Hydrodynamic Cavitation and Advanced Oxidation for Enhanced Degradation of Persistent Organic Pollutants: A Review
Abstract
:1. Introduction
2. Overview of Cavitation
3. Hydrodynamic Cavitation Mechanism
Initiation of Hydrodynamic Cavitation
4. Effect of Operating Parameters
4.1. Geometry of Hydrodynamic Cavitation
4.2. Hydrodynamic Cavitation Pressure
4.3. Effect of Temperature
4.4. Effect of pH
4.5. Effect of Addition of Oxidants
4.6. Effect of Physicochemical Properties of a Liquid
4.7. Effect of Initial Pollutant Concentration
5. The Present State of Modeling HC Processes
5.1. Semiempirical Models
5.2. Data-Driven Models
5.3. Physics-Based Models
6. Methods for Assessing Cavitation Efficiency
6.1. Wastewater Pollutant Degradation
6.2. Biological Wastewater Treatments
7. HC for Degradation of Various Organics in Wastewater
8. Studies on Pilot-Scale and Full-Scale Implementation
9. Economic Feasibility
10. Prospects for Future Research
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gogate, P.R.; Pandit, A.B. Engineering Design Methods for Cavitation Reactors II: Hydrodynamic Cavitation. AIChE J. 2000, 46, 1641–1649. [Google Scholar] [CrossRef]
- Patil, P.B.; Bhandari, V.M.; Ranade, V.V. Wastewater Treatment and Process Intensification for Degradation of Solvents Using Hydrodynamic Cavitation. Chem. Eng. Process.-Process Intensif. 2021, 166, 108485. [Google Scholar] [CrossRef]
- Sivagami, K.; Sakthivel, K.P.; Nambi, I.M. Advanced Oxidation Processes for the Treatment of Tannery Wastewater. J. Environ. Chem. Eng. 2018, 6, 3656–3663. [Google Scholar] [CrossRef]
- Gujar, S.K.; Gogate, P.R.; Kanthale, P.; Pandey, R.; Thakre, S.; Agrawal, M. Combined Oxidation Processes Based on Ultrasound, Hydrodynamic Cavitation and Chemical Oxidants for Treatment of Real Industrial Wastewater from Cellulosic Fiber Manufacturing Sector. Sep. Purif. Technol. 2021, 257, 117888. [Google Scholar] [CrossRef]
- Gopalakrishnan, G.; Jeyakumar, R.B.; Somanathan, A. Challenges and Emerging Trends in Advanced Oxidation Technologies and Integration of Advanced Oxidation Processes with Biological Processes for Wastewater Treatment. Sustainability 2023, 15, 4235. [Google Scholar] [CrossRef]
- Iyer, G.M.; Liu, L.; Zhang, C. Hydrocarbon Separations by Glassy Polymer Membranes. J. Polym. Sci. 2020, 58, 2482–2517. [Google Scholar] [CrossRef]
- Popat, A.; Nidheesh, P.V.; Anantha Singh, T.S.; Suresh Kumar, M. Mixed Industrial Wastewater Treatment by Combined Electrochemical Advanced Oxidation and Biological Processes. Chemosphere 2019, 237, 124419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Koros, W.J. Tailoring the Transport Properties of Zeolitic Imidazolate Frameworks by Post-Synthetic Thermal Modification. ACS Appl. Mater. Interfaces 2015, 7, 23407–23411. [Google Scholar] [CrossRef]
- Buthiyappan, A.; Abdul Aziz, A.R.; Wan Daud, W.M.A. Recent Advances and Prospects of Catalytic Advanced Oxidation Process in Treating Textile Effluents. Rev. Chem. Eng. 2016, 32, 1–47. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Karimi, B.; Rajaei, M.S. The Effect of Aeration on Advanced Coagulation, Flotation and Advanced Oxidation Processes for Color Removal from Wastewater. J. Mol. Liq. 2016, 223, 75–80. [Google Scholar] [CrossRef]
- Mohod, A.V.; Teixeira, A.C.S.C.; Bagal, M.V.; Gogate, P.R.; Giudici, R. Degradation of Organic Pollutants from Wastewater Using Hydrodynamic Cavitation: A Review. J. Environ. Chem. Eng. 2023, 11, 109773. [Google Scholar] [CrossRef]
- Agarkoti, C.; Thanekar, P.D.; Gogate, P.R. Cavitation Based Treatment of Industrial Wastewater: A Critical Review Focusing on Mechanisms, Design Aspects, Operating Conditions and Application to Real Effluents. J. Environ. Manag. 2021, 300, 113786. [Google Scholar] [CrossRef] [PubMed]
- Gogate, P.R.; Pandit, A.B. A Review of Imperative Technologies for Wastewater Treatment I: Oxidation Technologies at Ambient Conditions. Adv. Environ. Res. 2004, 8, 501–551. [Google Scholar] [CrossRef]
