The Development of a Fully Renewable Lubricant: The Effect of Ethyl Cellulose on the Properties of a Polyhydroxyalkanoate (P34HB)-Based Grease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Biopolymer-Based Lubricating Greases
2.3. Characterization Methods
2.4. Rheological Measurements
2.5. Tribological Characterization
3. Results and Discussion
3.1. Physicochemical Properties of Complex P34HB-EC-Based Greases and P34HB-Based Grease
3.2. Structural Characterization of Complex P34HB-EC-Based Greases and P34HB-Based Grease
3.3. Rheological Properties of Complex P34HB-EC-Based Greases and P34HB-Based Grease
3.4. Tribological Characteristics of Complex P34HB-EC-Based Greases and P34HB-Based Grease
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fragassa, C.; de Camargo, F.V.; Santulli, C. Sustainable biocomposites: Harnessing the potential of waste seed-based fillers in eco-friendly materials. Sustainability 2024, 16, 1526. [Google Scholar] [CrossRef]
- Mali, M.; Salem, K.S.; Sarder, R.; Agate, S.; Mathur, K.; Pal, L. Understanding binding of quaternary ammonium compounds with cellulose-based fibers and wipes for renewable and sustainable hygiene options. Sustainability 2024, 16, 1586. [Google Scholar] [CrossRef]
- Núñez, N.; Martín-Alfonso, J.E.; Valencia, C.; Sánchez, M.C.; Franco, J.M. Rheology of new green lubricating grease formulations containing cellulose pulp and its methylated derivative as thickener agents. Ind. Crop. Prod. 2012, 37, 500–507. [Google Scholar] [CrossRef]
- Churam, T.; Usubharatana, P.; Phungrassami, H. Sustainable production of carboxymethyl cellulose: A biopolymer alternative from sugarcane (Saccharum officinarum L.) leaves. Sustainability 2024, 16, 2352. [Google Scholar] [CrossRef]
- Park, C.H.; Kang, Y.K.; Im, S.S. Biodegradability of cellulose fabrics. J. Appl. Polym. Sci. 2004, 94, 248–253. [Google Scholar] [CrossRef]
- Nazir, M.S.; Wahjoedi, B.A.; Yussof, A.W.; Abdullah, M.A. Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. Bioresources 2013, 8, 2161–2172. [Google Scholar] [CrossRef]
- Suhas; Gupta, V.K.; Carrott, P.J.M.; Singh, R.; Chaudhary, M.; Kushwaha, S. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresource. Technol. 2016, 216, 1066–1076. [Google Scholar] [CrossRef]
- Li, K.; Zhang, X.; Du, C.; Yang, J.; Wu, B.; Guo, Z.; Dong, C.; Lin, N.; Yuan, C. Friction reduction and viscosity modification of cellulose nanocrystals as biolubricant additives in polyalphaolefin oil. Carbohyd. Polym. 2019, 220, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Gallego, R.; Arteaga, J.F.; Vaencia, C.; Diaz, M.J.; Franco, J.M. Gel-like dispersions of HMDI-cross-linked lignocellulosic materials in castor oil: Toward completely renewable lubricating grease formulations. ACS Sustain. Chem. Eng. 2015, 3, 2130–2141. [Google Scholar] [CrossRef]
- Cortés-Triviño, E.; Valencia, C.; Delgado, M.A.; Franco, J.M. Thermo-rheological and tribological properties of novel bio-lubricating greases thickened with epoxidized lignocellulosic materials. J. Ind. Eng. Chem. 2019, 80, 626–632. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Blánquez, A.; Valencia, C.; Hernández, M.; Arias, M.E.; Eugenio, M.E.; Fillat, Ú.; Franco, J.M. Valorization of soda lignin from wheat straw solid-state fermentation: Production of oleogels. ACS Sustain. Chem. Eng. 2018, 6, 5198–5205. [Google Scholar] [CrossRef]
- Sánchez, R.; Franco, J.M.; Delgado, M.A.; Valencia, C.; Gallegos, C. Development of new green lubricating grease formulations based on cellulosic derivatives and castor oil. Green. Chem. 2009, 11, 686–693. [Google Scholar] [CrossRef]
