Glass Fibre-Reinforced Composite Materials Used in the Aeronautical Transport Sector: A Critical Circular Economy Point of View
Abstract
:1. Introduction
2. Materials Used in Aero-Applications
2.1. Materials Used in the Construction of Aircraft Parts
2.2. High-Performance Materials Used for UAV Manufacturing
2.3. Fibreglass Manufacturing
2.4. Safety
2.5. Future Materials
3. Current State of Glass Fibre-Reinforced Composite Materials and Functionalization
3.1. The Main Characteristics of Fibreglass
3.2. Properties of Composite Material Reinforced with Fibreglass
- −
- Preventing damage to the fibre surface;
- −
- Binding the fibres to speed up processing;
- −
- Ensuring fibre lubrication;
- −
- Boosting wear resistance during additional processing operations;
- −
- Providing anti-static properties;
- −
- Increasing the adhesion force at the interface and forging a stronger chemical bond between the glass surface and the composite matrix [64].
3.3. The Factors Influencing the Composite Materials’ Qualities
- Breaking of the fibres—this happens mainly under the action of traction loads;
- Microcracking of the matrix—this indicates the appearance of microscopic cracks in the polymer matrix;
- Matrix cracking—this is similar to microcracking;
- Destruction of the fibre–matrix connection—as a result of this, the reinforcing fibres detach from the matrix;
- Exfoliation—this refers to detachment of the layers of a layered composite material (delamination).
3.4. Impact of Materials in Design and Fabrication of Composite UAVs
3.5. The Possibility of Recycling Composite Materials
4. Conclusions
Funding
Conflicts of Interest
References
- Ahmad, J.; Gonzalez-Lezcano, R.; Deifalla, A.F.; Majdi, A.; El-Shorbagy, M.A. Glass Fibers Reinforced Concrete: Overview on Mechanical, Durability and Microstructure Analysis. Materials 2022, 15, 5111. [Google Scholar]
- Bahar, A.; Saffari, M.; Kaafi, P.; Afsoosbiria, H. A review of advantages of using glass fiber reinforcemment in construction. In Proceedings of the International Congress on Durability of Concrete (ICDC2012), Trondheim, Norway, 18–21 June 2012. [Google Scholar]
- Kopecskó, K. Durability of glass fibers. In Proceedings of the 6th International RILEM Symposium on Fiber-Reinforced Concretes, Varenna, Italy, 20–22 September 2004. [Google Scholar]
- Bath, B.; Deo, S.; Ramtekkar, G. Durable Glass Fiber Reinforced Concrete with Supplimentary Cementitious Materials. Int. J. Eng. Trans. B Appl. 2017, 31, 1012–1019. [Google Scholar]
- Thakur, A.; Sharma, T. Glass fiber strength properties. Int. J. Manag. Tech. Eng. 2018, 8, 175–179. [Google Scholar]
- Wang, X.; Wu, G.; Xie, P.; Gao, X.; Yang, W. Microstructure and Properties of Glass Fiber -Reinforced Polyamide/Nylon Microcellular Foamed Composites. Polymers 2020, 12, 2368. [Google Scholar] [CrossRef]
- Thomason, J.; Jenkins, P.; Yang, L. Glass Fiber Strength-A Review with Relation to Composite Recycling. Fibers 2016, 4, 18. [Google Scholar] [CrossRef]
- Sherif, G.; Chukov, D.; Tcherdyntsev, V.; Torokhov, V. Effect of Formation Route on the Mechanical Properties of the Polyethersulfone Composites Reinforced with Glass Fibers. Polymers 2019, 11, 1364. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Fini, E. State of the art in the application of functionalized waste polymers in the built environment. Resour. Conserv. Recycl. 2022, 177, 105967. [Google Scholar] [CrossRef]