- Fedorov, K.; Rayaroth, M.P.; Shah, N.S.; Boczkaj, G. Activated Sodium Percarbonate-Ozone (SPC/O3) Hybrid Hydrodynamic Cavitation System for Advanced Oxidation Processes (AOPs) of 1,4-Dioxane in Water. Chem. Eng. J. 2023, 456, 141027. [Google Scholar] [CrossRef]
- Nogueira, A.A.; Bassin, J.P.; Cerqueira, A.C.; Dezotti, M. Integration of Biofiltration and Advanced Oxidation Processes for Tertiary Treatment of an Oil Refinery Wastewater Aiming at Water Reuse. Environ. Sci. Pollut. Res. 2016, 23, 9730–9741. [Google Scholar] [CrossRef] [PubMed]
- Esmaeeli, A.; Sarrafzadeh, M.H.; Zeighami, S.; Kalantar, M.; Bariki, S.G.; Fallahi, A.; Asgharnejad, H.; Ghaffari, S.B. A Comprehensive Review on Pulp and Paper Industries Wastewater Treatment Advances. Ind. Eng. Chem. Res. 2023, 62, 8119–8145. [Google Scholar] [CrossRef]
- Patil, P.B.; Thanekar, P.; Bhandari, V.M. A Strategy for Complete Degradation of Metformin Using Vortex-Based Hydrodynamic Cavitation. Ind. Eng. Chem. Res. 2022, 62, 19262–19273. [Google Scholar] [CrossRef]
- Thapa, B.S.; Pandit, S.; Patwardhan, S.B.; Tripathi, S.; Mathuriya, A.S.; Gupta, P.K.; Lal, R.B.; Tusher, T.R. Application of Microbial Fuel Cell (MFC) for Pharmaceutical Wastewater Treatment: An Overview and Future Perspectives. Sustainability 2022, 14, 8379. [Google Scholar] [CrossRef]
- Berstad, D.; Anantharaman, R.; Wilhelmsen, Ø.; Skjervold, V.; Nekså, P. Large-Scale Hydrogen Production and Liquefaction for Regional and Global Export. In Proceedings of the International Hydrogen and Fuel Cells Conference, Trondheim, Norway, 14–15 May 2018. [Google Scholar]
- Gągol, M.; Cako, E.; Fedorov, K.; Soltani, R.D.C.; Przyjazny, A.; Boczkaj, G. Hydrodynamic Cavitation Based Advanced Oxidation Processes: Studies on Specific Effects of Inorganic Acids on the Degradation Effectiveness of Organic Pollutants. J. Mol. Liq. 2020, 307, 113002. [Google Scholar] [CrossRef]
- Al Salmi, H.; Khan, F.R. A Comparative Case Study on Accountability of Corporate Social Responsibility (CSR) Practices in Oman Lng and Omifco at Sur City in Oman. Humanit. Soc. Sci. Rev. 2019, 7, 490–502. [Google Scholar] [CrossRef]
- Thanekar, P.; Lakshmi, N.J.; Shah, M.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of Dimethoate Using Combined Approaches Based on Hydrodynamic Cavitation and Advanced Oxidation Processes. Process Saf. Environ. Prot. 2020, 143, 222–230. [Google Scholar] [CrossRef]
- Gostiša, J.; Širok, B.; Repinc, S.K.; Levstek, M.; Stražar, M.; Bizjan, B.; Zupanc, M. Performance Evaluation of a Novel Pilot-Scale Pinned Disc Rotating Generator of Hydrodynamic Cavitation. Ultrason. Sonochem. 2021, 72, 105431. [Google Scholar] [CrossRef] [PubMed]
- Rokesh, K.; Mohan, S.C.; Karuppuchamy, S.; Jothivenkatachalam, K. Photo-Assisted Advanced Oxidation Processes for Rhodamine B Degradation Using ZnO-Ag Nanocomposite Materials. J. Environ. Chem. Eng. 2018, 6, 3610–3620. [Google Scholar] [CrossRef]
- Babu, S.G.; Ashokkumar, M.; Neppolian, B. The Role of Ultrasound on Advanced Oxidation Processes. Top. Curr. Chem. 2016, 374, 75. [Google Scholar] [CrossRef] [PubMed]
- Abu Amr, S.S.; Aziz, H.A.; Bashir, M.J.K.; Aziz, S.Q.; Alsaibi, T.M. Comparison and Optimization of Ozone–Based Advanced Oxidation Processes in the Treatment of Stabilized Landfill Leachate. J. Eng. Res. Technol. 2015, 2, 122–130. [Google Scholar]
- Min, B.; Korde, A.; Yang, S.; Kim, Y.; Jones, C.W.; Nair, S. Separation of C2–C4 Hydrocarbons from Methane by Zeolite MFI Hollow Fiber Membranes Fabricated from 2D Nanosheets. AIChE J. 2021, 67, e17048. [Google Scholar] [CrossRef]
- Chatel, G.; Colmenares, J.C. Sonochemistry: From Basic Principles to Innovative Applications. Top. Curr. Chem. 2017, 375, 8. [Google Scholar] [CrossRef] [PubMed]
- Chakinala, A.G.; Gogate, P.R.; Burgess, A.E.; Bremner, D.H. Industrial Wastewater Treatment Using Hydrodynamic Cavitation and Heterogeneous Advanced Fenton Processing. Chem. Eng. J. 2009, 152, 498–502. [Google Scholar] [CrossRef]
- Saharan, V.K.; Rizwani, M.A.; Malani, A.A.; Pandit, A.B. Effect of Geometry of Hydrodynamically Cavitating Device on Degradation of Orange-G. Ultrason. Sonochem. 2013, 20, 345–353. [Google Scholar] [CrossRef]
