The Sustainability of Island Tourism during Climate Change: The Case of Hawaii, United States
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Stakeholder Implications
4.1.1. Visitors
4.1.2. Communities
4.1.3. Industry
4.1.4. Environment
4.2. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reidmiller, D.R.; Avery, C.W.; Easterling, D.R.; Kunkel, K.E.; Lewis, K.L.M.; Maycock, T.K.; Stewart, B.C. (Eds.) Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2018.
- Scott, D. Why sustainable tourism must address climate change. J. Sustain. Tour. 2011, 19, 17–34. [Google Scholar] [CrossRef]
- Scott, D. Sustainable tourism and the grand challenge of climate change. Sustainability 2021, 13, 1966. [Google Scholar] [CrossRef]
- UNWTO. Sustainable Development. Available online: https://www.unwto.org/sustainable-development (accessed on 31 March 2024).
- Dodds, R.; Kelman, I. How climate change is considered in sustainable tourism policies: A case of the Mediterranean islands of Malta and Mallorca. Tour. Rev. Int. 2008, 12, 57–70. [Google Scholar] [CrossRef]
- Mycoo, M. Sustainable tourism, climate change and sea level rise adaptation policies in Barbados. Nat. Resourc. Forum 2014, 38, 47–57. [Google Scholar] [CrossRef]
- Craig, C.A. Nature-based tourism and climate favourability: A case of the Great Barrier Reef, Australia. Tour. Recreat. Res. 2023. [Google Scholar] [CrossRef]
- Lincoln, S.; Buckley, P.; Howes, E.L.; Maltby, K.M.; Pinnegar, J.K.; Ali, T.S.; Alosairi, Y.; Al-Ragum, A.; Baglee, A.; Balmes, C.O.; et al. A regional review of marine and coastal impacts of climate change on the ROPME sea area. Sustainability 2021, 13, 13810. [Google Scholar] [CrossRef]
- Rivera, H.; Chan, A.; Luu, V. Coral reefs are critical for our food supply, tourism, and ocean health. We can protect them from climate change. MIT Sci. Pol. Rev. 2021, 1, 18–33. [Google Scholar] [CrossRef]
- Brau, R. Demand-driven sustainable tourism? A choice modelling analysis. Tour. Econ. 2008, 14, 691–708. [Google Scholar] [CrossRef]
- Aygün Oğur, A.; Baycan, T. Assessing climate change impacts on tourism demand in Turkey. Environ. Dev. Sustain. 2023, 25, 2905–2935. [Google Scholar] [CrossRef]
- Rutty, M.; Scott, D.; Matthews, L.; Burrowes, R.; Trotman, A.; Mahon, R.; Charles, A. An inter-comparison of the Holiday Climate Index (HCI: Beach) and the Tourism Climate Index (TCI) to explain Canadian tourism arrivals to the Caribbean. Atmosphere 2020, 11, 412. [Google Scholar] [CrossRef]
- Craig, C.A. Climate Resource View (CRV): A case of thermal safety at United States national parks. J. Outdoor Recreat. Tour. 2024, 45, 100737. [Google Scholar] [CrossRef]
- NOAA. Climate of Hawai’i. Available online: https://www.weather.gov/hfo/climate_summary (accessed on 5 April 2024).
- National Interagency Fire Center. National Significant Wildland Fire Potential Outlook. 1 September 2023. Available online: https://www.nifc.gov/sites/default/files/NICC/2-Predictive%20Services/Outlooks/monthly_seasonal_outlook.pdf (accessed on 20 March 2024).
- Hawaii Tourism Authority. Monthly Visitor Statistics. Available online: https://www.hawaiitourismauthority.org/research/monthly-visitor-statistics/ (accessed on 11 March 2024).
- Sun, X.; Wandelt, S.; Zhang, A. A data-driven analysis of the aviation recovery from the COVID-19 pandemic. J. Air Transp. Manag. 2023, 109, 102401. [Google Scholar] [CrossRef] [PubMed]
- National Weather Service. WetBulb Globe Temperature. Available online: https://www.weather.gov/tsa/wbgt (accessed on 10 April 2024).
- Kakamu, T.; Wada, K.; Smith, D.R.; Endo, S.; Fukushima, T. Preventing heat illness in the anticipated hot climate of the Tokyo 2020 Summer Olympic Games. Environ Health Prev. Med. 2017, 22, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Japanese Society of Biometeorology. Guidelines for the prevention of heat illness in daily life (Ver. 4 in English). Jpn. J. Biometeorol. 2023, 60, 75–96. [Google Scholar] [CrossRef]
- Roberts, W.O.; Armstrong, L.E.; Sawka, M.N.; Yeargin, S.W.; Heled, Y.; O’Connor, F.G. ACSM expert consensus statement on exertional heat illness: Recognition, management, and return to activity. Curr. Sports Med. Rep. 2021, 20, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Kakaei, H.; Omidi, F.; Ghasemi, R.; Sabet, M.R.; Golbabaei, F. Changes of WBGT as a heat stress index over the time: A systematic review and meta-analysis. Urban Climat. 2019, 27, 284–292. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Heat Stress. Available online: https://www.cdc.gov/niosh/topics/heatstress/default.html (accessed on 10 April 2024).