- Rodrigues, A.; Luís, F.; Wandscher, V.; Pereira, G.; Valandro, L.; Rippe, M. Surface treatments of a glass fiber reinforced composite: Effect on the adhesion to a composite resin. J. Prosthodont. Res. 2020, 64, 301–306. [Google Scholar] [CrossRef]
- Issa, A.A.; Luyt, A.S. Kinetics of Alkoxysilanes and Organoalkoxysilanes Polymerization: A Review. Polymers 2019, 11, 537. [Google Scholar] [CrossRef]
- Antoniou, M.; Tsounidi, D.; Petrou, P.S.; Beltsios, K.G.; Kakabakos, S.E. Functionalization of silicon dioxide and silicon nitride surfaces with aminosilanes for optical biosensing applications. Med. Dev. Sens. 2020, 3, e10072. [Google Scholar] [CrossRef]
- Aissaoui, N.; Bergaoui, L.; Landoulsi, J.; Lambert, J.F.; Boujday, S. Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption. Langmuir 2012, 28, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Arnfinnsdottir, N.B.; Chapman, C.A.; Bailey, R.C.; Aksnes, A.; Stokke, B.T. Impact of Silanization Parameters and Antibody Immobilization Strategy on Binding Capacity of Photonic Ring Resonators. Sensors 2020, 20, 3163. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.; Correia, L.; Dehshirizadeh, M.; Sena-Cruz, J. Flexural Creep Response of Hybrid GFRP-FRC Sandwich Panels. Materials 2022, 15, 2536. [Google Scholar] [CrossRef]
- Chandramouli, K.; Srinivasa, P.; Narayanan, P.; Tirumala, S. Strength properties of glass fiber concrete. ARPN J. Eng. Appl. Sci. 2010, 5, 1–6. [Google Scholar]
- Kaske, H.K.; Melesse, G.; Yabasa, G. A Study on Using Glass Fiber -Reinforced Polymer Composites for Shear and Flexural Enhancement of Reinforced Concrete Beams. Adv. Civ. Eng. 2022, 2022, 5995103. [Google Scholar]
- Jesuarockiam, N.; Sathishkumar, T.P.; Satheeshkumar, S. Glass fiber -reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 1258–1275. [Google Scholar]
- Al-Kharabsheh, B.N.; Arbili, M.M.; Majdi, A.; Alogla, S.; Hakamy, A.; Ahmad, J.; Deifalla, A.F. Basalt Fiber Reinforced Concrete: A Compressive Review on Durability Aspects. Materials 2023, 16, 429. [Google Scholar]
- Lassila, L.; Garoushi, S.; Vallittu, P.; Säilynoja, E. Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution. J. Mech. Behav. Biomed. Mater. 2016, 6, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.; Men, G.; Xiao, P.; Tang, Q.; Han, F.; Kang, A.; Wu, Z. Recent Advances in Basalt Fiber Reinforced Asphalt Mixture for Pavement Applications. Materials 2022, 5, 6826. [Google Scholar]
- Babaee, M.; Jonoobi, M.; Hamzeh, Y.; Ashori, A. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr. Polym. 2015, 132, 1–8. [Google Scholar] [CrossRef]
- Hashim, M.F.A. Reinforced Alkali-Activated Composites Design, Mechanical Properties and Durability. Adv. Fiber 2023, 381–413. [Google Scholar]
- Ridzuan, M.J.M.; Majid, M.S.A.; Afendi, M.; Mazlee, M.N.; Gibson, A.G. Thermal behaviour and dynamic mechanical analysis of Pennisetum purpureum/glass-reinforced epoxy hybrid composites. Compos. Struct. 2016, 152, 850–859. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Z.; McDonald, A.G. Effect of Different Reinforcing Fillers on Properties, Interfacial Compatibility and Weatherability of Wood-plastic Composites. J. Bionic. Eng. 2019, 16, 337–353. [Google Scholar] [CrossRef]
- Toxicological Profile for Synthetic Vitreous Fibers; U.S. Department of Health and Human Services, Public Health Services, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2004; pp. 1–11.
