The Impact of Climate Change Transition Innovations on the Default Risk
Abstract
:1. Introduction
2. Literature Review
3. Hypotheses Development
3.1. Hypothesis 1
3.2. Hypothesis 2
3.3. Hypothesis 3
3.4. Hypothesis 4
4. Data and Methods
4.1. Sample Selection and Data Source
4.2. Dependent Variables
4.3. Independent Variables
4.4. Empirical Method
5. Empirical Result and Discussion
5.1. Summary Statistics
5.2. The Effect of Low-Carbon Innovations on Default Risks
5.3. Heterogeneity Effects
5.4. Endogeneity Issues
5.5. Mechanism of Low-Carbon Innovation Effects
5.6. Discussion
6. Conclusions
- This study found that low-carbon transition innovation significantly decreased default risk as measured by distance-to-default. This result was tested with three low-carbon innovation measurements, namely, quantity, generality, and importance. The result was robust, with normalization methods and alternative default risk measurements.
- As a heterogeneous analysis, it was concluded that firms under climate policy treatment will obtain lower innovation effects on default risks compared with other firms.
- Innovation time costs were taken as instrumental variables to test endogeneity, and our results were robust under the IV-2SLS model.
- This paper found that the three identified mechanisms can explain how low-carbon innovations affect the default risk, including stakeholder attention, productivity, and technological spillovers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | In the technology and patent researches, spillovers mean the possibility, ability and extent that a technology diffused to other entities. |
2 | CCER is a database of economics and finance, which is built by Sinofin and the China Centre for Economic Research, Peking University. |
3 | CNRDS is the Chinese Research Data Services Platform, which provides high-quality and open data for Chinese economic research. |
4 | CSMAR is the China Stock Market and Accounting Research Database, which provides various datasets for the Chinese stock market. |
References
- Battiston, S.; Mandel, A.; Monasterolo, I.; Roncoroni, A. Climate Credit Risk and Corporate Valuation. In Climate Credit Risk and Corporate Valuation: Battiston, Stefano|uMandel, Antoine|uMonasterolo, Irene| uRoncoroni, Alan; 2023. [Google Scholar] [CrossRef]
- Lemoine, D. The Climate Risk Premium: How Uncertainty Affects the Social Cost of Carbon. J. Assoc. Environ. Resour. Econ. 2021, 8, 27–57. [Google Scholar] [CrossRef]
- Dietz, S.; Gollier, C.; Kessler, L. The Climate Beta. J. Environ. Econ. Manag. 2018, 87, 258–274. [Google Scholar] [CrossRef]
- Li, F.; Xu, X.; Li, Z.; Du, P.; Ye, J. Can Low-Carbon Technological Innovation Truly Improve Enterprise Performance? The Case of Chinese Manufacturing Companies. J. Clean. Prod. 2021, 293, 125949. [Google Scholar] [CrossRef]
- Bannier, C.E.; Bofinger, Y.; Rock, B. Corporate Social Responsibility and Credit Risk. Financ. Res. Lett. 2022, 44, 102052. [Google Scholar] [CrossRef]
- Safiullah, S.; Phan, D.H.B.; Kabir, M.N. Green Innovation and Corporate Default Risk. 2022. [Google Scholar] [CrossRef]
- Gutiérrez-López, C.; Castro, P.; Tascón, M.T. How Can Firms’ Transition to a Low-Carbon Economy Affect the Distance to Default? Res. Int. Bus. Financ. 2022, 62, 101722. [Google Scholar] [CrossRef]
- Gunday, G.; Ulusoy, G.; Kilic, K.; Alpkan, L. Effects of Innovation Types on Firm Performance. Int. J. Prod. Econ. 2011, 133, 662–676. [Google Scholar] [CrossRef]
- Naqbi, E.A.; Alshurideh, M.; AlHamad, A.; Al, B. The Impact of Innovation on Firm Performance: A Systematic Review. Int. J. Innov. 2020, 14, 31–58. [Google Scholar]
- Wang, D.S. Association between Technological Innovation and Firm Performance in Small and Medium-Sized Enterprises: The Moderating Effect of Environmental Factors. Int. J. Innov. Sci. 2019, 11, 227–240. [Google Scholar] [CrossRef]
