Can Process Digitization Improve Firm Innovation Performance? Process Digitization as Job Resources and Demands
Abstract
:1. Introduction
2. Theory and Hypotheses
2.1. Job Demands–Resources (JD-R) Model
2.2. Digitization and Innovation Performance
2.3. Moderating Effect of Pay
2.4. Moderating Effect of Training
3. Methodology
3.1. Data Description
3.2. Model and Measurements
3.3. Dependent Variable
3.4. Independent Variable
3.5. Moderating Variables
3.6. Control Variables
4. Results
4.1. Empirical Results
4.2. Robustness Tests
5. Conclusions and Discussion
5.1. Conclusions
5.2. Discussion and Contribution
5.3. Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerpedzhiev, G.D.; König, U.M.; Röglinger, M.; Rosemann, M. An exploration into future business process management capabilities in view of digitalization: Results from a Delphi study. Bus. Inf. Syst. Eng. 2021, 63, 83–96. [Google Scholar] [CrossRef]
- Baier, M.-S.; Lockl, J.; Röglinger, M.; Weidlich, R. Success factors of process digitalization projects—Insights from an exploratory study. Bus. Process Manag. J. 2022, 28, 325–347. [Google Scholar] [CrossRef]
- BarNir, A.; Gallaugher, J.M.; Auger, P. Business process digitization, strategy, and the impact of firm age and size: The case of the magazine publishing industry. J. Bus. Venturing 2003, 18, 789–814. [Google Scholar] [CrossRef]
- Slywotzky, A.J.; Morrison, D.J. How Digital Is Your Business? Crown Business: New York, NY, USA, 2000. [Google Scholar]
- Ahmed, S. Artificial intelligence and machine learning for process safety: Points to ponder. Process Saf. Prog. 2021, 40, 189–190. [Google Scholar] [CrossRef]
- Mendling, J.; Pentland, B.T.; Recker, J. Building a complementary agenda for business process management and digital innovation. Eur. J. Inf. Syst. 2020, 29, 208–219. [Google Scholar] [CrossRef]
- Andriole, S.J. Five myths about digital transformation. MIT Sloan Manag. Rev. 2017, 58, 20–22. [Google Scholar]
- Bakker, A.B.; Demerouti, E. Job demands–resources theory: Taking stock and looking forward. J. Occup. Health Psychol. 2017, 22, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Lyytinen, K.; Yoo, Y.; Boland, R.J., Jr. Digital product innovation within four classes of innovation networks. Inf. Syst. J. 2016, 26, 47–75. [Google Scholar] [CrossRef]
- Langlois, R.N. Modularity in technology and organization. J. Econ. Behav. Organ. 2002, 49, 19–37. [Google Scholar] [CrossRef]
- Lyu, K.; Yu, M.; Ruan, Y. Digital transformation and resource allocation efficiency of enterprises. Sci. Res. Manag. 2023, 44, 11–20. [Google Scholar]
- Jabagi, N.; Croteau, A.-M.; Audebrand, L.K.; Marsan, J. Gig-workers’ motivation: Thinking beyond carrots and sticks. J. Manag. Psychol. 2019, 34, 192–213. [Google Scholar] [CrossRef]
- Parent-Rocheleau, X.; Parker, S.K. Algorithms as work designers: How algorithmic management influences the design of jobs. Hum. Resour. Manag. Rev. 2022, 32, 100838. [Google Scholar] [CrossRef]
- Johnson, J.V.; Hall, E.M. Job Strain, Work Place Social Support, and Cardiovascular Disease: A Cross-Sectional Study of a Random Sample of the Swedish Working Population. Am. J. Public Health 1988, 78, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulou, D.; Bakker, A.B.; Dollard, M.F.; Demerouti, E.; Schaufeli, W.B.; Taris, T.W.; Schreurs, P.J.G. When do job demands particularly predict burnout?: The moderating role of job resources. J. Manag. Psychol. 2007, 22, 766–786. [Google Scholar] [CrossRef]