- Review of the, U.S. Navy’s Exposure Standard for Manufactured Vitreous Fibres; National Academy of Sciences, National Research Council, National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Quinn, M.M.; Smith, T.J.; Youk, A.O.; Marsh, G.M.; Stone, R.A.; Buchanich, J.M.; Gula, M.J. Historical Cohort Study of US Man-Made Vitreous Fiber Production Workers: VIII. Exposure-specific job analysis. J. Occup. Environ. Med. 2001, 43, 824–834. [Google Scholar] [CrossRef]
- Hull, D.; Clyne, T.W. An Introduction to Composite Materials, 2nd ed.; Cambridge University Press: New York, NY, USA, 1996. [Google Scholar]
- Yuan, F. Properties of magnesium phosphate cement based fire-retardant coating containing glass fiber or glass fiber powder. Constr. Build. Mater. 2018, 162, 553–560. [Google Scholar]
- Report on Carcinogens, 12th ed.; U.S. Department of Health and Human Services, Public Health Service. 2011. Available online: https://www.iaff.org/wp-content/uploads/2019/06/12th-Report-on-Carcinogens-2011.pdf (accessed on 31 March 2024).
- Bilisik, K. Functional and Technical Textiles; Elsevier: Cambridge, UK, 2023; pp. 71–139. [Google Scholar]
- Żurowski, W. The Effect of Powder and Emulsion Binders on the Tribological Properties of Particulate Filled Glass Fibre Reinforced Polymer Composites. Polymers 2023, 15, 245. [Google Scholar] [CrossRef] [PubMed]
- Keleștemur, O.; Yildiz, S.; Arici, E.; Gocer, B. Statistical Analysis for Freeze Thaw Resistance of Cement Mortars Containing Marble Dust and Glass Fiber. Mater. Des. 2014, 60, 548–555. [Google Scholar]
- Praven, B.; Balachandra, P.S.; Vinayaka, N.; Srikanth, H.V. Mechanical properties and water absorption behaviour of pineapple leaf fibre reinforced polymer composites. Adv. Mater. Proces. Technol. 2020, 8, 1–16. [Google Scholar]
- Hale, J.M.; Gibson, G.A. Coupon Tests of Fiber Reinforced Plastics at Elevated Temperatures in Offshore Processing Environments. J. Compos. Mater. 1998, 32, 52. [Google Scholar]
- McDonough, W.; Braungart, M. Cradle to Cradle: Remaking the Way We Make Things; North Point Press: New York, NY, USA, 2022. [Google Scholar]
- Schultheisz, R.C.; McDonough, G.W.; Kondagunta, S.; Schutte, L.C.; Macturk, S.K.; McAuliffe, M.; Hunston, L.D. Effect of Moisture on E-Glass/Epoxy Interfacial and Fiber Strengths. In Proceeding of the 13th Symposium on Composite Materials: Testing and Design, Orlando, FL, USA, 20–21 May 1996; pp. 257–286. [Google Scholar]
- Mortazavian, V.; Fatemi, A.; Khosrovaneh, A. Effect of Water Absorption on Tensile and Fatigue Behaviors of Two Short Glass Fiber Reinforced Thermoplastics. SAE Int. J. Mater. Manuf. 2015, 8, 435–443. [Google Scholar]
- Rahman, N.A.; Hassan, A.; Yahya, R.; LafiaAraga, R. Impact properties of glass fiber/polypropylene composites: The influence of fiber loading, specimen geometry and test temperature. Fiber Polym. 2013, 14, 1877–1885. [Google Scholar] [CrossRef]
- Jawaid, M.; Alothman, O.Y.; Saba, N.; Paridah, M.; Abdul-Khalil, H. Effect of fiber treatment on dynamic mechanical and thermal properties of epoxy hybrid composites. Polym. Compos. 2014, 36, 1669–1674. [Google Scholar] [CrossRef]
- Cerbu, C.; Curtu, I. Aspects concerning environmental effects on the glass reinforced polymers. In Proceeding of the 9th International Research/Expert Conference, Trends in the Development of Machinery and Associated Technology TMT2005, Antalya, Turkey, 26–30 September 2015; pp. 1451–1454. [Google Scholar]
