell, J.D. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 2016, 31, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Fazey, I.; Fazey, J.A.; Fischer, J.; Sherren, K.; Warren, J.; Noss, R.F.; Dovers, S.R. Adaptive capacity and learning to learn as leverage for social–ecological resilience. Front. Ecol. Environ. 2007, 5, 375–380. [Google Scholar] [CrossRef]
- Durant, S.M.; Marino, A.; Linnell, J.D.; Oriol-Cotterill, A.; Dloniak, S.; Dolrenry, S.; Funston, P.; Groom, R.J.; Hanssen, L.; Horgan, J. Fostering coexistence between people and large carnivores in Africa: Using a theory of change to identify pathways to impact and their underlying assumptions. Front. Conserv. Sci. 2022, 2, 698631. [Google Scholar] [CrossRef]
- Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15181–15187. [Google Scholar] [CrossRef] [PubMed]
Domain | Indicator | Code | Literature |
---|---|---|---|
Assets | 1. Installation of proper fencing system | AS1 | [85,86] |
2. Effective population control of stray dogs that disturb humans and wildlife | AS2 | [87,88] | |
Flexibility | 1. Alternative non-invasive methods to control rodents to reduce secondary poisoning of wildlife | FL1 | [46,47,48] |
2. Wildlife-friendly farming practices | FL2 | [58,59,60] | |
Social organisation | 1. Community meetings to promote social cohesion, information exchange, and cooperation among stakeholders | SO1 | [89,90,91] |
2. Establishment of a local group to facilitate communication among stakeholders | SO2 | [55] | |
Learning | 1. Educational guides on the ecological functions of leopard cats and their management methods | LE1 | [56,57] |
2. Training and workshops on wildlife-friendly farming | LE2 | [58,59,60] | |
Agency | 1. Incorporation of local knowledge, skills, and management into both science and policy | AG1 | [62,63,64] |
2. Establishment of adaptive co-management with local farmer associations/NGOs | AG2 | [53,68,69] |
Variable | N (%) | ||
---|---|---|---|
Supporters | Non-Supporters | Total | |
Gender | |||
Male | 226 (57.2) | 12 (52.2) | 238 (56.9) |
Female | 169 (42.8) | 11 (47.8) | 180 (43.1) |
Age | |||
20–29 | 39 (9.9) | 0 | 39 (9.3) |
30–39 | 41 (10.4) | 0 | 41 (9.8) |
40–49 | 75 (19.0) | 3 (13.0) | 78 (18.7) |
50–59 | 120 (30.4) | 12 (52.2) | 132 (31.6) |
Over 59 | 120 (30.4) | 8 (34.8) | 128 (30.6) |
Marital status | |||
Married | 301 (76.2) | 21 (91.3) | 322 (77.0) |
Single | 94 (23.8) | 2 (8.7) | 96 (23.0) |
Educational level | |||
Junior high or below | 115 (29.1) | 12 (52.2) | 127 (30.4) |
Senior high | 133 (33.7) | 5 (21.7) | 138 (33.0) |
Undergraduate | 111 (28.1) | 5 (21.7) | 116 (27.8) |
Post-graduate or above | 36 (9.1) | 1 (4.3) | 37 (8.9) |
Monthly household income | |||
Up to NTD 40,000 | 134 (33.9) | 5 (21.7) | 139 (33.3) |
NTD 40,001–60,000 | 132 (33.4) | 12 (52.2) | 144 (34.4) |
NTD 60,001–80,000 | 52 (13.2) | 2 (8.7) | 54 (12.9) |
NTD 80,001–100,000 | 47 (11.9) | 4 (17.4) | 51 (12.2) |
NTD 100,001–150,000 | 18 (4.6) | 0 | 18 (4.3) |
Above NTD 150,000 | 12 (3.0) | 0 | 12 (2.9) |
Total | 418 (100) |