- Khatri, J.; Nidheesh, P.V.; Anantha Singh, T.S.; Suresh Kumar, M. Advanced Oxidation Processes Based on Zero-Valent Aluminium for Treating Textile Wastewater. Chem. Eng. J. 2018, 348, 67–73. [Google Scholar] [CrossRef]
- Bagal, M.V.; Gogate, P.R. Wastewater Treatment Using Hybrid Treatment Schemes Based on Cavitation and Fenton Chemistry: A Review. Ultrason. Sonochem. 2014, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Šarc, A.; Stepišnik-Perdih, T.; Petkovšek, M.; Dular, M. The Issue of Cavitation Number Value in Studies of Water Treatment by Hydrodynamic Cavitation. Ultrason. Sonochem. 2017, 34, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Thorpe, R.B. Flow Regime Transitions Due to Cavitation in the Flow through an Orifice. Int. J. Multiph. Flow 1990, 16, 1023–1045. [Google Scholar] [CrossRef]
- Cioncolini, A.; Scenini, F.; Duff, J.; Szolcek, M.; Curioni, M. Choked Cavitation in Micro-Orifices: An Experimental Study. Exp. Therm. Fluid Sci. 2016, 74, 49–57. [Google Scholar] [CrossRef]
- Gostiša, J.; Zupanc, M.; Dular, M.; Širok, B.; Levstek, M.; Bizjan, B. Investigation into Cavitational Intensity and COD Reduction Performance of the Pinned Disc Reactor with Various Rotor-Stator Arrangements. Ultrason. Sonochem. 2021, 77, 105669. [Google Scholar] [CrossRef] [PubMed]
- Sarvothaman, V.P.; Velisoju, V.K.; Subburaj, J.; Panithasan, M.S.; Kulkarni, S.R.; Castaño, P.; Turner, J.; Guida, P.; Roberts, W.L.; Nagarajan, S. Is Cavitation a Truly Sensible Choice for Intensifying Photocatalytic Oxidation Processes?–Implications on Phenol Degradation Using ZnO Photocatalysts. Ultrason. Sonochem. 2023, 99, 106548. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K. A Detailed Review on Advanced Oxidation Process in Treatment of Wastewater: Mechanism, Challenges and Future Outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef]
- Peng, K.; Qin, F.G.F.; Jiang, R.; Qu, W.; Wang, Q. Production and Dispersion of Free Radicals from Transient Cavitation Bubbles: An Integrated Numerical Scheme and Applications. Ultrason. Sonochem. 2022, 88, 106067. [Google Scholar] [CrossRef]
- Prado, C.A.; Antunes, F.A.F.; Rocha, T.M.; Sánchez-Muñoz, S.; Barbosa, F.G.; Terán-Hilares, R.; Cruz-Santos, M.M.; Arruda, G.L.; da Silva, S.S.; Santos, J.C. A Review on Recent Developments in Hydrodynamic Cavitation and Advanced Oxidative Processes for Pretreatment of Lignocellulosic Materials. Bioresour. Technol. 2022, 345, 126458. [Google Scholar] [CrossRef]
- Ge, M.; Sun, C.; Zhang, G.; Coutier-Delgosha, O.; Fan, D. Combined Suppression Effects on Hydrodynamic Cavitation Performance in Venturi-Type Reactor for Process Intensification. Ultrason. Sonochem. 2022, 86, 106035. [Google Scholar] [CrossRef]
- Goodarzi, S.; Jahanshahi Javaran, E.; Rahnama, M.; Ahmadi, M. Techno-Economic Evaluation of a Multi Effect Distillation System Driven by Low-Temperature Waste Heat from Exhaust Flue Gases. Desalination 2019, 460, 64–80. [Google Scholar] [CrossRef]
- Sivakumar, M.; Pandit, A.B. Wastewater Treatment: A Novel Energy Efficient Hydrodynamic Cavitational Technique. Ultrason. Sonochem. 2002, 9, 123–131. [Google Scholar] [CrossRef]
- Moholkar, V.S.; Pandit, A.B. Modeling of Hydrodynamic Cavitation Reactors: A Unified Approach. Chem. Eng. Sci. 2001, 56, 6295–6302. [Google Scholar] [CrossRef]
- Ozonek, J.; Lenik, K. Effect of Different Design Features of the Reactor on Hydrodynamic Cavitation Process. Arch. Mater. Sci. Eng. 2011, 52, 112–117. [Google Scholar]
- Chu, Y. Transition Metal-Containing Carbon Molecular Sieve Membranes for Advanced Olefin/Paraffin Separations. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, USA, 2017. [Google Scholar]