- Hoskin, B.C.; Baker, A.A. (Eds.) Composite Materials for Aircraft Structure; AIAA Education Series; AIAA Education: New York, NY, USA, 2016. [Google Scholar]
- Ray, B.C. Impact of Environmental and Experimental Parameters on FRP Composites. In Proceedings of the Eighteenth International Symposium on Processing and Fabrication of Advance Materials, Sendai, Japan, 12–14 December 2009. [Google Scholar]
- Biswas, S.; Deo, B.; Patnaik, A.; Satapathy, A. Effect of fiber loading and orientation on mechanical and erosion wear behaviors of glass–epoxy composites. Polym. Compos. 2011, 32, 665–674. [Google Scholar] [CrossRef]
- Clyne, T.W.; Hull, D. An Introduction to Composite Materials, 3rd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Alfred, C. Introduction to Composite Materials; Michigan State University: East Lansing, MI, USA, 2020. [Google Scholar]
- Rajak, D.K.; Durgesh, D.; Pruncu, C.I. Recent progress of reinforcement materials: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2019, 8, 6354–6374. [Google Scholar] [CrossRef]
- Dilfi, A.; Balan, A.; Hong, B.; Xian, G.; Thomas, S. Effect of surface modification of jute fibre on the mechanical properties and durability of jute fibre-reinforced epoxy composites. Polym. Compos. 2018, 39, E2519–E2528. [Google Scholar] [CrossRef]
- Sayeed, M.M.A.; Rawal, A.; Onal, L.; Karaduman, Y. Mechanical properties of surface modified jute fibre/polypropylene nonwoven composites. Polym. Compos. 2014, 35, 1044–1050. [Google Scholar] [CrossRef]
- Asmatulu, E.; Twomey, J.; Overcash, M. Recycling of fiber-reinforced composites and direct structural composite recycling concept. J. Compos. Mater. 2013, 48, 593–608. [Google Scholar] [CrossRef]
- Modesti, M.; Lorenzetti, A.; Bon, D.; Besco, S. Thermal behaviour of compatibilised polypropylene nanocomposite: Effect of processing conditions. Polym. Degrad. Stab. 2006, 91, 672–680. [Google Scholar] [CrossRef]
- Surface Modelling for Composite Materials—SIAG GD. Available online: http://www.ifi.uio.no/siag/problems/grandine/ (accessed on 31 March 2024).
- Praveena, B.A.; Balachandra, P.S.; Vinayaka, N.; Srikanth, H.V.; Shiv, P.S.Y.; Avinash, L. Mechanical properties and water absorption behaviour of pineapple leaf fibre reinforced polymer composites. Adv. Mater. Process. Technol. 2022, 8, 1336–1351. [Google Scholar]
- Araújo, J.R.; Waldman, W.R.; De Paoli, M.A. Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polym. Degrad. Stab. 2008, 93, 1770–1775. [Google Scholar] [CrossRef]
- Queiroz, H.F.M.; Banea, M.D.; Cavalcanti, D.K.K. Adhesively bonded joints of jute, glass and hybrid jute/glass fibre-reinforced polymer composites for automotive industry. Appl. Adhes. Sci. 2021, 9, 2. [Google Scholar]
- Loganathan, S.; Valapa, R.B.; Mishra, R.K.; Pugazhenthi, G.; Thomas, S. Chapter 4-Thermogravimetric Analysis for Characterization of Nanomaterials. In Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 67–108. [Google Scholar]
- Ramakrishnan, S.; Krishnamurthy, K.; Rajeshkumar, G.; Asim, M. Dynamic Mechanical Properties and Free Vibration Characteristics of Surface Modified Jute Fibre/Nano-Clay Reinforced Epoxy Composites. J. Polym. Environ. 2021, 29, 1076–1088. [Google Scholar] [CrossRef]
- Roy, R.; Sarkar, B.K.; Bose, N.R. Effects of moisture on the mechanical properties of glass fibre reinforced vinylester resin composites. Bull. Mater. Sci. 2001, 24, 87–94. [Google Scholar] [CrossRef]