- Xu, J.; Shang, Y.; Yu, W.; Liu, F. Intellectual Capital, Technological Innovation and Firm Performance: Evidence from China’s Manufacturing Sector. Sustainability 2019, 11, 5328. [Google Scholar] [CrossRef]
- Hsu, P.-H.; Lee, H.-H.; Liu, A.Z.; Zhang, Z. Corporate Innovation, Default Risk, and Bond Pricing. J. Corp. Financ. 2015, 35, 329–344. [Google Scholar] [CrossRef]
- Ben-Nasr, H.; Bouslimi, L.; Zhong, R. Do Patented Innovations Reduce Stock Price Crash Risk? Int. Rev. Financ. 2021, 21, 3–36. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Paunov, C. The risks of innovation: Are innovating firms less likely to die? Rev. Econ. Stat. 2015, 97, 638–653. [Google Scholar] [CrossRef]
- Matos, S.; Viardot, E.; Sovacool, B.K.; Geels, F.W.; Xiong, Y. Innovation and Climate Change: A Review and Introduction to the Special Issue. Technovation 2022, 117, 102612. [Google Scholar] [CrossRef]
- Viardot, E. The Role of Cooperatives in Overcoming the Barriers to Adoption of Renewable Energy. Energy Policy 2013, 63, 756–764. [Google Scholar] [CrossRef]
- Ghisetti, C.; Pontoni, F. Investigating Policy and R&D Effects on Environmental Innovation: A Meta-Analysis. Ecol. Econ. 2015, 118, 57–66. [Google Scholar] [CrossRef]
- Zhou, S.; Matisoff, D.C.; Kingsley, G.A.; Brown, M.A. Understanding Renewable Energy Policy Adoption and Evolution in Europe: The Impact of Coercion, Normative Emulation, Competition, and Learning. Energy Res. Soc. Sci. 2019, 51, 1–11. [Google Scholar] [CrossRef]
- Lacal Arantegui, R.; Jäger-Waldau, A. Photovoltaics and Wind Status in the European Union after the Paris Agreement. Renew. Sustain. Energy Rev. 2018, 81, 2460–2471. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, Y.; Deng, X.; Xue, L. Low-Carbon Innovation Induced by Emissions Trading in China. Nat. Commun. 2019, 10, 4088. [Google Scholar] [CrossRef]
- Acemoglu, D.; Akcigit, U.; Hanley, D.; Kerr, W. Transition to Clean Technology. J. Political Econ. 2016, 124, 52–104. [Google Scholar] [CrossRef]
- Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef]
- Du, K.; Li, P.; Yan, Z. Do Green Technology Innovations Contribute to Carbon Dioxide Emission Reduction? Empirical Evidence from Patent Data. Technol. Forecast. Soc. Chang. 2019, 146, 297–303. [Google Scholar] [CrossRef]
- Cheng, C.C.J.; Yang, C.; Sheu, C. The Link between Eco-Innovation and Business Performance: A Taiwanese Industry Context. J. Clean. Prod. 2014, 64, 81–90. [Google Scholar] [CrossRef]
- Liao, Z. Corporate Culture, Environmental Innovation and Financial Performance. Bus. Strategy Environ. 2018, 27, 1368–1375. [Google Scholar] [CrossRef]
- Huang, J.-W.; Li, Y.-H. Green Innovation and Performance: The View of Organizational Capability and Social Reciprocity. J. Bus. Ethics 2017, 145, 309–324. [Google Scholar] [CrossRef]
- de Azevedo Rezende, L.; Bansi, A.C.; Alves, M.F.R.; Galina, S.V.R. Take Your Time: Examining When Green Innovation Affects Financial Performance in Multinationals. J. Clean. Prod. 2019, 233, 993–1003. [Google Scholar] [CrossRef]
- Saliba de Oliveira, J.A.; Cruz Basso, L.F.; Kimura, H.; Sobreiro, V.A. Innovation and Financial Performance of Companies Doing Business in Brazil. Int. J. Innov. Stud. 2018, 2, 153–164. [Google Scholar] [CrossRef]
- Wagner, M. How to Reconcile Environmental and Economic Performance to Improve Corporate Sustainability: Corporate Environmental Strategies in the European Paper Industry. J. Environ. Manag. 2005, 76, 105–118. [Google Scholar] [CrossRef]
- Misani, N.; Pogutz, S. Unraveling the Effects of Environmental Outcomes and Processes on Financial Performance: A Non-Linear Approach. Ecol. Econ. 2015, 109, 150–160. [Google Scholar] [CrossRef]
- Trumpp, C.; Guenther, T. Too Little or Too Much? Exploring U-Shaped Relationships between Corporate Environmental Performance and Corporate Financial Performance. Bus. Strategy Environ. 2017, 26, 49–68. [Google Scholar] [CrossRef]
