Unveiling Climate Trends and Future Projections in Southeastern Brazil: A Case Study of Brazil’s Historic Agricultural Heritage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Meteorological Data
2.2.1. Historical
2.2.2. Future Projections
2.2.3. Climate Trend Analysis: Historical Data
2.2.4. Current and Future Climate Classification
3. Results and Discussion
3.1. Current Climatology
3.2. Future Trends and Projections
3.2.1. Temperature
3.2.2. Rainfall
3.3. Current and Future Climate Classification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fávero, C. Agroambientes manejados pelas comunidades apanhadoras de flores Sempre-Vivas. In Vida e Luta das Comunidades Apanhadoras de Flores Sempre-Vivas em Minas Gerais; Fávero, C., Monteiro, F.T., Oliveira, M.N.S., Eds.; UFVJM: Diamantina, MG, Brazil, 2021; pp. 108–129. [Google Scholar]
- Ocelli Pinheiro, R.; de Paula, L.F.A.; Giardino, M. Agricultural Heritage: Contrasting National and International Programs in Brazil and Italy. Sustainability 2022, 14, 6401. [Google Scholar] [CrossRef]
- SISEMA Índice Mineiro de Vulnerabilidade Climática (IMVC). Available online: https://clima-gerais.meioambiente.mg.gov.br/vulnerabilidade-territorial (accessed on 14 December 2023).
- Bhattacharyya, P.; Pathak, H.; Pal, S. Impact of Climate Change on Agriculture: Evidence and Predictions. In Climate Smart Agriculture. Green Energy and Technology; Springer: Singapore, 2020; pp. 17–32. [Google Scholar]
- Moura Cardoso do Vale, T.; Helena Constantino Spyrides, M.; De Melo Barbosa Andrade, L.; Guedes Bezerra, B.; Evangelista da Silva, P. Subsistence Agriculture Productivity and Climate Extreme Events. Atmosphere 2020, 11, 1287. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, S.; Liu, C.; Gao, W.; Liang, X.-Z. A Bibliometric Analysis of Research for Climate Impact on Agriculture. Front. Sustain. Food Syst. 2023, 7, 1191305. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Wiberg, D.; Leduc, S.; Riahi, K. Power-Generation System Vulnerability and Adaptation to Changes in Climate and Water Resources. Nat. Clim. Chang. 2016, 6, 375–380. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R. Perception of Climate Change. Proc. Natl. Acad. Sci. USA 2012, 109, E2415–E2423. [Google Scholar] [CrossRef]
- Barral, U.M.; Silva, A.C.; Christófaro, C.; Costa, C.R.; Tassinari, D.; Filho, A.P.; Macedo, G.M.; Bispo, D.F.A.; Gonçalves, T.S. Can Anthropization Govern the Water and Carbon Dynamics? A Case Study of Peatlands in Serra Do Espinhaço Meridional, Brazil. Wetl. Ecol. Manag. 2023, 31, 479–497. [Google Scholar] [CrossRef]
- Silva, A.C.; Barbosa, M.S.; Barral, U.M.; Silva, B.P.C.; Fernandes, J.S.C.; Viana, A.J.S.; Filho, C.V.M.; Bispo, D.F.A.; Christófaro, C.; Ragonezi, C.; et al. Organic Matter Composition and Paleoclimatic Changes in Tropical Mountain Peatlands Currently under Grasslands and Forest Clusters. Catena 2019, 180, 69–82. [Google Scholar] [CrossRef]