- Piñero-Hernanz, R.; Dodds, C.; Hyde, J.; García-Serna, J.; Poliakoff, M.; Lester, E.; Cocero, M.J.; Kingman, S.; Pickering, S.; Hoong Wong, K. Chemical recycling of carbon fibre reinforced composites in near critical and supercritical water. Compos. Part A Appl. Sci. Manuf. 2008, 39, 454–461. [Google Scholar] [CrossRef]
- Piñero-Hernanz, R.R.; Dodds, C.; Hyde, J.; García-Serna, J.; Poliakoff, M.; Lester, E.; Cocero, M.J.; Kingman, S.; Pickering, S. Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions. J. Supercrit. Fluids 2008, 46, 83–92. [Google Scholar] [CrossRef]
- Pimenta, S.; Pinho, S.T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Manag. 2011, 31, 378–392. [Google Scholar]
- Pickering, S.J. Recycling technologies for thermoset composite materials—Current status. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1206–1215. [Google Scholar] [CrossRef]
- Palmer, J.; Ghita, O.R.; Savage, L.; Evans, K.E. Successful closed-loop recycling of thermoset composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 490–498. [Google Scholar] [CrossRef]
- Debiasi, M.; Bouremel, Y.; Khoo, H.H.; Luo, S.C.; Tan, E.Z. Shape Change of the Upper Surface of an Airfoil by Macro Fibre Composite Actuators. In Proceedings of the 29th AIAA Applied Aerodynamics Conference, Honolulu, HI, USA, 27–30 June 2011. AIAA Paper 2011-3809. [Google Scholar]
- Debiasi, M.; Bouremel, Y.; Khoo, H.H.; Luo, S.C. Deformation of the Upper Surface of an Airfoil by Macro Fibre Composite Actuators. In Proceedings of the 30th AIAA Applied Aerodynamics Conference, New Orleans, LA, USA, 25–28 June 2012. AIAA Paper 2012-3206. [Google Scholar]
- Jacobs, E.N.; Pinkerton, R.M. Tests of the N.A.C.A. Airfoils in the Variable Density; National Advisory Committee for Aeronautics Technical Note No. 401; National Advisory Committee for Aeronautics: Washington, DC, USA, 1931.
- Mastascusa, E.J. Exploring Electrical Engineering Operational Amplifier The Unity Gain Buffer. In Amplifier Basic EE Lesson; Electrical Engineering Department, Bucknell University: Lewisburg, PA, USA, 2008. [Google Scholar]
- Soutis, C. Fibre reinforced composites in aircraft construction. Prog. Aerosp. Sci. 2005, 41, 143–151. [Google Scholar] [CrossRef]
- Uzawa, K.; Nishiwaki, K.; Niitsu, M.; Kamita, T.; Kimura, G. Low cost fabrication of HOPE-X all-composite prototype structure. Adv. Compos. Mater. 2005, 14, 289–304. [Google Scholar] [CrossRef]
- Kotwani, K. Design and Development of Fully Composite Mini Unmanned Aerial Vehicle (Mini-UAV). 2003. Available online: https://ro.scribd.com/document/466899744/Design-and-Development-of-Fully-Composite-Mini-Unmanned-Aerial (accessed on 31 March 2024).
- De Oliveira, T.L.; de Carvalho, J. Design and numerical evaluation of quadrotor drone frame suitable for fabrication using fused filament fabrication with consumer-grade ABS. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 436. [Google Scholar] [CrossRef]
- Guy, J.P.; Schumann, J.M.; Andreadis, K.M. Rapid Mapping of Small-Scale River-Floodplain Environments Using UAV SfM Supports Classical Theory. Remote Sens. 2019, 11, 982. [Google Scholar] [CrossRef]
- Zhu, L.; Li, N.; Childs, P.R.N. Light weighting in aerospace component and system design. Propuls. Power Res. 2018, 7, 103–119. [Google Scholar] [CrossRef]
- Skawinski, I.; Goetzendorf-Grabowsk, T. FDM 3D printing method utility assessment in small RC aircraft design. Aircr.Eng. Aerosp. Tec. 2018, 91, 865–872. [Google Scholar] [CrossRef]