- Aguilera-Caracuel, J.; Ortiz-de-Mandojana, N. Green Innovation and Financial Performance: An Institutional Approach. Organ. Environ. 2013, 26, 365–385. [Google Scholar] [CrossRef]
- Aastvedt, T.M.; Behmiri, N.B.; Lu, L. Does Green Innovation Damage Financial Performance of Oil and Gas Companies? Resour. Policy 2021, 73, 102235. [Google Scholar] [CrossRef]
- Cahen-Fourot, L.; Campiglio, E.; Godin, A.; Kemp-Benedict, E.; Trsek, S. Capital Stranding Cascades: The Impact of Decarbonisation on Productive Asset Utilisation. Energy Econ. 2021, 103, 105581. [Google Scholar] [CrossRef]
- Muldoon-Smith, K.; Greenhalgh, P. Suspect Foundations: Developing an Understanding of Climate-Related Stranded Assets in the Global Real Estate Sector. Energy Res. Soc. Sci. 2019, 54, 60–67. [Google Scholar] [CrossRef]
- Curtin, J.; McInerney, C.; Ó Gallachóir, B.; Hickey, C.; Deane, P.; Deeney, P. Quantifying Stranding Risk for Fossil Fuel Assets and Implications for Renewable Energy Investment: A Review of the Literature. Renew. Sustain. Energy Rev. 2019, 116, 109402. [Google Scholar] [CrossRef]
- Chevallier, J.; Goutte, S.; Ji, Q.; Guesmi, K. Green Finance and the Restructuring of the Oil-Gas-Coal Business Model under Carbon Asset Stranding Constraints. Energy Policy 2021, 149, 112055. [Google Scholar] [CrossRef]
- He, F.; Yan, Y.; Hao, J.; Wu, J.G. Retail Investor Attention and Corporate Green Innovation: Evidence from China. Energy Econ. 2022, 115, 106308. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Wang, Y. The Dynamic Interaction between Investor Attention and Green Security Market: An Empirical Study Based on Baidu Index. China Financ. Rev. Int. 2021, 13, 79–101. [Google Scholar] [CrossRef]
- Liu, F.; Kang, Y.; Guo, K.; Sun, X. The Relationship between Air Pollution, Investor Attention and Stock Prices: Evidence from New Energy and Polluting Sectors. Energy Policy 2021, 156, 112430. [Google Scholar] [CrossRef]
- Deng, C.; Zhou, X.; Peng, C.; Zhu, H. Going Green: Insight from Asymmetric Risk Spillover between Investor Attention and pro-Environmental Investment. Financ. Res. Lett. 2022, 47, 102565. [Google Scholar] [CrossRef]
- Hao, J.; Xiong, X. Retail Investor Attention and Firms’ Idiosyncratic Risk: Evidence from China. Int. Rev. Financ. Anal. 2021, 74, 101675. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, L.; Zhu, Y.; Si, H.; He, X. Does Low-Carbon City Construction Improve Total Factor Productivity? Evidence from a Quasi-Natural Experiment in China. Int. J. Environ. Res. Public Health 2021, 18, 11974. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Chen, Y.; Lin, B. Uncovering the Role of Renewable Energy Innovation in China’s Low Carbon Transition: Evidence from Total-Factor Carbon Productivity. Environ. Impact Assess. Rev. 2023, 101, 107128. [Google Scholar] [CrossRef]
- Wu, J.; Xia, Q.; Li, Z. Green Innovation and Enterprise Green Total Factor Productivity at a Micro Level: A Perspective of Technical Distance. J. Clean. Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- İmrohoroğlu, A.; Tüzel, Ş. Firm-Level Productivity, Risk, and Return. Manag. Sci. 2014, 60, 2073–2090. [Google Scholar] [CrossRef]
- de Faria, P.; Lima, F. Interdependence and Spillovers: Is Firm Performance Affected by Others’ Innovation Activities? Appl. Econ. 2012, 44, 4765–4775. [Google Scholar] [CrossRef]
- Aiello, F.; Cardamone, P. R&D Spillovers and Firms’ Performance in Italy: Evidence from a Flexible Production Function. Empir. Econ. 2008, 34, 143–166. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, H.; Sun, F. The Impact of Dual Network Structure on Firm Performance: The Moderating Effect of Innovation Strategy. Technol. Anal. Strateg. Manag. 2020, 32, 1020–1034. [Google Scholar] [CrossRef]