- Delgado, M.A.; Cortes-Trivino, E.; Valencia, C.; Franco, J.M. Tribological study of epoxide-functionalized alkali lignin-based gel-like biogreases. Tribol. Int. 2020, 146, 106231. [Google Scholar] [CrossRef]
- Sánchez, R.; Franco, J.M.; Delgado, M.A.; Valencia, C.; Gallegos, C. Rheological and mechanical properties of oleogels based on castor oil and cellulosic derivatives potentially applicable as bio-lubricating greases: Influence of cellulosic derivatives concentration ratio. J. Ind. Eng. Chem. 2011, 17, 705–711. [Google Scholar] [CrossRef]
- Núñez, N.; Martín-Alfonso, J.E.; Eugenio, M.E.; Valencia, C.; Díaz, M.J.; Franco, J.M. Preparation and characterization of gel-like dispersions based on cellulosic pulps and castor oil for lubricant applications. Ind. Eng. Chem. Res. 2011, 50, 5618–5627. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, H.; Guo, S. Preparation of cellulose/chitin blend materials and influence of their properties on sorption of heavy metals. Sustainability 2021, 13, 6460. [Google Scholar] [CrossRef]
- Silva, S.S.; Rodrigues, L.C.; Fernandes, E.M.; Lobo, F.C.M.; Gomes, J.M.; Reis, R.L. Tailoring natural-based oleogels combining ethylcellulose and virgin coconut oil. Polymers 2022, 14, 2473. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Fang, J.; Yang, X.; Yao, N.; Li, M.; Nie, Y.; Deng, T.; Ding, H.; Xu, L.; Li, S. Preparation and properties of vegetable-oil-based thioether polyol and ethyl cellulose supramolecular composite films. J. Renew. Mater. 2022, 11, 1937–1950. [Google Scholar] [CrossRef]
- ISO 1183–1 (2004); Plastics–Methods for Determining the Density of Non–Cellular Plastics–Part 1: Immersion Method, Liquid Pyknometer Method and Titration Method. ISO: Geneva, Switzerland, 2004.
- ISO 11357–2:1999; Plastics–Differential Scanning Calorimetry (DSC)–Part 2: Determination of Glass Transition Temperature. ISO: Geneva, Switzerland, 1999.
- ISO 527–2:1993; Plastics Determination of Tensile Properties Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 1993.
- ISO 180:2000; Plastics–Determination of Izod Impact Strength. ISO: Geneva, Switzerland, 2000.
- ISO 178:1993; Plastics–Determination of Flexural Properties. ISO: Geneva, Switzerland, 1993.
- ISO 11358–1:2014; Plastics–Thermogravimetry (TG) of Polymers–Part 1: General Principles. ISO: Geneva, Switzerland, 2014.
- ISO 306:1994; Plastics–Thermoplastic Materials–Determination of Vicat Softening Temperature (VST). ISO: Geneva, Switzerland, 1994.
- Sánchez, R.; Franco, J.M.; Delgado, M.A.; Valencia, C.; Gallegos, C. Thermal and mechanical characterization of cellulosic derivatives-based oleogels potentially applicable as bio-lubricating greases: Influence of ethyl cellulose molecular weight. Carbohyd. Polym. 2011, 83, 151–158. [Google Scholar] [CrossRef]
- Martín-Alfonso, J.E.; Valencia, C.; Franco, J.M. Composition-property relationship of gel-like dispersions based on organo-bentonite, recycled polypropylene and mineral oil for lubricant purposes. Appl. Clay. Sci. 2014, 87, 265–271. [Google Scholar] [CrossRef]
- GB/T 269–91; Lubricating Grease and Petrolatum–Determination of Cone Penetration. AQSIQ, SAC: Beijing, China, 1991.
- NB/SH/T 0324–2010; Standard Test Method for Oil Separation from Lubricating Grease (Conical Sieve Method). National Energy Administration: Beijing, China, 2010.
- NB/SH/T 0122–1992; Determination Method for Stability of Lubricating Grease Rotary Drum. National Energy Administration: Beijing, China, 1992.
- ASTM D2265–2022; Standard Test Method for Dropping Point of Lubricating Grease over Wide Temperature Range. ASTM International: West Conshohocken, PA, USA, 2022.