- Costa, T.R.; de Moura, C.C.; da Silva, L.S.; Gonzaga, A.P.D.; Rech, A.R.; Machado, E.L.M. Environmental Factors Determining the Forest–Grassland Variation in the Espinhaço Range Biosphere Reserve—Brazil. J. Plant Ecol. 2023, 16, rtac089. [Google Scholar] [CrossRef]
- Santoro, A.; Venturi, M.; Bertani, R.; Agnoletti, M. A Review of the Role of Forests and Agroforestry Systems in the FAO Globally Important Agricultural Heritage Systems (GIAHS) Programme. Forests 2020, 11, 860. [Google Scholar] [CrossRef]
- Dias, L.F.; Aparício, B.A.; Nunes, J.P.; Morais, I.; Fonseca, A.L.; Pastor, A.V.; Santos, F.D. Integrating a Hydrological Model into Regional Water Policies: Co-Creation of Climate Change Dynamic Adaptive Policy Pathways for Water Resources in Southern Portugal. Environ. Sci. Policy 2020, 114, 519–532. [Google Scholar] [CrossRef]
- Tui, S.H.-K.; Descheemaeker, K.; Valdivia, R.O.; Masikati, P.; Sisito, G.; Moyo, E.N.; Crespo, O.; Ruane, A.C.; Rosenzweig, C. Climate Change Impacts and Adaptation for Dryland Farming Systems in Zimbabwe: A Stakeholder-Driven Integrated Multi-Model Assessment. Clim. Chang. 2021, 168, 10. [Google Scholar] [CrossRef]
- Balasundram, S.K.; Shamshiri, R.R.; Sridhara, S.; Rizan, N. The Role of Digital Agriculture in Mitigating Climate Change and Ensuring Food Security: An Overview. Sustainability 2023, 15, 5325. [Google Scholar] [CrossRef]
- Demirdogen, A.; Karapinar, B.; Özertan, G. The Impact of Climate Change on Wheat in Turkey. Reg. Environ. Chang. 2024, 24, 20. [Google Scholar] [CrossRef]
- Varajão, G.F.D.C. Por Uma Geografia de Diamantina-MG; UFMG: Belo Horizonte, MG, Brazil, 2015. [Google Scholar]
- Xavier, A.C.; Scanlon, B.R.; King, C.W.; Alves, A.I. New Improved Brazilian Daily Weather Gridded Data (1961–2020). Int. J. Climatol. 2022, 42, 8390–8404. [Google Scholar] [CrossRef]
- Bender, F.D.; Sentelhas, P.C. Solar Radiation Models and Gridded Databases to Fill Gaps in Weather Series and to Project Climate Change in Brazil. Adv. Meteorol. 2018, 2018, 6204382. [Google Scholar] [CrossRef]
- Battisti, R.; Bender, F.D.; Sentelhas, P.C. Assessment of Different Gridded Weather Data for Soybean Yield Simulations in Brazil. Theor. Appl. Climatol. 2019, 135, 237–247. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. Appl. Stat. 1979, 28, 126. [Google Scholar] [CrossRef]
- Alexandersson, H.; Moberg, A. Homogenization of Swedish Temperature Data. Part I: Homogeneity Test for Linear Trends TRENDS. Int. J. Climatol. 1997, 17, 25–34. [Google Scholar] [CrossRef]
- CMIP Coupled Model Intercomparison Project. Available online: http://cmip-pcmdi.llnl.gov/ (accessed on 15 January 2024).