- Li, M.; Bussonnière, A.; Bronson, M.; Xu, Z.; Liu, Q. Study of Venturi Tube Geometry on the Hydrodynamic Cavitation for the Generation of Microbubbles. Miner. Eng. 2019, 132, 268–274. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, M.; Chen, B.; Sun, L.; Lu, H. Microbubble- and Nanobubble-Aeration for Upgrading Conventional Activated Sludge Process: A Review. Bioresour. Technol. 2022, 362, 127826. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Zhang, H.; Shi, W.; Xiong, M.; Gao, C.; Cui, M. Hydrodynamic Cavitation and Its Application in Water Treatment Combined with Ozonation: A Review. J. Ind. Eng. Chem. 2022, 114, 33–51. [Google Scholar] [CrossRef]
- Mittal, R.; Ranade, V. Bioactives from Microalgae: A Review on Process Intensification Using Hydrodynamic Cavitation. J. Appl. Phycol. 2023, 35, 1129–1161. [Google Scholar] [CrossRef]
- Moussavi, G.; Pourakbar, M.; Aghayani, E.; Mahdavianpour, M.; Shekoohyian, S. Comparing the Efficacy of VUV and UVC/S2 Advanced Oxidation Processes for Degradation and Mineralization of Cyanide in Wastewater. Chem. Eng. J. 2016, 294, 273–280. [Google Scholar] [CrossRef]
- Mukherjee, A.; Mullick, A.; Teja, R.; Vadthya, P.; Roy, A.; Moulik, S. Performance and Energetic Analysis of Hydrodynamic Cavitation and Potential Integration with Existing Advanced Oxidation Processes: A Case Study for Real Life Greywater Treatment. Ultrason. Sonochem. 2020, 66, 105116. [Google Scholar] [CrossRef]
- Braeutigam, P.; Franke, M.; Wu, Z.L.; Ondruschka, B. Role of Different Parameters in the Optimization of Hydrodynamic Cavitation. Chem. Eng. Technol. 2010, 33, 932–940. [Google Scholar] [CrossRef]
- De-Nasri, S.J.; Sarvothaman, V.P.; Nagarajan, S.; Manesiotis, P.; Robertson, P.K.J.; Ranade, V.V. Quantifying OH Radical Generation in Hydrodynamic Cavitation via Coumarin Dosimetry: Influence of Operating Parameters and Cavitation Devices. Ultrason. Sonochem. 2022, 90, 106207. [Google Scholar] [CrossRef]
- Jankunaite, D.; Tichonovas, M.; Buivydiene, D.; Radziuniene, I.; Racys, V.; Krugly, E. Removal of Diclofenac, Ketoprofen, and Carbamazepine from Simulated Drinking Water by Advanced Oxidation in a Model Reactor. Water Air Soil Pollut. 2017, 228, 353. [Google Scholar] [CrossRef]
- Teng, S.Y.; Leong, W.D.; How, B.S.; Lam, H.L.; Máša, V.; Stehlík, P. Debottlenecking Cogeneration Systems under Process Variations: Multi-Dimensional Bottleneck Tree Analysis with Neural Network Ensemble. Energy 2021, 215, 119168. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Kamizela, T. Artificial Neural Networks in Modeling of Dewaterability of Sewage Sludge. Energies 2021, 14, 1552. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Yuan, R.; Wang, F.; Ma, F.; Zhou, B. Intensified Degradation of Textile Wastewater Using a Novel Treatment of Hydrodynamic Cavitation with the Combination of Ozone. J. Environ. Chem. Eng. 2020, 8, 103959. [Google Scholar] [CrossRef]
- Musmarra, D.; Prisciandaro, M.; Capocelli, M.; Karatza, D.; Iovino, P.; Canzano, S.; Lancia, A. Degradation of Ibuprofen by Hydrodynamic Cavitation: Reaction Pathways and Effect of Operational Parameters. Ultrason. Sonochem. 2016, 29, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Kang, L.; Liu, Y. The Flexible Design for Optimization and Debottlenecking of Multiperiod Hydrogen Networks. Ind. Eng. Chem. Res. 2016, 55, 2574–2583. [Google Scholar] [CrossRef]
- Gogate, P.R.; Pandit, A.B. A Review and Assessment of Hydrodynamic Cavitation as a Technology for the Future. Ultrason. Sonochem. 2005, 12, 21–27. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, M.; Liang, L. Highly Efficient In-Situ Metal-Free Electrochemical Advanced Oxidation Process Using Graphite Felt Modified with N-Doped Graphene. Chem. Eng. J. 2018, 338, 700–708. [Google Scholar] [CrossRef]
- Sarvothaman, V.P.; Simpson, A.; Ranade, V.V. Comparison of Hydrodynamic Cavitation Devices Based on Linear and Swirling Flows: Degradation of Dichloroaniline in Water. Ind. Eng. Chem. Res. 2020, 59, 13841–13847. [Google Scholar] [CrossRef]
- Adama Maiga, M.; Coutier-Delgosha, O.; Buisine, D. Analysis of Sheet Cavitation with Bubble/Bubble Interaction Models. Phys. Fluids 2019, 31, 073302. [Google Scholar] [CrossRef]
- Zhao, M.; Wan, D.; Gao, Y. Comparative Study of Different Turbulence Models for Cavitational Flows around Naca0012 Hydrofoil. J. Mar. Sci. Eng. 2021, 9, 742. [Google Scholar] [CrossRef]