- Chen, L. Do Patent Citations Indicate Knowledge Linkage? The Evidence from Text Similarities between Patents and Their Citations. J. Informetr. 2017, 11, 63–79. [Google Scholar] [CrossRef]
- Whalen, R.; Lungeanu, A.; DeChurch, L.; Contractor, N. Patent Similarity Data and Innovation Metrics. J. Empir. Leg. Stud. 2020, 17, 615–639. [Google Scholar] [CrossRef]
- Meles, A.; Salerno, D.; Sampagnaro, G.; Verdoliva, V.; Zhang, J. The Influence of Green Innovation on Default Risk: Evidence from Europe. Int. Rev. Econ. Financ. 2023, 84, 692–710. [Google Scholar] [CrossRef]
- Bellini, T. Chapter 2—One-Year PD. In IFRS 9 and CECL Credit Risk Modelling and Validation; Bellini, T., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 31–89. ISBN 978-0-12-814940-9. [Google Scholar]
- Merton, R.C. On the Pricing of Corporate Debt: The Risk Structure of Interest Rates. J. Financ. 1974, 29, 449–470. [Google Scholar] [CrossRef]
- Bharath, S.T.; Shumway, T. Forecasting Default with the Merton Distance to Default Model. Rev. Financ. Stud. 2008, 21, 1339–1369. [Google Scholar] [CrossRef]
- Arts, S.; Cassiman, B.; Gomez, J.C. Text Matching to Measure Patent Similarity. Strateg. Manag. J. 2018, 39, 62–84. [Google Scholar] [CrossRef]
- Liang, Y.; Rudik, I.; Zou, E.Y.; Johnston, A.; Rodewald, A.D.; Kling, C.L. Conservation Cobenefits from Air Pollution Regulation: Evidence from Birds. Proc. Natl. Acad. Sci. USA 2020, 117, 30900–30906. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zheng, X.; Liao, J.; Niu, J. Low-Carbon City Pilot Policy and Corporate Environmental Performance: Evidence from a Quasi-Natural Experiment. Int. Rev. Econ. Financ. 2024, 89, 1248–1266. [Google Scholar] [CrossRef]
- Yang, G. Can the Low-Carbon City Pilot Policy Promote Firms’ Low-Carbon Innovation: Evidence from China. PLoS ONE 2023, 18, e0277879. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Pan, Y.; Sensoy, A.; Uddin, G.S.; Cheng, F. Green Credit Policy and Firm Performance: What We Learn from China. Energy Econ. 2021, 101, 105415. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Qi, Y.; Shao, S. Can Green Credit Policy Improve Environmental Quality? Evidence from China. J. Environ. Manag. 2021, 298, 113445. [Google Scholar] [CrossRef]
- Huang, J.; Cai, X.; Huang, S.; Tian, S.; Lei, H. Technological Factors and Total Factor Productivity in China: Evidence Based on a Panel Threshold Model. China Econ. Rev. 2019, 54, 271–285. [Google Scholar] [CrossRef]
Variables | Definition |
---|---|
Distance-to-default (DD) | The measurement of default risks developed by the Merton model [55]; the more the DD is, the less is the default risk. |
Current ratio | Current ratio is the ratio of current assets and current liabilities, which measures the ability to pay short-term obligations within one year. |
Debt-to-asset ratio | Debt-to-asset ratio is total liabilities divided by total assets, which measures the level of debt. |
Total asset turnover | Total asset turnover ratio is the ratio of net sales divided by the average total assets, which measures the efficiency of generating revenue and sales. |
Net return on assets (ROA) | The return on net assets is the ratio of net income divided by average net assets, which measures the profitability of the business. |
Return on equity (ROE) | The return on equity is the ratio of net income divided by average shareholders’ equity, which measures the profitability and efficiency of generating profits. |
Total asset change | Total asset change is the percentage of total asset change, which measures the growth of assets. |
ROA change | ROA change is the percentage of ROA change, which measures the growth of profitability. |
Low-carbon patent quantity | The quantity measurement of low-carbon patents, denoting the number of climate change transition innovations. |