- IPCC. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Bi, D.; Dix, M.; Marsland, S.; O’Farrell, S.; Sullivan, A.; Bodman, R.; Law, R.; Harman, I.; Srbinovsky, J.; Rashid, H.A.; et al. Configuration and Spin-up of ACCESS-CM2, the New Generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisph. Earth Syst. Sci. 2020, 70, 225–251. [Google Scholar] [CrossRef]
- Tatebe, H.; Ogura, T.; Nitta, T.; Komuro, Y.; Ogochi, K.; Takemura, T.; Sudo, K.; Sekiguchi, M.; Abe, M.; Saito, F.; et al. Description and Basic Evaluation of Simulated Mean State, Internal Variability, and Climate Sensitivity in MIROC6. Geosci. Model Dev. 2019, 12, 2727–2765. [Google Scholar] [CrossRef]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component. J. Meteorol. Soc. Jpn. Ser. II 2019, 97, 931–965. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A New Scenario Framework for Climate Change Research: The Concept of Shared Socioeconomic Pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The Roads Ahead: Narratives for Shared Socioeconomic Pathways Describing World Futures in the 21st Century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef]
- de Medeiros, F.J.; de Oliveira, C.P. Assessment of Dry and Heavy Rainfall Days and Their Projected Changes over Northeast Brazil in Coupled Model Intercomparison Project Phase 6 Models. Int. J. Climatol. 2022, 42, 8665–8686. [Google Scholar] [CrossRef]
- Reboita, M.S.; Willian de Souza Ferreira, G.; Gabriel Martins Ribeiro, J.; Ali, S. Assessment of Precipitation and Near-Surface Temperature Simulation by CMIP6 Models in South America. Environ. Res. Clim. 2024, 3, 025011. [Google Scholar] [CrossRef]
- Firpo, M.Â.F.; Guimarães, B.d.S.; Dantas, L.G.; da Silva, M.G.B.; Alves, L.M.; Chadwick, R.; Llopart, M.P.; de Oliveira, G.S. Assessment of CMIP6 Models’ Performance in Simulating Present-Day Climate in Brazil. Front. Clim. 2022, 4, 948499. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Vianello, R.L.; Alves, A.R.M. Meteorologia Básica e Aplicações, 2nd, ed.; UFV: Viçosa, MG, Brazil, 2012. [Google Scholar]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Thornthwaite, C.W.; Mather, J.R.T. The Water Balance: Publications in Climatology; Drexel Institute of Technology: Galloway, NJ, USA, 1955. [Google Scholar]
- Braga, H.A.; Molion, L.C.B. The Droughts 2013/2014 in Southeast Brazil. Anuário Do Inst. De Geociências UFRJ 2018, 41, 100–107. [Google Scholar] [CrossRef]
- Marengo, J.A.; Nobre, C.A.; Seluchi, M.E.; Cuartas, A.; Alves, L.M.; Mendiondo, E.M.; Obregón, G.; Sampaio, G. A Seca e a Crise Hídrica de 2014–2015 Em São Paulo. Rev. USP 2015, 106, 31–44. [Google Scholar] [CrossRef]
- Almeida, C.T.; Oliveira-Júnior, J.F.; Delgado, R.C.; Cubo, P.; Ramos, M.C. Spatiotemporal Rainfall and Temperature Trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 2017, 37, 2013–2026. [Google Scholar] [CrossRef]
- de Carvalho, A.A.; Montenegro, A.A.d.A.; da Silva, H.P.; Lopes, I.; de Morais, J.E.F.; da Silva, T.G.F. Trends of Rainfall and Temperature in Northeast Brazil. Rev. Bras. De Eng. Agrícola E Ambient. 2020, 24, 15–23. [Google Scholar] [CrossRef]