- Gravelle, A.J.; Davidovich-Pinhas, M.; Zetzl, A.K.; Barbut, S.; Marangoni, A.G. Influence of solvent quality on the mechanical strength of ethylcellulose oleogels. Carbohyd. Polym. 2016, 135, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Brito, G.B.; Di Sarli Peixoto, V.O.; Martins, M.T.; Rosário, D.K.A.; Ract, J.N.; Conte-Júnior, C.A.; Torres, A.G.; Castelo-Branco, V.N. Development of chitosan-based oleogels via crosslinking with vanillin using an emulsion templated approach: Structural characterization and their application as fat-replacer. Food. Struct. 2022, 32, 100264. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Cui, G.; Liu, L.; Zhou, C.; Wu, G. Hydroxyethyl cellulose-based stretchable, antifreeze, ion-conductive hydrogel sensor. Eur. Polym. J. 2024, 202, 112603. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Zhan, L.; Wu, C.; Liu, W.; Yao, S.; Ma, Y. Removal of hydroxyl groups and its influence on the microstructures evolution of alumina-mullite fibers fabricated by sol-gel process. Ceram. Int. 2023, 49, 18397–18411. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, W.; Pei, S.; Shao, J.; Huang, W.; Gao, X. Blue-shifted and red-shifted hydrogen bonds: Theoretical study of the CH3CHO⋯NH3 complexes. J. Mol. Struct. Theochem. 2005, 732, 33–37. [Google Scholar] [CrossRef]
- Xu, C.; Zhan, W.; Tang, X.; Mo, F.; Fu, L.; Lin, B. Self-healing chitosan/vanillin hydrogels based on schiff-base bond/hydrogen bond hybrid linkages. Polym. Test. 2018, 66, 155–163. [Google Scholar] [CrossRef]
- Xu, N.; Wang, X.; Ma, R.; Li, W.; Zhang, M. Insights into the rheological behaviors and tribological performances of lubricating grease: Entangled structure of a fiber thickener and functional groups of a base oil. New J. Chem. 2018, 42, 1484–1491. [Google Scholar] [CrossRef]
- Davidovich-Pinhas, M.; Gravelle, A.J.; Barbut, S.; Marangoni, A.G. Temperature effects on the gelation of ethylcellulose oleogels. Food Hydrocolloids 2015, 46, 76–83. [Google Scholar] [CrossRef]
- Martín-Alfonso, J.E.; Valencia, C.; Sánchez, M.C.; Franco, J.M.; Gallegos, C. Rheological modification of lubricating greases with recycled polymers from different plastics waste. Ind. Eng. Chem. Res. 2009, 48, 4136–4144. [Google Scholar] [CrossRef]
- Delgado, M.A.; Valencia, C.; Sánchez, M.C.; Franco, J.M.; Gallegos, C. Influence of soap concentration and oil viscosity on the rheology and microstructure of lubricating greases. Ind. Eng. Chem. Res. 2006, 45, 1902–1910. [Google Scholar] [CrossRef]
- Franco, J.M.; Delgado, M.A.; Valencia, C.; Sánchez, M.C.; Gallegos, C. Mixing rheometry for studying the manufacture of lubricating greases. Chem. Eng. Sci. 2005, 60, 2409–2418. [Google Scholar] [CrossRef]
- Davidovich-Pinhas, M.; Barbut, S.; Marangoni, A.G. The gelation of oil using ethyl cellulose. Carbohyd. Polym. 2015, 117, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Gallego, R.; Arteaga, J.F.; Valencia, C.; Franco, J.M. Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohyd. Polym. 2013, 98, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Li, W.; Zhao, G.; Wang, Z.; Wang, X. A study on microstructure, friction and rheology of four lithium greases formulated with four different base oils. Tribol. Lett. 2021, 69, 98. [Google Scholar] [CrossRef]