- Vichare, N.P.; Gogate, P.R.; Pandit, A.B. Optimization of Hydrodynamic Cavitation Using a Model Reaction. Chem. Eng. Technol. 2000, 23, 683–690. [Google Scholar] [CrossRef]
- Terán Hilares, R.; Dionízio, R.M.; Sánchez Muñoz, S.; Prado, C.A.; de Sousa Júnior, R.; da Silva, S.S.; Santos, J.C. Hydrodynamic Cavitation-Assisted Continuous Pre-Treatment of Sugarcane Bagasse for Ethanol Production: Effects of Geometric Parameters of the Cavitation Device. Ultrason. Sonochem. 2020, 63, 104931. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Song, Y.; Dai, Y.; Qiu, G.; Ren, M.; Zeng, P. Treatment of Berberine Hydrochloride Pharmaceutical Wastewater by O3/UV/H2O2 Advanced Oxidation Process. Environ. Earth Sci. 2015, 73, 4939–4946. [Google Scholar] [CrossRef]
- Capocelli, M.; Prisciandaro, M.; Lancia, A.; Musmarra, D. Application of ANN to Hydrodynamic Cavitation: Preliminary Results on Process Efficiency Evaluation. Chem. Eng. Trans. 2014, 36, 199–204. [Google Scholar] [CrossRef]
- Ranade, V.V. Modeling of Hydrodynamic Cavitation Reactors: Reflections on Present Status and Path Forward. ACS Eng. Au 2022, 2, 461–476. [Google Scholar] [CrossRef]
- Song, L.; Wei, Y.; Deng, C.; Yang, J.; Sui, H.; Guo, F.; Meng, L.; Zhao, X.; Wei, S.; Sun, D.; et al. A Novel Method Based on Hydrodynamic Cavitation for Improving Nitric Oxide Removal Performance of NaClO2. Int. J. Environ. Res. Public Health 2023, 20, 3684. [Google Scholar] [CrossRef]
- Khan, S.; Raja, M.A.; Sayed, M.; Shah, L.A.; Sohail, M. Advanced Oxidation and Reduction Processes. In Advances in Water Purification Techniques: Meeting the Needs of Developed and Developing Countries; Elsevier: Amsterdam, The Netherlands, 2019; pp. 135–164. ISBN 9780128147900. [Google Scholar]
- Patil, Y.; Sonawane, S.H.; Shyam, P.; Sun, X.; Manickam, S. Hybrid Hydrodynamic Cavitation (HC) Technique for the Treatment and Disinfection of Lake Water. Ultrason. Sonochem. 2023, 97, 106454. [Google Scholar] [CrossRef]
- Tao, Y.; Cai, J.; Huai, X.; Liu, B.; Guo, Z. Application of Hydrodynamic Cavitation to Wastewater Treatment. Chem. Eng. Technol. 2016, 39, 1363–1376. [Google Scholar] [CrossRef]
- Wang, B.; Su, H.; Zhang, B. Hydrodynamic Cavitation as a Promising Route for Wastewater Treatment–A Review. Chem. Eng. J. 2021, 412, 128685. [Google Scholar] [CrossRef]
- Kausley, S.B.; Malhotra, C.P.; Pandit, A.B. Treatment and Reuse of Shale Gas Wastewater: Electrocoagulation System for Enhanced Removal of Organic Contamination and Scale Causing Divalent Cations. J. Water Process Eng. 2017, 16, 149–162. [Google Scholar] [CrossRef]
- Mancuso, G.; Langone, M.; Andreottola, G. A Critical Review of the Current Technologies in Wastewater Treatment Plants by Using Hydrodynamic Cavitation Process: Principles and Applications. J. Environ. Health Sci. Eng. 2020, 18, 311–333. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.M.; Gogate, P.R. Intensification of Industrial Wastewater Treatment Using Hydrodynamic Cavitation Combined with Advanced Oxidation at Operating Capacity of 70 L. Ultrason. Sonochem. 2019, 52, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Badmus, K.O.; Tijani, J.O.; Massima, E.; Petrik, L. Treatment of Persistent Organic Pollutants in Wastewater Using Hydrodynamic Cavitation in Synergy with Advanced Oxidation Process. Environ. Sci. Pollut. Res. 2018, 25, 7299–7314. [Google Scholar] [CrossRef] [PubMed]
- Gogate, P.R.; Bhosale, G.S. Comparison of Effectiveness of Acoustic and Hydrodynamic Cavitation in Combined Treatment Schemes for Degradation of Dye Wastewaters. Chem. Eng. Process.-Process Intensif. 2013, 71, 59–69. [Google Scholar] [CrossRef]
- Bhat, A.P.; Gogate, P.R. Cavitation-Based Pre-Treatment of Wastewater and Waste Sludge for Improvement in the Performance of Biological Processes: A Review. J. Environ. Chem. Eng. 2021, 9, 104743. [Google Scholar] [CrossRef]
- Hilares, R.T.; Atoche-Garay, D.F.; Pagaza, D.A.P.; Ahmed, M.A.; Andrade, G.J.C.; Santos, J.C. Promising Physicochemical Technologies for Poultry Slaughterhouse Wastewater Treatment: A Critical Review. J. Environ. Chem. Eng. 2021, 9, 105174. [Google Scholar] [CrossRef]