- Ávila-Robinson, A.; Islam, N.; Sengoku, S. Exploring the knowledge base of innovation research: Towards an emerging innovation model. Technol. Forecasting Soc. Chang. 2022, 182, 121804. [Google Scholar] [CrossRef]
- Wang, L.; Xie, T. Double-edged sword effect of flexible work arrangements on employee innovation performance: From the demands–resources–individual effects perspective. Sustainability 2023, 15, 10159. [Google Scholar] [CrossRef]
- Tierney, P.; Farmer, S.M. Creative self-efficacy development and creative performance over time. J. Appl. Psychol. 2011, 96, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.-S.; Phillips, F.; Park, S.; Lee, E. Innovation ecosystems: A critical examination. Technovation 2016, 54, 1–6. [Google Scholar] [CrossRef]
- Raisch, S.; Krakowski, S. Artificial intelligence and management: The automation–augmentation paradox. Acad. Manag. Rev. 2021, 46, 192–210. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, H. How does digital transformation affect the innovation performance of hub firms? An empirical study from the perspective of modularity. Sci. Res. Manag. 2022, 43, 73–82. [Google Scholar]
- Gregory, K. ‘My Life Is More Valuable Than This’: Understanding risk among on-demand food couriers in Edinburgh. Work Employ. Soc. 2021, 35, 316–331. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, S. An integrated analytical framework for algorithmic management and employee creativity. Stud. Sci. Sci. 2022, 40, 1811–1820. [Google Scholar]
- Oldham, G.R.; Fried, Y. Job design research and theory: Past, present and future. Organ. Behav. Hum. Decis. Processes 2016, 136, 20–35. [Google Scholar] [CrossRef]
- Ceschi, A.; Costantini, A.; Dickert, S.; Sartori, R. The impact of occupational rewards on risk taking among managers. J. Pers. Psychol. 2017, 16, 104–111. [Google Scholar] [CrossRef]
- Gerhart, B.; Fang, M. Pay for (individual) performance: Issues, claims, evidence and the role of sorting effects. Hum. Resour. Manag. Rev. 2014, 24, 41–52. [Google Scholar] [CrossRef]
- Bakker, A.B.; Demerouti, E. The Job Demands-Resources model: State of the art. J. Manag. Psychol. 2007, 22, 309–328. [Google Scholar] [CrossRef]
- Igalens, J.; Roussel, P. A study of the relationships between compensation package, work motivation and job satisfaction. J. Organ. Behav. 1999, 20, 1003–1025. [Google Scholar] [CrossRef]
- Chen, C.-J.; Huang, J.-W. Strategic human resource practices and innovation performance—The mediating role of knowledge management capacity. J. Bus. Res. 2009, 62, 104–114. [Google Scholar] [CrossRef]
- López, S.P.; Peón, J.M.M.; Ordás, C.J.V. Human resource management as a determining factor in organizational learning. Manag. Learn. 2006, 37, 215–239. [Google Scholar] [CrossRef]
- Shipton, H.; Fay, D.; West, M.; Patterson, M.; Birdi, K. Managing people to promote innovation. Creat. Innov. Manag. 2005, 14, 118–128. [Google Scholar] [CrossRef]
- Loughran, T.; Mcdonald, B. When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. J. Fin. 2011, 66, 35–65. [Google Scholar] [CrossRef]
- Loughran, T.; McDonald, B. Textual analysis in finance. Annu. Rev. Financ. Econ. 2020, 12, 357–375. [Google Scholar] [CrossRef]
- Yanadori, Y.; Cui, V. Creating incentives for innovation? The relationship between pay dispersion in R&D groups and firm innovation performance. Strateg. Manag. J. 2013, 34, 1502–1511. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, Z.; Vochozka, M.; Vozňáková, I. Enterprise digital transformation and debt financing cost in China’s A-share listed companies. Oecon. Copernicana 2022, 13, 783–829. [Google Scholar] [CrossRef]