- Chanzy, Q.; Keane, A.J. Analysis and experimental validation of morphing UAV wings. Aeronaut. J. -New Series 2017, 122, 390–408. [Google Scholar] [CrossRef]
- Mishra, A.K.; Bhuvana, S.; Agnihotri, P. Design and Development of Solar Powered UAV for long endurance. Multidiscip. Int. J. 2022, 8, 31–39. [Google Scholar]
- Dagur, R.; Singh, D.; Bhateja, S.; Rastogi, V. Mechanical and material designing of lightweight high endurance multirotor system. Mater. Today Proc. 2020, 21, 1624–1631. [Google Scholar] [CrossRef]
- Girolamo, C.; Tata, M.E. Shape Memory Alloys for Aerospace, Recent Developments, and New Application: A Short Review. Materials 2020, 13, 1856. [Google Scholar] [CrossRef] [PubMed]
- Niemand, J.; Mathew, S.J.; Gonzalez, F. Design and Testing of Recycled 3D Printed Foldable Unmanned Aerial Vehicle for Remote Sensing. In Proceedings of the International Conference on Unmanned Aircraft Systems: ICUAS, Athens, Greece, 1–4 September 2020; pp. 892–901. [Google Scholar]
- Potting, J.; Hekkert, M.; Worrell, E.; Hanemaaijer, A. Circular Economy: Measuring Innovation in the Product Chain; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2017. [Google Scholar]
- Geiger, R.; De Sousa, A.R.; Hannan, Y.A. Advanced Composite Drone Manufacturing. In Proceedings of the 8th Annual World Congress of Advanced Materials, Osaka, Japan, 22–24 July 2019. [Google Scholar]
- Hoa, S.; Abdali, M.; Jasmin, A.; Radeschi, D.; Prats, V.; Faour, H.; Kobaissi, B. Development of a New Flexible Wing Concept for Unmanned Aerial Vehicle Using Corrugated Core Made by 4D Printingof Composites. Compos. Struct. 2022, 290, 115444. [Google Scholar] [CrossRef]
- Lancea, C.; Chicos, L.A.; Zaharia, S.M.; Pop, M.A.; Pascariu, I.S.; Buican, G.R.; Stamate, V.M. Simulation, Fabrication and Testing of UAV Composite Landing Gear. Appl. Sci. 2022, 12, 8598. [Google Scholar] [CrossRef]
- Nawaz, H.; Ali, H.M.; Massan, S. Applications of Unmanned Aerial Vehicles: A Review. 3C Tecnol. 2019, 2019, 85–105. [Google Scholar] [CrossRef]
- Nguyen, D.H.D.P.; Nguyen, D.D. Drone Application in Smart Cities: The General Overview of Security Vulnerabilities and Countermeasures for Data Communication; Springer: Berlin/Heidelberg, Germany, 2021; pp. 185–210. [Google Scholar]
- Piljek, P.; Krznar, N.; Krznar, M.; Kotarski, D. Framework for Design and Additive Manufacturingof Specialised Multirotor UAV Parts. In Trends and Opportunities of Rapid Prototyping Technologies; Intech Open: London, UK, 2022; pp. 1–16. [Google Scholar]
- Ramadhoni, B.F.; Rizkyta, A.G.; Bintoro, A.; Nugroho, A. Effect of Glass Fibres and Aramid Fibre on Mechanical Properties of Composite Based Unmanned Aerial Vehicle (UAV) Skin. In Proceedings of the iMEC-APCOMS 2019, Putrajaya, Malaysia, 21–22 August 2019; Lecture Notes in Mechanical Engineering. Springer: Berlin/Heidelberg, Germany, 2020; pp. 435–440. [Google Scholar]
- Singhal, G.; Bansod, B.; Mathew, L. Unmanned Aerial Vehicle Classification, Applications and Challenges: A Review. Preprints 2018, 2018110601. [Google Scholar] [CrossRef]
- Dantec, D. Analysis of the Cost of Recycling Compliance for the Automobile Industry. MSc Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2005; p. 73. [Google Scholar]
- Plastics Recycling in the Strategies of Well-Known Automotive Brands. Available online: https://knaufautomotive.com/recycled-plastics-in-the-automotive-industry/ (accessed on 2 May 2024).