- Mohammadi, K.; Saghafifar, M.; Ellingwood, K.; Powell, K. Hybrid Concentrated Solar Power (CSP)-Desalination Systems: A Review. Desalination 2019, 468, 114083. [Google Scholar] [CrossRef]
- Thanekar, P.; Gogate, P.R. Combined Hydrodynamic Cavitation Based Processes as an Efficient Treatment Option for Real Industrial Effluent. Ultrason. Sonochem. 2019, 53, 202–213. [Google Scholar] [CrossRef]
- Carpenter, J.; George, S.; Saharan, V.K. Low Pressure Hydrodynamic Cavitating Device for Producing Highly Stable Oil in Water Emulsion: Effect of Geometry and Cavitation Number. Chem. Eng. Process.-Process Intensif. 2017, 116, 97–104. [Google Scholar] [CrossRef]
- Dixit, D.; Thanekar, P.; Bhandari, V.M. Degradation of API Pollutants Using Hydrodynamic Cavitation and Process Intensification. Chem. Eng. Process.-Process Intensif. 2022, 172, 108799. [Google Scholar] [CrossRef]
- Roy, M.; Yadav, R.; Chiranjeevi, P.; Patil, S.A. Direct Utilization of Industrial Carbon Dioxide with Low Impurities for Acetate Production via Microbial Electrosynthesis. Bioresour. Technol. 2021, 320, 124289. [Google Scholar] [CrossRef] [PubMed]
- Gerrity, D.; Pisarenko, A.N.; Marti, E.; Trenholm, R.A.; Gerringer, F.; Reungoat, J.; Dickenson, E. Nitrosamines in Pilot-Scale and Full-Scale Wastewater Treatment Plants with Ozonation. Water Res. 2015, 72, 251–261. [Google Scholar] [CrossRef]
- Shokoohi, R.; Rahmani, A.; Asgari, G.; Ashrafi, M.; Ghahramani, E. Removal of Algae Using Hydrodynamic Cavitation, Ozonation and Oxygen Peroxide: Taguchi Optimization (Case Study: Raw Water of Sanandaj Water Treatment Plant). Process Saf. Environ. Prot. 2023, 169, 896–908. [Google Scholar] [CrossRef]
- Jaafarzadeh, N.; Ghanbari, F.; Ahmadi, M. Efficient Degradation of 2,4-Dichlorophenoxyacetic Acid by Peroxymonosulfate/Magnetic Copper Ferrite Nanoparticles/Ozone: A Novel Combination of Advanced Oxidation Processes. Chem. Eng. J. 2017, 320, 436–447. [Google Scholar] [CrossRef]
- Lindsay, D.; Griffiths, M.; Sabitov, A.; Sioui, D.; Glover, B. How to Cost-Effectively Adapt to a Tight Oil World. In Hydrocarbon Processing; Gulf Publishing Co.: Houston, TX, USA, 2015. [Google Scholar]
- Lakshmi, N.J.; Gogate, P.R.; Pandit, A.B. Acoustic Cavitation for the Process Intensification of Biological Oxidation of CETP Effluent Containing Mainly Pharmaceutical Compounds: Understanding into Effect of Parameters and Toxicity Analysis. Ultrason. Sonochem. 2023, 98, 106524. [Google Scholar] [CrossRef]
Pollutants | Cavitator Geometry | Treatment Technique | Process Variables | Outcomes | References |
---|---|---|---|---|---|
Imidacloprid | Venturi (Circular) | H2O2 Photo-Fenton, Fenton with FeSO4·7H2O, photolytic and photocatalytic processes | pH = 2.8 Inlet pressure = 14 bar FeSO4·7H2O/H2O2 = 1:20 H2O2 = 1:20 (imidacloprid/H2O2) | HC alone: 26% HC + Photo-Fenton: 99.23% degradation in 15 min HC + Photo-Fenton: 48.96% mineralization in 180 min Degradation HC + Fenton: 100% degradation in 15 min HC + photocatalytic: 55.18% degradation in 120 min HC + photolytic: 45.56% degradation in 120 min | [24] |
Distillery wastewater (bio methanated) | Venturi device | HC + H2O2 | Inlet pressure = 5 bar Time = 150 min Volume = 6 L Dilution = 0% and 25% | Low pressure is more conducive to toxicity reduction in comparison to higher pressure, thereby promoting the enhancement of biodegradability. The enhancement of biodegradability resulted in a reduction of the lag phase observed during the process of methane generation. | [25] |
Reactive red 120 dye | Venturi (Circular) | HC + H2O2 | pH = 2.0 Inlet pressure = 5 bar Cv = 0.15 Initial concentration = 34 μm H2O2 = 1:60 (dye to H2O2) | Maximum decolorization and TOC reduction of 60% after 3 h with HC, and 28% after 3 h with HC with hydrogen peroxide, respectively. | [19] |