- United States Bureau of Labor Statistics. Databases, Tables, and Calculators by Subject. Available online: https://data.bls.gov/timeseries/CUUR0000SA0L1E?output_view=pct_12mths (accessed on 14 May 2024).
- Gitlin, J. Why Hawaii Attracts More Tourists Than Most Countries. Available online: https://www.surveymonkey.com/curiosity/why-hawaii-attracts-more-tourists-than-most-countries/ (accessed on 14 May 2024).
- NASA. Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 5 February 2024).
- Hajizadeh, R.; Farhang Dehghan, S.; Golbabaei, F.; Jafari, S.M.; Karajizadeh, M. Offering a model for estimating black globe temperature according to meteorological measurements. Meteor. Appl. 2017, 24, 303–307. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Liu, Z. Sustainable tourism development: A critique. J. Sustain. Tour. 2003, 11, 459–475. [Google Scholar] [CrossRef]
- Weber, F. Demand for sustainable tourism. In Corporate Sustainability and Responsibility in Tourism; Springer: Berlin/Heidelberg, Germany, 2019; pp. 265–281. [Google Scholar]
- Ma, S.; Craig, C.A.; Feng, S.; Liu, C. Climate resources at United States National Parks: A tourism climate index approach. Tour. Recreat. Res. 2023, 48, 710–724. [Google Scholar] [CrossRef]
- Scott, D.; Rutty, M.; Amelung, B.; Tang, M. An inter-comparison of the holiday climate index (HCI) and the tourism climate index (TCI) in Europe. Atmosphere 2016, 7, 80. [Google Scholar] [CrossRef]
- NOAA. 2023 Was the World’s Warmest Year on Record, by Far. Available online: https://www.noaa.gov/news/2023-was-worlds-warmest-year-on-record-by-far (accessed on 31 March 2024).
- Craig, C.A.; Ma, S.; Feng, S. Climate Resources for Camping: A Resource-based theory perspective. Tour. Manag. Perspect. 2023, 45, 101072. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Huang, M.; Yelekçi, O.; Yu, R.; Zhou, B.; et al. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FrontMatter.pdf (accessed on 7 April 2023).
- Donaldson, T.; Preston, L.E. The stakeholder theory of the corporation: Concepts, evidence, and implications. Acad. Manag. Rev. 1995, 20, 65–91. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. CDC Announces Important Advances in Protecting Americans from Heat. Available online: https://www.cdc.gov/media/releases/2024/p0422-heat-protection.html (accessed on 22 April 2024).
- Occupational Safety and Health Administration. Heat. Available online: https://www.osha.gov/heat-exposure/hazards#:~:text=OSHA%20recommends%20the%20use%20of,the%20potential%20for%20evaporative%20cooling (accessed on 12 April 2024).
- Faurie, C.; Varghese, B.M.; Liu, J.; Bi, P. Association between high temperature and heatwaves with heat-related illnesses: A systemic review and meta-analysis. Sci. Total Environ. 2022, 852, 158332. [Google Scholar] [CrossRef] [PubMed]
- Pablo-Romero, M.d.P.; Pozo-Barajas, R.; Sanchez-Rivas, J. Tourism and temperature effects on electricity consumption on the hospitality sector. J. Clean. Prod. 2019, 240, 118168. [Google Scholar] [CrossRef]
- Scott, D.; McBoyle, G. Climate change adaptation in the ski industry. Mitig. Adaptat Strat. Glob. Chang. 2007, 12, 1411–1431. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Kovats, S.; Lloyd, S.J.; Holt, T.; Tol, R.S.J. The direct impact of climate change on regional labor productivity. Arch. Environ. Occup. Health 2009, 64, 217–227. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Briggs, D.; Freyberg, C.; Lemke, B.; Otto, M.; Hyatt, O. Heat, human performance, and occupational health: A key issue for the assessment of global climate change impacts. Ann. Rev. Public Health 2016, 37, 97–112. [Google Scholar] [CrossRef]