Code | Indicator | Mean (Rank) | Gap P-I | t-Value | p-Value | |
---|---|---|---|---|---|---|
I | P | |||||
Supporters (N = 395) | ||||||
AS1 | Assets 1 | 4.44 (2) | 3.14 (5) | −1.30 | 17.27 | <0.001 |
AS2 | Assets 2 | 4.37 (4) | 2.26 (9) | −2.11 | 20.73 | <0.001 |
FL1 | Flexibility 1 | 4.07 (9) | 2.82 (7) | −1.25 | 15.03 | <0.001 |
FL2 | Flexibility 2 | 4.32 (6) | 3.20 (3) | −1.12 | 16.40 | <0.001 |
SO1 | Social organisation 1 | 4.30 (8) | 3.21 (2) | −1.09 | 15.64 | <0.001 |
SO2 | Social organisation 2 | 4.31 (7) | 2.92 (6) | −1.39 | 19.99 | <0.001 |
LE1 | Learning 1 | 4.45 (1) | 3.58 (1) | −0.87 | 13.31 | <0.001 |
LE2 | Learning 2 | 4.38 (3) | 3.15 (4) | −1.23 | 17.58 | <0.001 |
AG1 | Agency 1 | 4.36 (5) | 2.56 (8) | −1.80 | 24.18 | <0.001 |
AG2 | Agency 2 | 4.38 (3) | 2.10 (10) | −2.28 | 27.74 | <0.001 |
Overall mean | 4.34 | 2.89 | −1.45 | |||
Non-supporters (N = 23) | ||||||
AS1 | Assets 1 | 4.49 (1) | 3.39 (2) | −1.10 | 13.91 | <0.001 |
AS2 | Assets 2 | 4.31 (5) | 2.37 (8) | −1.94 | 18.24 | <0.001 |
FL1 | Flexibility 1 | 4.03 (7) | 3.06 (7) | −0.97 | 9.61 | <0.001 |
FL2 | Flexibility 2 | 4.32 (4) | 3.34 (3) | −0.98 | 12.31 | <0.001 |
SO1 | Social organisation 1 | 4.32 (4) | 3.30 (4) | −1.02 | 14.85 | <0.001 |
SO2 | Social organisation 2 | 4.31 (5) | 3.15 (5) | −1.16 | 16.29 | <0.001 |
LE1 | Learning 1 | 4.33 (3) | 3.69 (1) | −0.64 | 9.96 | <0.001 |
LE2 | Learning 2 | 4.32 (4) | 3.13 (6) | −1.19 | 15.74 | <0.001 |
AG1 | Agency 1 | 4.34 (2) | 2.53 (7) | −1.81 | 21.47 | <0.001 |
AG2 | Agency 2 | 4.07 (6) | 2.14 (9) | −1.93 | 25.93 | <0.001 |
Overall mean | 4.28 | 3.01 | −1.27 |
Variable | Importance of Adaptation Strategies (Model I) | Performance of Adaptation Strategies (Model II) | ||
---|---|---|---|---|
Coeff. | Std. Error | Coeff. | Std. Error | |
Constant | −0.472 | 0.683 | −1.250 * | 0.667 |
Age 1 | −0.486 * | 0.288 | −0.464 * | 0.289 |
Preference for local farmer association 2 | 0.580 ** | 0.148 | 0.608 ** | 0.149 |
Support for coexistence 3 | 1.125 ** | 0.379 | 0.699 * | 0.402 |
Poultry ownership 4 | −0.450 * | 0.245 | −0.409 * | 0.249 |
Mean importance | −0.199 | 0.705 | - | - |
Mean performance | - | - | 1.337 * | 0.767 |
AIC 5 | 140.4 | 137.4 | ||
AIC/N | 0.336 | 0.397 | ||
LLR 6 | 49.690 | 52.670 | ||
Chi-square value | χ2 (5, 0.01) = 15.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, L.B.; Chen, H.-C.; Seekings, T.B.W.; Dhungana, N.; Chen, C.-C.; Lee, C.-H. Integrated Adaptation Strategies for Human–Leopard Cat Coexistence Management in Taiwan. Sustainability 2024, 16, 4031. https://doi.org/10.3390/su16104031
Nguyen LB, Chen H-C, Seekings TBW, Dhungana N, Chen C-C, Lee C-H. Integrated Adaptation Strategies for Human–Leopard Cat Coexistence Management in Taiwan. Sustainability. 2024; 16(10):4031. https://doi.org/10.3390/su16104031
Chicago/Turabian StyleNguyen, Linh Bao, Hsing-Chih Chen, Timothy Bernd Wallace Seekings, Nabin Dhungana, Chi-Cheng Chen, and Chun-Hung Lee. 2024. "Integrated Adaptation Strategies for Human–Leopard Cat Coexistence Management in Taiwan" Sustainability 16, no. 10: 4031. https://doi.org/10.3390/su16104031