Low-carbon patent generality | The generality measurement of low-carbon patents, denoting the intensity of broad usage of climate transition. |
Low-carbon patent importance | The importance measurement of low-carbon patent citations, denoting the quality and importance for climate change transition innovations. |
Low-carbon patent time costs | The difference between the application date and the approval date of the low-carbon patent in the industry level, indicating time costs of innovations. |
Total factor productivity | Total factor productivity (TFP) is the efficiency of productive activities over time, a productivity indicator that measures total output per unit of total inputs and is calculated with the generalized method of moments |
Investor attention score | The annual median of daily Baidu search index for listed firms. |
Patent centrality | The centrality degree of patent similarity network to describe the technology spillovers. |
Variables | Signal | Observations | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Distance-to- default | DD | 23,580 | 8.683 | 5.953 | 0.000 | 315.615 |
Current ratio | CR | 23,580 | 2.620 | 3.145 | 0.006 | 80.664 |
Debt-to-asset ratio | AL | 23,580 | 0.428 | 1.201 | 0.008 | 178.346 |
Total asset turnover | TAT | 23,580 | 0.643 | 0.529 | −0.048 | 12.373 |
Net ROA | ROA | 23,580 | 0.040 | 0.144 | −9.117 | 12.211 |
ROE | ROE | 23,580 | 0.043 | 1.229 | −174.895 | 14.021 |
Total asset change | TAG | 23,580 | 0.217 | 0.710 | −0.961 | 37.029 |
ROA change | ROAG | 23,580 | −7.743 | 362.805 | −36,205.561 | 7309.722 |
Low-carbon patent quantity | LCQ | 23,580 | 0.790 | 8.935 | 0.000 | 417.000 |
Low-carbon patent generality | LCG | 23,580 | 0.860 | 9.621 | 0.000 | 450.000 |
Low-carbon patent importance | LCI | 23,580 | 1.260 | 15.255 | 0.000 | 750.000 |
Low-carbon patent time costs | LCT | 23,580 | 23.446 | 73.606 | 0.000 | 1250.000 |
Total factor productivity | TFP | 23,580 | 3.119 | 1.408 | 0.000 | 9.391 |
Investor attention score | IA | 23,580 | 942.723 | 1422.728 | 0.000 | 44,965.000 |
Patent centrality | PC | 23,580 | 0.033 | 0.070 | 0.000 | 0.888 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
LCQ | 0.007 ** | 0.007 ** | ||||
(0.003) | (0.003) | |||||
LCG | 0.007 ** | 0.007 ** | ||||
(0.003) | (0.003) | |||||
LCI | 0.004 * | 0.004 * | ||||
(0.002) | (0.002) | |||||
CR | 0.273 *** | 0.271 *** | 0.273 *** | 0.271 *** | 0.273 *** | 0.271 *** |
(0.048) | (0.049) | (0.048) | (0.049) | (0.048) | (0.049) | |
AL | −0.029 * | −0.021 | −0.029 * | −0.021 | −0.029 * | −0.021 |
(0.016) | (0.022) | (0.016) | (0.022) | (0.016) | (0.022) | |
TAT | 0.356 ** | 0.352* | 0.356 ** | 0.351 * | 0.358 ** | 0.353 * |
(0.177) | (0.180) | (0.177) | (0.180) | (0.177) | (0.180) | |
ROA | −0.478 *** | −0.494 *** | −0.478 *** | −0.494 *** | −0.476 ** | −0.492 *** |
(0.185) | (0.187) | (0.185) | (0.187) | (0.185) | (0.187) | |
ROE | −0.009 | −0.010 | −0.009 | −0.010 | −0.009 | −0.010 |
(0.007) | (0.009) | (0.007) | (0.009) | (0.007) | (0.009) | |
TAG | 0.316 *** | 0.339 *** | 0.316 *** | 0.339 *** | 0.316 *** | 0.339 *** |
(0.081) | (0.091) | (0.081) | (0.091) | (0.081) | (0.091) | |
ROAG | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Cons | 5.954 *** | 10.234 *** | 5.954 *** | 10.234 *** | 5.956 *** | 10.235 *** |
(0.166) | (1.348) | (0.166) | (1.348) | (0.166) | (1.348) | |
Firm FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
Prov FE | NO | YES | NO | YES | NO | YES |
Ind FE | NO | YES | NO | YES | NO | YES |
Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
0.050 | 0.053 | 0.050 | 0.053 | 0.050 | 0.053 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
z-Score Normalization | Min–Max Normalization | |||||
LCQ | 0.003 *** | 0.001 *** | ||||
(0.001) | (0.000) | |||||
LCG | 0.003 ** | 0.001 ** | ||||
(0.001) | (0.000) | |||||
LCI | 0.003 * | 0.001 * | ||||
(0.002) | (0.000) | |||||