Effluent from fish processing | Orifice plate | HC | 6 bar; 2 holes 3 mm; 160 min 6 bar; 3 holes 3 mm; 40 min 8 bar; 2 holes 3 mm; 160 min 8 bar; 3 holes 3 mm; 40 min | The pH range observed was between 6.5 and 7.5, resulting in a maximum reduction of 14.46% in chemical oxygen demand (COD) and 12.6% in total organic carbon (TOC). | [26] |
Tannery effluent | Venturi | HC | Pressure = 450 Kpa 30 °C = 50% dilution 30 °C = no dilution | Optimal conditions include a pH range of 6.5 to 7.5, a decrease in TDS and TSS, and a decrease of 12.46% COD and 12.66% TOC. | [27] |
Wastewater from the textile dyeing industry | Venturi | HC + Oxygen, HC + O3, HC + Fenton | Treatment period of 120 min and reaction volume of 6 L were specified for the HC reactor at a pH of 6.8 and an inlet pressure of 5 bar. HC + Oxygen (2 L/min as O2 flow rate); HC + O3 (3 g/h as ozone flow rate); HC + Fenton (molar ratio of FeSO4·7H2O:H2O2 as 1:5) | HC alone was able to decrease TOC by 17%, COD by 12%, and decolorization by 25%. Using HC + Fenton resulted in a 48% decrease in TOC, 38% decrease in COD, and 98% improvement in decolorization. The combination of HC and O2 resulted in a 48% TOC, 33% COD, and a 62% decolorization. With HC + O3, we saw a decolorization of 88%, a decrease in TOC by 48%, and a decrease in COD by 23%. HC and Fenton’s reagent reduced TOC, COD, and color the highest compared to other hybrid procedures. | [16] |
Methylene blue (MB) | (HC) (HC + H2O2) (HC + Photocatalysis) | Initial concentration of 50 ppm HC + H2O2 (MB: H2O2 as 1:20); HC + Photocatalyst (Bismuth doped TiO2 at loading of 200 mg/L) in an HC reactor with an inlet pressure of 5 bar, a pH of 2, and a treatment period of 120 min | HC alone achieved 32.32% decolorization, HC plus photocatalyst 64.58%, and HC plus hydrogen peroxide 95%. The extent of mineralization was 9.46% for HC by itself, 12.68% with photocatalysis, and 18.41% with hydrogen peroxide. | [10] | |
Landfill leachate | Orifice plate 1-hole orifice; 30 passes 5-hole orifice; 30 passes 9-hole orifice; 10 passes | HC | Inlet pressure = 7 bar pH = 2.0 Volume = 30 L | The orifice with a single hole exhibited the lowest cavitation number (0.033), while demonstrating the highest degree of biodegradability of cavitation. | [28] |
Wastewater (industrial) | Orifice plate | HC + Zero valent iron (ZVI) as catalyst | pH = 2.6 Temperature = 30 °C Inlet pressure = 1400 psi Fenton loading = 155 g H2O2 = 1900 mg/L | A rise of 50% at 30 °C and 60% mineralization at optimum pressure | [29] |
Orange G dye | Orifice plate single hole, slit venturi, and circular | HC | pH= 2.2 For orifice pressure single hole = 5 bar, Cv = 0.23 For circular venturi, pressure = 5 bar, Cv = 0.16 For slit venturi, pressure = 3 bar, Cv = 0.29 | In 2 h of operation under ideal conditions, the slit venturi removed 92% of the color, while the circular venturi removed 76% and the orifice plate single hole removed 45%. | [30] |
Parameters | Cavitating Device | Cavitation Number | Ref. |
---|---|---|---|
Orifice velocity, downstream pressure | Multiple orifice | The cavitation inception number fluctuates within the range of 1.7 to 2.4 when the orifice-to-pipe-diameter ratio is between 0.4 and 0.8. | [26] |
Orifice velocity, downstream pressure | Multiple orifice | The cavitation inception number shows variations at approximately 0.3, 0.7, and 1.1 for three different orifices. | [37] |
Reference velocity, reference pressure | Microfluidic devices with rough surfaces | Pressures up to 900 psi (6.2 MPa) are applied, with the cavitation number between 2.025 and 0.720 and cavitation inception ranging from 0.925 to 3.266. | [21] |
Throat velocity, outlet static pressure | Venturi tube | A cavity develops around a cavitation number of 0.51, with inception at 0.99, and the cavitation number is unaffected by inlet pressures. | [18] |
Parameter | Unit | A | B | C |
---|---|---|---|---|
The total number of holes | ___ | 1 holes | 5 holes | 10 holes |
Hole diameter | mm | 3 | 5 | 1 |
Holes total area | mm2 | 7.0 | 25 | 7.0 |
Orifice plate cavitation number Cv | ___ | 0.03 | 0.30 | 0.39 |
α | mm−1 | 1.33 | 2.5 | 4.0 |
β0 | ___ | 0.0020 | 0.0083 | 0.0024 |