- Shuaib, N.A.; Mativenga, P.T. Energy demand in mechanical recycling of glass fibre reinforced thermoset plastic composites. J. Clean. Prod. 2016, 120, 198–206. [Google Scholar] [CrossRef]
- Gonçalves, R.M.; Martinho, A.; Oliveira, J.P. Recycling of Reinforced Glass Fibers Waste: Current Status. Materials 2022, 15, 1596. [Google Scholar] [CrossRef]
- Townsend, A.; Jiya, I.N.; Martinson, C.; Bessarabov, D.; Gouws, R.A. Comprehensive Review of Energy Sources for Unmanned Aerial Vehicles, their Shortfalls and Opportunities for Improvements. Heliyon 2020, 6, e05285. [Google Scholar] [CrossRef]
Sample | Treatment | Compression Strength | Tensile Strength | Bending Strength |
---|---|---|---|---|
1 | - | 4608.54 [N] | 405,744 [N] | 240.21 [N] |
2 | APTES | 5209.68 [N] | 439,301 [N] | 251.56 [N] |
Fibre Content % | Flexural Strength Variation (MPa) | Toughness Variation (kJ/m2) | ||||||
---|---|---|---|---|---|---|---|---|
0 h | 4 h | 8 h | 24 h | 0 h | 4 h | 8 h | 24 h | |
27.48 | 444.5 | 399.0 | 374.8 | 365.9 | 20.29 | 18.04 | 15.03 | 11.99 |
38.63 | 475.9 | 452.7 | 437.3 | 430.5 | 29.10 | 27.50 | 23.58 | 22.11 |
48.48 | 519.9 | 486.9 | 465.7 | 463.8 | 34.16 | 33.63 | 31.27 | 29.90 |
55.75 | 554.9 | 527.4 | 503.2 | 495.8 | 39.79 | 37.54 | 35.40 | 35.20 |
63.50 | 658.9 | 602.8 | 565.5 | 548.4 | 49.02 | 45.35 | 40.52 | 39.32 |
Characteristics | Type E | Type C | Type S |
---|---|---|---|
Composition [wt%] | |||
SiO2 | 52.3 | 64.2 | 64.5 |
Al2O3 + Fe2O3 | 12.5 | 4.4 | 24 |
CaO | 17.3 | 13.2 | - |
MgO | 4.6 | 3.3 | 10.3 |
Na2O + K2O | 0.80 | 9.6 | 0.3 |
B2O3 | 10.6 | 4.7 | - |
BaO | - | 0.9 | - |
Properties | |||
Density—ρ [g/cm3] | 2.6 | 2.49 | 2.48 |
Surface tension—σ [GPa] | 3.45 | 3.3 | 4.6 |
The modulus of elasticity—E [GPa] | 76 | 69 | 85.5 |
Dip Temperature—T. max [°C] | 550 | 600 | 650 |
Property, Unit | Value |
---|---|
Tensile strength (90 °C), MPa | 135 ± 10 |
Young’s modulus (90 °C), GPa | 11.8 ± 0.8 |
Shear strength, MPa | 40 ± 2 |
Shear modulus, GPa | 2 ± 0.2 |
Tensile strength (0 °C), MPa | 165 ± 10 |
Young’s modulus (0 °C), GPa | 13.8 ± 0.5 |
Poisson’s ratio | 0.2 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Săftoiu, G.-V.; Constantin, C.; Nicoară, A.-I.; Pelin, G.; Ficai, D.; Ficai, A. Glass Fibre-Reinforced Composite Materials Used in the Aeronautical Transport Sector: A Critical Circular Economy Point of View. Sustainability 2024, 16, 4632. https://doi.org/10.3390/su16114632
Săftoiu G-V, Constantin C, Nicoară A-I, Pelin G, Ficai D, Ficai A. Glass Fibre-Reinforced Composite Materials Used in the Aeronautical Transport Sector: A Critical Circular Economy Point of View. Sustainability. 2024; 16(11):4632. https://doi.org/10.3390/su16114632
Chicago/Turabian StyleSăftoiu, George-Valentin, Carolina Constantin, Adrian-Ionuț Nicoară, George Pelin, Denisa Ficai, and Anton Ficai. 2024. "Glass Fibre-Reinforced Composite Materials Used in the Aeronautical Transport Sector: A Critical Circular Economy Point of View" Sustainability 16, no. 11: 4632. https://doi.org/10.3390/su16114632
APA StyleSăftoiu, G. -V., Constantin, C., Nicoară, A. -I., Pelin, G., Ficai, D., & Ficai, A. (2024). Glass Fibre-Reinforced Composite Materials Used in the Aeronautical Transport Sector: A Critical Circular Economy Point of View. Sustainability, 16(11), 4632. https://doi.org/10.3390/su16114632