- Gorbacheva, S.N.; Yadykova, A.Y.; Ilyin, S.O. Rheological and tribological properties of low-temperature greases based on cellulose acetate butyrate gel. Carbohyd. Polym. 2021, 272, 118509. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Lin, J.; Wang, D. Study on factors influencing film formation of grease and calculation model for grease film thickness. Lubricants 2022, 10, 123. [Google Scholar] [CrossRef]
Properties | Unit | Property Parameter | Testing Standard |
---|---|---|---|
P34HB | |||
Density | g/cm3 | 1.2 | [19] |
Glass transition temperature | °C | 2 | [20] |
Melting temperature | °C | 155–165 | |
Tensile strength | MPa | 33 | [21] |
percentage of breaking elongation | % | 10 | |
Notched impact strength | KJ/m2 | 3.7 | [22] |
Flexural strength | MPa | 42 | [23] |
Flexural modulus | GPa | 1.8 | / |
Thermal decomposition temperature | °C | 286 | [24] |
Vicat softening temperature | °C | 134 | [25] |
Type | Unworked Penetration (0.1 mm) | Worked Penetration (0.1 mm) | Penetration Variation (0.1 mm) | Oil Separation (%) |
---|---|---|---|---|
P34HB (30 wt%)–Lignin (5 wt%) | 317 | 424 | 107 | 11.58 |
P34HB (30 wt%)–Ethyl Cellulose (5 wt%) | 277 | 363 | 86 | 2.60 |
P34HB (30 wt%)–Lithium Soap (5 wt%) | 422 | - | - | - |
P34HB (30 wt%)–Calcium Soap (5 wt%) | 224 | 354 | 129 | 18.28 |
P34HB (30 wt%)–Methyl Cellulose (5 wt%) | 324 | 422 | 98 | 19.94 |
Type | Thickening Agent Concentration (wt%) | Unworked Penetration (0.1 mm) | Worked Penetration (Roller Test, 25 °C, 2 h, 0.1 mm) | Penetration Variation (0.1 mm) | Abbreviation | |
---|---|---|---|---|---|---|
P34HB | Ethyl Cellulose | |||||
1 | 35 | 0 | 318 | 428 | 110 | P35 |
2 | 30 | 5 | 277 | 363 | 86 | P30E5 |
3 | 25 | 10 | 237 | 300 | 63 | P25E10 |
4 | 20 | 15 | 200 | 245 | 45 | P20E15 |
5 | 15 | 20 | 150 | 194 | 44 | P15E20 |
6 | 10 | 25 | 115 | Too hard, causing the drum to operate abnormally | P10E25 | |
7 | 5 | 30 | 95 | P5E30 |
Type | Thickening Agent Concentration (wt%) | Unworked Penetration (0.1 mm) | Worked Penetration (Roller Test, 25 °C, 2 h, 0.1 mm) | Penetration Variation (0.1 mm) | Dropping Point (°C) | Oil Separation (%) | Abbreviation | |
---|---|---|---|---|---|---|---|---|
P34HB | Ethyl Cellulose | |||||||
1 | 35 | 0 | 318 | 428 | 110 | 144 | 13.61 | P35 |
2 | 32 | 3 | 294 | 408 | 114 | 142 | 4.28 | P32E3 |
3 | 30 | 5 | 277 | 363 | 86 | 147 | 2.60 | P30E5 |
4 | 28 | 7 | 258 | 348 | 90 | 142 | 2.67 | P28E7 |
5 | 25 | 10 | 237 | 300 | 63 | 145 | 5.76 | P25E10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Lai, B.; Liu, Z.; Lou, W. The Development of a Fully Renewable Lubricant: The Effect of Ethyl Cellulose on the Properties of a Polyhydroxyalkanoate (P34HB)-Based Grease. Sustainability 2024, 16, 4149. https://doi.org/10.3390/su16104149
Yang S, Lai B, Liu Z, Lou W. The Development of a Fully Renewable Lubricant: The Effect of Ethyl Cellulose on the Properties of a Polyhydroxyalkanoate (P34HB)-Based Grease. Sustainability. 2024; 16(10):4149. https://doi.org/10.3390/su16104149
Chicago/Turabian StyleYang, Shanshan, Bingbing Lai, Zongzhu Liu, and Wenjing Lou. 2024. "The Development of a Fully Renewable Lubricant: The Effect of Ethyl Cellulose on the Properties of a Polyhydroxyalkanoate (P34HB)-Based Grease" Sustainability 16, no. 10: 4149. https://doi.org/10.3390/su16104149
APA StyleYang, S., Lai, B., Liu, Z., & Lou, W. (2024). The Development of a Fully Renewable Lubricant: The Effect of Ethyl Cellulose on the Properties of a Polyhydroxyalkanoate (P34HB)-Based Grease. Sustainability, 16(10), 4149. https://doi.org/10.3390/su16104149