CR | 0.016 *** | 0.016 *** | 0.016 *** | 0.000 *** | 0.000 *** | 0.000 *** |
(0.003) | (0.003) | (0.003) | (0.000) | (0.000) | (0.000) | |
AL | −0.001 | −0.001 | −0.001 | −0.000 | −0.000 | −0.000 |
(0.001) | (0.001) | (0.001) | (0.000) | (0.000) | (0.000) | |
TAT | 0.020 * | 0.020 * | 0.021 * | 0.000 * | 0.000 * | 0.000 * |
(0.010) | (0.010) | (0.011) | (0.000) | (0.000) | (0.000) | |
ROA | −0.029 *** | −0.029 *** | −0.029 *** | −0.000 *** | −0.000 *** | −0.000 *** |
(0.011) | (0.011) | (0.011) | (0.000) | (0.000) | (0.000) | |
ROE | −0.001 | −0.001 | −0.001 | −0.000 | −0.000 | −0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
TAG | 0.020 *** | 0.020 *** | 0.020 *** | 0.000 *** | 0.000 *** | 0.000 *** |
(0.005) | (0.005) | (0.005) | (0.000) | (0.000) | (0.000) | |
ROAG | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Cons | 0.008 | 0.008 | 0.008 | 0.003 *** | 0.003 *** | 0.003 *** |
(0.078) | (0.078) | (0.078) | (0.000) | (0.000) | (0.000) | |
Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 |
(1) Merton | (2) Merton | (3) Merton | (4) KMV | (5) KMV | (6) KMV | |
---|---|---|---|---|---|---|
LCQ | 0.009 *** | 0.003 *** | ||||
(0.003) | (0.001) | |||||
LCG | 0.009 *** | 0.003 *** | ||||
(0.003) | (0.001) | |||||
LCI | 0.006 *** | 0.004 *** | ||||
(0.002) | (0.001) | |||||
CR | 0.325 *** | 0.325 *** | 0.325 *** | 0.068 *** | 0.068 *** | 0.068 *** |
(0.055) | (0.055) | (0.055) | (0.014) | (0.014) | (0.013) | |
AL | −0.023 | −0.023 | −0.023 | −0.048 *** | −0.048 *** | −0.048 *** |
(0.028) | (0.028) | (0.028) | (0.018) | (0.019) | (0.018) | |
TAT | 0.498 ** | 0.498 ** | 0.500 ** | 0.173 | 0.173 | 0.174 |
(0.199) | (0.199) | (0.199) | (0.120) | (0.120) | (0.120) | |
ROA | 0.079 | 0.079 | 0.081 | 0.412 *** | 0.412 *** | 0.413 *** |
(0.253) | (0.253) | (0.253) | (0.155) | (0.155) | (0.155) | |
ROE | −0.013 ** | −0.013 ** | −0.013 ** | 0.001 | 0.001 | 0.001 |
(0.005) | (0.005) | (0.005) | (0.012) | (0.012) | (0.012) | |
TAG | 0.259 *** | 0.259 *** | 0.259 *** | 0.009 | 0.009 | 0.008 |
(0.086) | (0.086) | (0.086) | (0.022) | (0.022) | (0.022) | |
ROAG | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 | 0.000 | 0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Cons | 11.399 *** | 11.399 *** | 11.400 *** | 2.987 ** | 2.987 ** | 2.988 ** |
(1.457) | (1.457) | (1.458) | (1.384) | (1.384) | (1.386) | |
Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
0.036 | 0.036 | 0.035 | 0.076 | 0.076 | 0.076 |
(1) Logarithmic Processing | (2) Logarithmic Processing | (3) Logarithmic Processing | |
---|---|---|---|
LCQ | 0.063 ** | ||
(0.032) | |||
LCG | 0.062 ** | ||
(0.032) | |||
LCI | 0.035 ** | ||
(0.017) | |||
CR | 0.271 *** | 0.271 *** | 0.272 *** |
(0.049) | (0.049) | (0.049) | |
AL | −0.022 | −0.022 | −0.021 |
(0.022) | (0.022) | (0.022) | |
TAT | 0.349 * | 0.349 * | 0.353 * |
(0.180) | (0.180) | (0.180) | |
ROA | −0.507 *** | −0.507 *** | −0.491 *** |
(0.187) | (0.187) | (0.188) | |
ROE | −0.010 | −0.010 | −0.010 |
(0.009) | (0.009) | (0.009) | |
TAG | 0.338 *** | 0.338 *** | 0.339 *** |
(0.091) | (0.091) | (0.091) | |
ROAG | 0.000 *** | 0.000 *** | 0.000 ** |
(0.000) | (0.000) | (0.000) | |
Cons | 10.615 *** | 10.611 *** | 10.491 *** |
(1.383) | (1.382) | (1.374) | |
Obs | 23,580 | 23,580 | 23,580 |
0.054 | 0.054 | 0.054 |
(1) | (2) | (3) | |
---|---|---|---|
Innovation= | Quantity | Generality | Importance |
LCCP Innovation | −0.018 * | −0.016 * | 0.006 ** |
(0.010) | (0.010) | (0.003) | |
LCCP | 0.166 | 0.166 | 0.158 |
(0.559) | (0.559) | (0.558) | |
Innovation | 0.024 ** | 0.022 ** | 0.000 |
(0.010) | (0.009) | (0.001) | |
CR | 0.273 *** | 0.273 *** | 0.273 *** |
(0.048) | (0.048) | (0.048) | |
AL | −0.029 * | −0.029 * | −0.029 * |
(0.016) | (0.016) | (0.016) | |
TAT | 0.355 ** | 0.355 ** | 0.356 ** |
(0.177) | (0.177) | (0.177) | |
ROA | −0.479 *** | −0.479 *** | −0.476 *** |