- Lenzen, M.; Sun, Y.Y.; Faturay, F.; Ting, Y.P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Chang. 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Wheelen, T.L.; Hoffman, J.D.H.A.N.; Bamford, C.E. Strategic Management and Business Policy; Pearson: Upper Saddle River, NJ, USA, 2018. [Google Scholar]
- Wilkins, E.J.; Howe, P.D.; Smith, J.W. Social media reveal ecoregional variation in how weather influences visitor behavior in US National Park Service units. Sci. Rep. 2021, 11, 2403. [Google Scholar] [CrossRef]
Level | WBGT (°C) | Risks |
---|---|---|
0 | <18.4 | Low |
1 | 18.4–22.2 | Elevated |
2 | 22.3–25.6 | Moderate |
3 | 25.7–27.8 | Moderately high |
4 | 27.9–30.0 | High |
5 | >30.0 | Very high |
Season | N | Arrivals | SD | WBGT | SD | LO | L1 | L2 | L3 |
---|---|---|---|---|---|---|---|---|---|
Winter | 72 | 160,075 | 87,332 | 19.91 | 3.06 | 24 | 29 | 19 | 0 |
Spring | 65 | 167,883 | 94,449 | 20.67 | 2.82 | 22 | 9 | 34 | 0 |
Summer | 71 | 193,476 | 108,682 | 22.90 | 2.92 | 5 | 19 | 42 | 5 |
Fall | 72 | 146,639 | 81,085 | 22.64 | 3.06 | 10 | 14 | 44 | 4 |
Total | 280 | 166,902 | 94,455 | 21.55 | 3.22 | 61 | 71 | 139 | 9 |
Island | n | T1 Mean | T2 Mean | Mean Diff. | SD | SE | t | df | p | d |
---|---|---|---|---|---|---|---|---|---|---|
Hawai’i | 3652 | 16.88 | 17.49 | −0.61 | 1.35 | 0.02 | −27.21 | 3651 | 0.000 | 1.35 |
Kauai’ | 3652 | 22.59 | 23.56 | −0.97 | 1.39 | 0.02 | −42.36 | 3651 | 0.000 | 1.39 |
O’ahu | 3652 | 22.64 | 23.56 | −0.92 | 1.34 | 0.02 | −41.45 | 3651 | 0.000 | 1.34 |
Source | df | Mean Square | F | p | |
---|---|---|---|---|---|
Intercept | Hypothesis | 1 | 2.67 × 1012 | 784.54 | 0.000 |
Error | 83 | 3.41 × 109 | |||
Risk_Level | Hypothesis | 3 | 7.92 × 1010 | 28.04 | 0.000 |
Error | 141 | 2.83 × 109 | |||
Season | Hypothesis | 3 | 6.89 × 109 | 2.67 | 0.050 |
Error | 136 | 2.58 × 109 | |||
Inflation | Hypothesis | 29 | 3.40 × 109 | 1.29 | 0.193 |
Error | 74 | 2.64 × 109 | |||
Risk_Level × Season | Hypothesis | 7 | 3.28 × 109 | 1.79 | 0.094 |
Error | 152 | 1.84 × 109 | |||
Risk_Level × Inflation | Hypothesis | 44 | 1.90 × 109 | 0.63 | 0.962 |
Error | 172 | 3.00 × 109 | |||
Season × Inflation | Hypothesis | 21 | 1.01E + 09 | 0.76 | 0.768 |
Error | 116 | 1.34 × 109 | |||
Risk_Level × Season × Inflation | Hypothesis | 22 | 5.22 × 108 | 0.05 | 1.000 |
Error | 150 | 1.14 × 1010 |
(I) RISK | (J) RISK | Mean Difference (I–J) | Standard Error | p |
---|---|---|---|---|
0 | 1 | −30,082 | 18,652 | 0.460 |
2 | −89,885 | 16,409 | 0.000 | |
3 | −54,949 | 38,150 | 0.559 | |
1 | 0 | 30,082 | 18,652 | 0.460 |
2 | −59,803 | 15,585 | 0.003 | |
3 | −24,868 | 37,803 | 0.933 | |
2 | 0 | 89,885 | 16,409 | 0.000 |
1 | 59,803 | 15,585 | 0.003 | |
3 | 34,935 | 36,748 | 0.824 | |
3 | 0 | 54,949 | 38,150 | 0.559 |
1 | 24,868 | 37,803 | 0.933 | |
2 | −34,935 | 36,748 | 0.824 |
WBGT (°C) | Unacclimated Worker | Acclimated Workers |
---|---|---|
<21 °C | Low risk | Low risk |
21–25 °C | Strenuous work possibly unsafe | Low risk |
>25 °C | High risk with strenuous work | Strenuous work possibly unsafe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craig, C.A.; Oxarart, R.A. The Sustainability of Island Tourism during Climate Change: The Case of Hawaii, United States. Sustainability 2024, 16, 4680. https://doi.org/10.3390/su16114680
Craig CA, Oxarart RA. The Sustainability of Island Tourism during Climate Change: The Case of Hawaii, United States. Sustainability. 2024; 16(11):4680. https://doi.org/10.3390/su16114680
Chicago/Turabian StyleCraig, Christopher A., and Richard A. Oxarart. 2024. "The Sustainability of Island Tourism during Climate Change: The Case of Hawaii, United States" Sustainability 16, no. 11: 4680. https://doi.org/10.3390/su16114680
APA StyleCraig, C. A., & Oxarart, R. A. (2024). The Sustainability of Island Tourism during Climate Change: The Case of Hawaii, United States. Sustainability, 16(11), 4680. https://doi.org/10.3390/su16114680