- Tomasella, J.; Silva Pinto Vieira, R.M.; Barbosa, A.A.; Rodriguez, D.A.; de Oliveira Santana, M.; Sestini, M.F. Desertification Trends in the Northeast of Brazil over the Period 2000–2016. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 197–206. [Google Scholar] [CrossRef]
- Marengo, J.A.; Ambrizzi, T.; Alves, L.M.; Barreto, N.J.C.; Simões Reboita, M.; Ramos, A.M. Changing Trends in Rainfall Extremes in the Metropolitan Area of São Paulo: Causes and Impacts. Front. Clim. 2020, 2, 3. [Google Scholar] [CrossRef]
- Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker, D.E.; Salinger, M.J.; Razuvayev, V.; Plummer, N.; Jamason, P.; et al. Maximum and Minimum Temperature Trends for the Globe. Science (1979) 1997, 277, 364–367. [Google Scholar] [CrossRef]
- Gil-Alana, L.A. Maximum and Minimum Temperatures in the United States: Time Trends and Persistence. Atmos. Sci. Lett. 2018, 19, e810. [Google Scholar] [CrossRef]
- El Kasri, J.; Lahmili, A.; Soussi, H.; Jaouda, I.; Bentaher, M. Trend Analysis of Meteorological Variables: Rainfall and Temperature. Civ. Eng. J. 2021, 7, 1868–1879. [Google Scholar] [CrossRef]
- Rapini, A.; De Mello-Silva, R.; Kawasaki, M.L. Richness and Endemism in Asclepiadoideae (Apocynaceae) from the Espinhaço Range of Minas Gerais, Brazil—A Conservationist View. Biodivers. Conserv. 2002, 11, 1733–1746. [Google Scholar] [CrossRef]
- Sjögersten, S.; Aplin, P.; Gauci, V.; Peacock, M.; Siegenthaler, A.; Turner, B.L. Temperature Response of Ex-Situ Greenhouse Gas Emissions from Tropical Peatlands: Interactions between Forest Type and Peat Moisture Conditions. Geoderma 2018, 324, 47–55. [Google Scholar] [CrossRef]
- Silva, M.L.; Silva, A.C.; Silva, B.P.C.; Barral, U.M.; Soares, P.G.S.; Vidal-Torrado, P. Surface Mapping, Organic Matter and Water Stocks in Peatlands of the Serra Do Espinhaço Meridional—Brazil. Rev. Bras. Cienc. Solo 2013, 37, 1149–1157. [Google Scholar] [CrossRef]
- Dai, A. Drought under Global Warming: A Review. WIREs Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Sondermann, M.; Chou, S.C.; Lyra, A.; Latinovic, D.; Siqueira, G.C.; Junior, W.C.; Giornes, E.; Leite, F.P. Climate Change Projections and Impacts on the Eucalyptus Plantation around the Doce River Basin, in Minas Gerais, Brazil. Clim. Serv. 2022, 28, 100327. [Google Scholar] [CrossRef]
- Natividade, U.A.; Garcia, S.R.; Torres, R.R. Tendência Dos Índices de Extremos Climáticos Observados e Projetados No Estado de Minas Gerais. Rev. Bras. De Meteorol. 2017, 32, 600–614. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Cuartas, L.A.; Deusdará Leal, K.R.; Broedel, E.; Seluchi, M.E.; Michelin, C.M.; De Praga Baião, C.F.; Chuchón Angulo, E.; Almeida, E.K.; et al. Extreme Drought in the Brazilian Pantanal in 2019–2020: Characterization, Causes, and Impacts. Front. Water 2021, 3, 639204. [Google Scholar] [CrossRef]
- Marengo, J.A.; Galdos, M.V.; Challinor, A.; Cunha, A.P.; Marin, F.R.; Vianna, M.d.S.; Alvala, R.C.S.; Alves, L.M.; Moraes, O.L.; Bender, F. Drought in Northeast Brazil: A Review of Agricultural and Policy Adaptation Options for Food Security. Clim. Resil. Sustain. 2022, 1, e17. [Google Scholar] [CrossRef]