Total hole perimeter | mm | 9.50 | 61 | 28.30 |
Velocity of orifice | m/s | 75.50 | 25.80 | 21.50 |
Flow rate | L/s | 0.530 | 0.640 | 0.151 |
Module | Results | Limitations | Reference |
---|---|---|---|
ANN Model | Able to generate intuitively consistent extrapolated results for degradation of DCA in terms of number of passes, as well as scale of HC reactor, which is useful for developing quantitative models of complex HC applications. | Data dependency, need for large datasets, and risk of overfitting | [63] |
Bubble Interaction | Superior performance compared to classical models in predicting bubble dynamics. The model, validated against X-ray imaging experiments, also explores scale effects, revealing non-proportional variations in the bubble size across different time scales. | Numerical complexity, scale dependency, and variable conditions | [64] |
RANS SST k–ω turbulence model | It was shown that cavitation inception was sensitive to changes in nozzle geometry and, since geometrical parameters are not included in the cavitation number formula, scenarios of cavitation inception can be different at the same cavitation number. | Free shear layers, pressure gradients, and accuracy for unsteady flows | [65] |
CFX (ANSYS CFX) | The results of the simulation showed that the new numerical model of cavitation mass transfer can simulate the jet pipes with the difference between. | Inlet flow conditions, uncertainty quantification, and validation and verification | [56] |
Pollutants | Cavitator Geometry | Research Methods | Conclusion | References |
---|---|---|---|---|
Industrial wastewater | Venturi tube | HC with H2O2, persulfate and ozone | HC exhibits favorable attributes in terms of energy efficiency and economic viability, specifically with regard to the cavitation yield, COD reduction, and treatment cost. | [25] |
Methomyl | Venturi tube | HC with ozone, Fenton method, H2O2 | With the highest synergy coefficient and energy efficiency, HC and ozone are the most effective methods for degrading Methomyl. | [11] |
Tetracycline | Venturi tube | HC with photocatalysis | Tetracycline breakdown is more effective in alkaline environments due to its pH dependence. HC inhibits the photocatalytic breakdown of tetracycline, while HCO3 improves it. | [68] |
Refinery wastewater | Orifice plate, venturi tube | HC with H2O2 | The disinfection efficiency can be enhanced by increasing the treatment duration and integrating other advanced oxidation processes. The pathogen kill rate is significantly enhanced under conditions of low pressure, while the reduction efficiency of chemical oxygen demand (COD) is comparatively diminished. | [7] |
Process | Time | Pressure (bar) | Degradation (%) | Energy KWh L−1 | Cost ($ m−3) |
---|---|---|---|---|---|
HC | 120 min | 6 | 28 | 1.8897 × 10−2 | 11.8897 × 10−3 |
biological | 28 days | - | 15 | 8.6000 × 10−4 | 8.6000 × 10−5 |
HC + biological | 120 min + 28 days | 6 | 51 | 1.9886 × 10−2 | 1.9886 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeneneh, A.M.; Al Balushi, K.; Jafary, T.; Al Marshudi, A.S. Hydrodynamic Cavitation and Advanced Oxidation for Enhanced Degradation of Persistent Organic Pollutants: A Review. Sustainability 2024, 16, 4601. https://doi.org/10.3390/su16114601
Yeneneh AM, Al Balushi K, Jafary T, Al Marshudi AS. Hydrodynamic Cavitation and Advanced Oxidation for Enhanced Degradation of Persistent Organic Pollutants: A Review. Sustainability. 2024; 16(11):4601. https://doi.org/10.3390/su16114601
Chicago/Turabian StyleYeneneh, Anteneh Mesfin, Khadija Al Balushi, Tahereh Jafary, and Amjad Said Al Marshudi. 2024. "Hydrodynamic Cavitation and Advanced Oxidation for Enhanced Degradation of Persistent Organic Pollutants: A Review" Sustainability 16, no. 11: 4601. https://doi.org/10.3390/su16114601
APA StyleYeneneh, A. M., Al Balushi, K., Jafary, T., & Al Marshudi, A. S. (2024). Hydrodynamic Cavitation and Advanced Oxidation for Enhanced Degradation of Persistent Organic Pollutants: A Review. Sustainability, 16(11), 4601. https://doi.org/10.3390/su16114601