(0.185) | (0.185) | (0.185) | |
ROE | −0.009 | −0.009 | −0.009 |
(0.007) | (0.007) | (0.007) | |
TAG | 0.316 *** | 0.316 *** | 0.316 *** |
(0.081) | (0.081) | (0.081) | |
ROAG | 0.000 ** | 0.000 ** | 0.000 ** |
(0.000) | (0.000) | (0.000) | |
Cons | 5.858 *** | 5.858 *** | 5.866 *** |
(0.349) | (0.349) | (0.349) | |
Obs | 23,580 | 23,580 | 23,580 |
0.050 | 0.050 | 0.050 |
(1) | (2) | (3) | |
---|---|---|---|
Innovation= | Quantity | Generality | Importance |
Policy Innovation | −0.067 *** | −0.057 *** | −0.060 * |
(0.019) | (0.016) | (0.034) | |
Policy | 0.921 | 0.921 | 1.088 |
(0.886) | (0.887) | (0.845) | |
Innovation | 0.008 * | 0.007 * | −0.004 |
(0.004) | (0.004) | (0.002) | |
CR | 0.141 *** | 0.141 *** | 0.142 *** |
(0.020) | (0.020) | (0.020) | |
AL | −0.013 | −0.013 | −0.013 |
(0.025) | (0.025) | (0.025) | |
TAT | −0.294 ** | −0.294 ** | −0.297 ** |
(0.116) | (0.116) | (0.116) | |
ROA | −0.104 | −0.104 | −0.102 |
(0.162) | (0.162) | (0.162) | |
ROE | −0.007 | −0.007 | −0.007 |
(0.005) | (0.005) | (0.005) | |
TAG | −0.078 * | −0.078 * | −0.077 * |
(0.042) | (0.042) | (0.042) | |
ROAG | 0.000 ** | 0.000 ** | 0.000 ** |
(0.000) | (0.000) | (0.000) | |
Cons | 10.768 *** | 10.769 *** | 10.792 *** |
(0.574) | (0.573) | (0.574) | |
Obs | 23,580 | 23,580 | 23,580 |
0.206 | 0.206 | 0.206 |
Quantity | Generality | Importance | ||||
---|---|---|---|---|---|---|
First-Stage | Second-Stage | First-Stage | Second-Stage | First-Stage | Second-Stage | |
(1) | (2) | (3) | (4) | (5) | (6) | |
LCT | 0.012 *** | 0.013 *** | −0.008 *** | |||
(0.002) | (0.003) | (0.003) | ||||
Innovations | 0.181 ** | 0.166 ** | −0.271 ** | |||
(0.073) | (0.066) | (0.131) | ||||
Obs | 23,059 | 23,059 | 23,059 | 23,059 | 23,059 | 23,059 |
0.021 | 0.021 | 0.021 | 0.021 | 0.126 | 0.126 | |
Controls | YES | YES | YES | YES | YES | YES |
Instrument validity Tests for IV regression | ||||||
(i) F-test for excluded instrument in first stage | ||||||
Sanderson–Windmeijer F-test | 25.04 *** | 26.04 *** | 9.15 *** | |||
(ii) Under-identification test | ||||||
Kleibergen–Paap LM statistic | 24.94 *** | 25.96 *** | 9.17 *** | |||
(iii) Weak identification test | ||||||
Cragg–Donald–Wald F-statistic | 331.74 | 339.62 | 57.05 | |||
Stock–Yogo weak ID test | ||||||
10% max IV size | 16.38 | 16.38 | 16.38 | |||
15% max IV size | 8.96 | 8.96 | 8.96 | |||
20% max IV size | 6.66 | 6.66 | 6.66 | |||
25% max IV size | 5.53 | 5.53 | 5.53 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Investor Attention | DD | Investor Attention | DD | Investor Attention | DD | |
IA | −0.001 *** | −0.001 *** | −0.001 *** | |||
(0.000) | (0.000) | (0.000) | ||||
LCQ | −6.275 *** | 0.007 * | ||||
(1.598) | (0.004) | |||||
LCG | −5.840 *** | 0.006 | ||||
(1.531) | (0.004) | |||||
LCI | −5.397 *** | 0.000 | ||||
(1.643) | (0.002) | |||||
CR | −9.765 *** | 0.141 *** | −9.767 *** | 0.141 *** | −12.818 *** | 0.262 *** |
(3.299) | (0.018) | (3.299) | (0.018) | (2.909) | (0.048) | |
AL | 9.565 | −0.030 | 9.569 | −0.030 | 6.476 | −0.017 |
(5.955) | (0.026) | (5.956) | (0.026) | (5.004) | (0.020) | |
TAT | 65.143 ** | −0.232 * | 65.171 ** | −0.232 * | 43.898 * | 0.385 ** |
(28.621) | (0.122) | (28.625) | (0.122) | (26.622) | (0.180) | |
ROA | 83.995 * | −0.226 | 84.059 * | −0.226 | 60.848 * | −0.447 ** |
(43.369) | (0.147) | (43.378) | (0.147) | (36.741) | (0.184) | |
ROE | 1.341 | −0.007 | 1.340 | −0.007 | 2.582 ** | −0.008 |
(0.945) | (0.006) | (0.946) | (0.006) | (1.079) | (0.009) | |
TAG | −15.286 * | −0.057 * | −15.298 * | −0.057 * | −19.690 *** | 0.324 *** |
(7.960) | (0.034) | (7.961) | (0.034) | (7.097) | (0.088) | |
ROAG | −0.010 *** | 0.000 *** | −0.010 *** | 0.000 *** | −0.010 *** | 0.000 ** |
(0.003) | (0.000) | (0.003) | (0.000) | (0.003) | (0.000) | |
Cons | 2354.184 *** | 8.646 *** | 2354.560 *** | 8.646 *** | 2192.537 *** | 11.850 *** |