- Elli, E.F.; Sentelhas, P.C.; Bender, F.D. Impacts and Uncertainties of Climate Change Projections on Eucalyptus Plantations Productivity across Brazil. For. Ecol. Manag. 2020, 474, 118365. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; pp. 2215–2256. [Google Scholar]
- Tebaldi, C.; Knutti, R. The Use of the Multi-Model Ensemble in Probabilistic Climate Projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2053–2075. [Google Scholar] [CrossRef] [PubMed]
- Morrison, M.A.; Lawrence, P. Understanding Model-Based Uncertainty in Climate Science. In Handbook of Philosophy of Climate Change; Springer: Cham, Switzerland, 2023; pp. 23–43. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Mauritsen, T.; Stevens, B.; Roeckner, E.; Crueger, T.; Esch, M.; Giorgetta, M.; Haak, H.; Jungclaus, J.; Klocke, D.; Matei, D.; et al. Tuning the Climate of a Global Model. J. Adv. Model Earth Syst. 2012, 4, 1–18. [Google Scholar] [CrossRef]
- WMO. WMO Guidelines on the Calculation of Climate Normals; WMO: Geneva, Switzerland, 2017. [Google Scholar]
- Fernandez, J.P.R.; Franchito, S.H.; Rao, V.B.; Llopart, M. Changes in Koppen–Trewartha Climate Classification over South America from RegCM4 Projections. Atmos. Sci. Lett. 2017, 18, 427–434. [Google Scholar] [CrossRef]
- Cui, D.; Liang, S.; Wang, D. Observed and Projected Changes in Global Climate Zones Based on Köppen Climate Classification. WIREs Clim. Chang. 2021, 12, e701. [Google Scholar] [CrossRef]
- de Lima, R.F.; Aparecido, L.E.d.O.; Torsoni, G.B.; Rolim, G.d.S. Climate Change Assessment in Brazil: Utilizing the Köppen-Geiger (1936) Climate Classification. Rev. Bras. De Meteorol. 2023, 38, e38230001. [Google Scholar] [CrossRef]
Model | Institution | Approximate Grid Spacing (Longitude by Latitude) |
---|---|---|
ACCESS-CM2 | Australian Community Climate and Earth System Simulator (ACCESS), Sydney, Australia | 1.875° × 1.25° |
MIROC6 | Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute, National Institute for Environmental Studies (MIROC), Yokosuka, Japan | 1.40° × 1.40° |
MRI-ESM2-0 | Max Planck Institute for Meteorology (MPI-M), Hamburg, Germany | 1.12° × 1.12° |
Tx | Tn | Tav | Rainfall | |||||
---|---|---|---|---|---|---|---|---|
Kendall’s Tau | Sen’s Slope | Kendall’s Tau | Sen’s Slope | Kendall’s Tau | Sen’s Slope | Kendall’s Tau | Sen’s Slope | |
Jan | 0.13 ns | 0.022 ns | 3.01 × 10−1 * | 0.021* | 2.31 × 10−1 * | 0.024 * | −0.16 ns | −2.855 ns |
Feb | 8.16 × 10−4 ns | 0.000 ns | 2.20 × 10−1 * | 0.016* | 9.06 × 10−4 ns | 0.009 ns | 9.71 × 10−2 ns | 1.200 ns |
Mar | −8.16 × 10−4 ns | −0.000 ns | 2.76 × 10−1 * | 0.017 * | 9.88 × 10−2 ns | 0.008 ns | −3.51 × 10−2 ns | −0.397 ns |
Apr | 3.84 × 10−2 ns | 0.005 ns | 3.03 × 10−1 * | 0.020 * | 1.52 × 10−1 ns | 0.013 ns | 7.10 × 10−2 ns | 0.234 ns |
May | −5.63 × 10−2 ns | −0.008 ns | 1.06 × 10−1 ns | 0.009 ns | −2.94 × 10−2 ns | −0.002 ns | −3.84 × 10−2 ns | −0.062 ns |
Jun | −1.55 × 10−2 ns | −0.001 ns | 3.08 × 10−1 * | 0.024 * | 2.24 × 10−1 * | 0.013 * | 8.46 × 10−2 ns | 0.030 ns |
Jul | 7.43 × 10−2 ns | 0.006 ns | 2.11 × 10−1 * | 0.021 * | 1.67 × 10−1 ns | 0.013 ns | −8.85 × 10−2 ns | −0.030 ns |
Aug | −0.10 ns | −0.012 ns | 7.76 × 10−2 ns | 0.006 ns | 1.47 × 10−2 ns | 0.002 ns | −3.29 × 10−3 ns | 0.000 ns |
Sep | 3.34 × 10−1 ns | 0.045 ns | 2.65 × 10−1 * | 0.028 * | 3.08 × 10−1 * | 0.036 * | −0.15 ns | −0.385 ns |