(185.072) | (0.612) | (185.111) | (0.612) | (170.333) | (1.446) | |
Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
0.215 | 0.286 | 0.215 | 0.286 | 0.199 | 0.063 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
TFP | DD | TFP | DD | TFP | DD | |
TFP | 0.183 *** | 0.183 *** | 0.973 *** | |||
(0.061) | (0.061) | (0.119) | ||||
LCQ | 0.001 * | 0.006 | ||||
(0.001) | (0.004) | |||||
LCG | 0.001 * | 0.005 | ||||
(0.000) | (0.004) | |||||
LCI | −0.001 | 0.004 | ||||
(0.000) | (0.003) | |||||
CR | 0.005 | 0.147 *** | 0.005 | 0.147 *** | −0.069 *** | 0.204 *** |
(0.004) | (0.018) | (0.004) | (0.018) | (0.009) | (0.042) | |
AL | 0.000 | −0.034 | 0.000 | −0.034 | 0.004 | −0.018 |
(0.010) | (0.026) | (0.010) | (0.026) | (0.007) | (0.019) | |
TAT | 0.843 *** | −0.069 | 0.843 *** | −0.069 | 0.475 *** | 0.816 *** |
(0.071) | (0.128) | (0.071) | (0.128) | (0.050) | (0.221) | |
ROA | 0.294 ** | −0.196 | 0.294 ** | −0.196 | 0.427 *** | −0.077 |
(0.130) | (0.136) | (0.130) | (0.136) | (0.103) | (0.162) | |
ROE | −0.007 * | −0.009 | −0.007 * | −0.009 | −0.009 ** | −0.019 *** |
(0.004) | (0.006) | (0.004) | (0.006) | (0.004) | (0.006) | |
TAG | −0.021 * | −0.056 | −0.021 * | −0.056 | −0.217 *** | 0.127 ** |
(0.012) | (0.035) | (0.012) | (0.035) | (0.048) | (0.065) | |
ROAG | 0.000 | 0.000 *** | 0.000 | 0.000 *** | 0.000 | 0.000 ** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Cons | 0.702 ** | 7.779 *** | 0.702 ** | 7.777 *** | −0.068 | 10.169 *** |
(0.293) | (0.564) | (0.293) | (0.565) | (0.279) | (1.325) | |
Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
0.260 | 0.272 | 0.260 | 0.272 | 0.178 | 0.078 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Spillovers | DD | Spillovers | DD | Spillovers | DD | |
PC | 2.488 * | 2.500 * | 2.435 ** | |||
(1.332) | (1.344) | (1.126) | ||||
LCQ | 0.003 *** | −0.000 | ||||
(0.001) | (0.004) | |||||
LCG | 0.003 *** | −0.000 | ||||
(0.001) | (0.004) | |||||
LCI | 0.001 *** | 0.004 | ||||
(0.000) | (0.003) | |||||
CR | −0.000 | 0.272 *** | −0.000 | 0.272 *** | −0.000 | 0.272 *** |
(0.000) | (0.049) | (0.000) | (0.049) | (0.000) | (0.049) | |
AL | 0.000 * | −0.022 | 0.000 * | −0.022 | 0.000 * | −0.022 |
(0.000) | (0.022) | (0.000) | (0.022) | (0.000) | (0.022) | |
TAT | 0.001 * | 0.348 * | 0.001 * | 0.348 * | 0.000 | 0.349 * |
(0.001) | (0.180) | (0.001) | (0.180) | (0.001) | (0.180) | |
ROA | 0.004 * | −0.503 *** | 0.004 * | −0.503 *** | 0.005 ** | −0.503 *** |
(0.002) | (0.187) | (0.002) | (0.187) | (0.002) | (0.187) | |
ROE | 0.000 | −0.010 | 0.000 | −0.010 | 0.000 | −0.010 |
(0.000) | (0.009) | (0.000) | (0.009) | (0.000) | (0.009) | |
TAG | 0.000 | 0.339 *** | 0.000 | 0.339 *** | 0.000 | 0.338 *** |
(0.000) | (0.091) | (0.000) | (0.091) | (0.000) | (0.091) | |
ROAG | −0.000 | 0.000 *** | −0.000 | 0.000 *** | −0.000 | 0.000 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Cons | 0.016 *** | 10.193 *** | 0.016 *** | 10.193 *** | −0.014 ** | 10.195 *** |
(0.005) | (1.347) | (0.005) | (1.347) | (0.006) | (1.348) | |
Obs | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 | 23,580 |
0.253 | 0.054 | 0.261 | 0.054 | 0.124 | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Huang, Z. The Impact of Climate Change Transition Innovations on the Default Risk. Sustainability 2024, 16, 4321. https://doi.org/10.3390/su16114321
Huang Y, Huang Z. The Impact of Climate Change Transition Innovations on the Default Risk. Sustainability. 2024; 16(11):4321. https://doi.org/10.3390/su16114321
Chicago/Turabian StyleHuang, Yujun, and Zhihao Huang. 2024. "The Impact of Climate Change Transition Innovations on the Default Risk" Sustainability 16, no. 11: 4321. https://doi.org/10.3390/su16114321
APA StyleHuang, Y., & Huang, Z. (2024). The Impact of Climate Change Transition Innovations on the Default Risk. Sustainability, 16(11), 4321. https://doi.org/10.3390/su16114321