Oct | 2.39 × 10−1 ns | 0.034 ns | 4.09 × 10−1 * | 0.035 * | 3.31 × 10−1 * | 0.035 * | −0.18 ns | −1.200 ns |
Nov | −3.51 × 10−2 ns | −0.003 ns | 3.08 × 10−1 * | 0.024 * | 1.49 × 10−1 ns | 0.008 ns | −8.16 × 10−4 ns | −0.009 ns |
Dec | 1.84 × 10−1 ns | 0.019 ns | 3.14 × 10−1 * | 0.020 * | 2.62 × 10−1 * | 0.020 * | 1.61 × 10−1 ns | 1.671 ns |
Annual | 1.03 × 10−1 ns | 0.007 ns | 4.25 × 10−1 * | 0.019 * | 2.77 × 10−1 * | 0.013 * | −6.94 × 10−2 ns | −2.480 ns |
Spring | 1.71 × 10−1 ns | 0.015 ns | 4.94 × 10−1 * | 0.027 * | 3.24 × 10−1* | 0.021 * | 4.48 × 10−2 ns | 0.259 ns |
Summer | 3.51 × 10−2 ns | 0.004 ns | 3.42 × 10−1 * | 0.021 * | 1.74 × 10−1 ns | 0.013 ns | −0.10 ns | −0.964 ns |
Autumn | −3.34 × 10−2 ns | −0.002 ns | 2.78 × 10−1 * | 0.017 * | 1.06 × 10−1 ns | 0.007 ns | 6.45 × 10−2 ns | 0.104 ns |
Winter | 1.68 × 10−1 ns | 0.012 ns | 2.24 × 10−1 * | 0.018 * | 2.16 × 10−1 * | 0.016 * | −0.18 ns | −0.217 ns |
Scenario (Current/Future) | Shared Socioeconomic Pathways (SSP) | Climate Classification | |
---|---|---|---|
Köppen | Thorthwaite | ||
Current | - | Cwb | B3rB’3a’ |
2021–2040 (short term) | Optimist (SSP245) | Cwb | B2rB’3a’ |
Intermediate (SSP370) | Cwb | B2rB’3a’ | |
Pessimist (SSP585) | Cwb | B2rB’3a’ | |
2041–2060 (short-medium term) | Optimist (SSP245) | Cwb | B2rB’3a’ |
Intermediate (SSP370) | Cwa | B2rB’3a’ | |
Pessimist (SSP585) | Cwa | B2rB’3a’ | |
2061–2080 (late medium term) | Optimist (SSP245) | Cwa | B2rB’3a’ |
Intermediate (SSP370) | Cwa | B2rB’4a’ | |
Pessimist (SSP585) | Aw | B2rB’4a’ | |
2081–2100 (long term) | Optimist (SSP245) | Cwa | B2rB’3a’ |
Intermediate (SSP370) | Aw | B1rB’4a’ | |
Pessimist (SSP585) | Aw | B1wA’a’ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, L.d.C.; Figueiró, L.S.d.P.; Bender, F.D.; José, J.V.; Santos, A.V.; Araujo, J.E.; Machado, E.L.M.; da Silva, R.S.; Costa, J.d.O. Unveiling Climate Trends and Future Projections in Southeastern Brazil: A Case Study of Brazil’s Historic Agricultural Heritage. Sustainability 2024, 16, 4811. https://doi.org/10.3390/su16114811
Santos LdC, Figueiró LSdP, Bender FD, José JV, Santos AV, Araujo JE, Machado ELM, da Silva RS, Costa JdO. Unveiling Climate Trends and Future Projections in Southeastern Brazil: A Case Study of Brazil’s Historic Agricultural Heritage. Sustainability. 2024; 16(11):4811. https://doi.org/10.3390/su16114811
Chicago/Turabian StyleSantos, Lucas da Costa, Lucas Santos do Patrocínio Figueiró, Fabiani Denise Bender, Jefferson Vieira José, Adma Viana Santos, Julia Eduarda Araujo, Evandro Luiz Mendonça Machado, Ricardo Siqueira da Silva, and Jéfferson de Oliveira Costa. 2024. "Unveiling Climate Trends and Future Projections in Southeastern Brazil: A Case Study of Brazil’s Historic Agricultural Heritage" Sustainability 16, no. 11: 4811. https://doi.org/10.3390/su16114811
APA StyleSantos, L. d. C., Figueiró, L. S. d. P., Bender, F. D., José, J. V., Santos, A. V., Araujo, J. E., Machado, E. L. M., da Silva, R. S., & Costa, J. d. O. (2024). Unveiling Climate Trends and Future Projections in Southeastern Brazil: A Case Study of Brazil’s Historic Agricultural Heritage. Sustainability, 16(11), 4811. https://doi.org/10.3390/su16114811