- Kuvaas, B. Work performance, affective commitment, and work motivation: The roles of pay administration and pay level. J. Organ. Behav. 2006, 27, 365–385. [Google Scholar] [CrossRef]
- Yang, L.; Xu, C.; Wan, G. Exploring the impact of TMTs’ overseas experiences on innovation performance of Chinese enterprises: The mediating effects of R&D strategic decision-making. Chin. Manag. Stud. 2019, 13, 1044–1085. [Google Scholar] [CrossRef]
- Sparks, K.; Faragher, B.; Cooper, C.L. Well-being and occupational health in the 21st century workplace. J. Occupat. Organ. Psychol. 2001, 74, 489–509. [Google Scholar] [CrossRef]
- Lind, J.T.; Mehlum, H. With or without U? The appropriate test for a U-shaped relationship*: Practitioners’ corner. Oxf. Bull. Econ. Stat. 2010, 72, 109–118. [Google Scholar] [CrossRef]
- Shen, D.; Zhang, Y.; Xiong, X.; Zhang, W. Baidu index and predictability of Chinese stock returns. Financ. Innov. 2017, 3, 4. [Google Scholar] [CrossRef]
- Ritala, P.; Olander, H.; Michailova, S.; Husted, K. Knowledge sharing, knowledge leaking and relative innovation performance: An empirical study. Technovation 2015, 35, 22–31. [Google Scholar] [CrossRef]
- Prather, C.W.; Turrell, M.C. Managers at Work: Involve everyone in the innovation process. Res. Technol. Manag. 2002, 45, 13–16. [Google Scholar] [CrossRef]
- Kuusisto, M. Organizational effects of digitalization: A literature review. Int. J. Organ. Theor. Behav. 2017, 20, 341–362. [Google Scholar] [CrossRef]
- Tortorella, G.L.; Fogliatto, F.S.; Anzanello, M.J.; Vergara, A.M.C.; Vassolo, R.; Garza-Reyes, J.A. Modeling the impact of Industry 4.0 base technologies on the development of organizational learning capabilities. Oper. Manag. Res. 2023, 16, 1091–1104. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, Y.; Peng, C.; He, X.; Qu, Z.; Dong, Q. Knowledge digitization: Characteristics, knowledge advantage and innovation performance. J. Bus. Res. 2023, 163, 113915. [Google Scholar] [CrossRef]
Variable | Mean | SD | Min. | Max. | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
1. Invention patents | 30.19 | 78.36 | 0 | 579 | 1 | ||
2. Total patents | 70.86 | 169.1 | 0 | 1277 | 0.941 *** | 1 | |
3. Process digitization | 37.10 | 22.52 | 23.79 | 100 | 0.175 *** | 0.181 *** | 1 |
4. Firm age | 2.930 | 0.301 | 2.079 | 3.526 | 0.00400 | −0.00500 | −0.039 *** |
5. ROA | 0.038 | 0.069 | −0.291 | 0.226 | 0.042 *** | 0.047 *** | −0.00200 |
6. Firm size | 22.22 | 1.320 | 19.81 | 27.29 | 0.426 *** | 0.445 *** | 0.033 *** |
7. Leverage | 0.415 | 0.206 | 0.057 | 0.936 | 0.150 *** | 0.172 *** | 0.014 ** |
8. Fixed assets | 0.207 | 0.158 | 0.001 | 0.683 | −0.033 *** | −0.023 *** | −0.107 *** |
9. Board size | 2.115 | 0.198 | 1.099 | 2.890 | 0.077 *** | 0.077 *** | −0.031 *** |
10. TMT overseas experience | 0.590 | 0.492 | 0 | 1 | 0.079 *** | 0.077 *** | 0.052 *** |
11. TMT average age | 49.36 | 3.142 | 41.47 | 56.88 | 0.163 *** | 0.166 *** | −0.056 *** |
12. TMT Female | 19.45 | 11.22 | 0 | 50 | −0.120 *** | −0.122 *** | 0.00800 |
13. Training expenditure | 0 | 1 | −1.322 | 3.444 | 0.239 *** | 0.243 *** | 0.014 ** |
14. Occupational health | 0.045 | 0.207 | 0 | 1 | 0.193 *** | 0.178 *** | 0.0100 |
15. Average pay level | 61.29 | 24.07 | 0 | 100 | 0.158 *** | 0.128 *** | 0.052 *** |
Variable | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
4. Firm age | 1 | ||||||
5. ROA | −0.082 *** | 1 | |||||
6. Firm size | 0.153 *** | 0.019 *** | 1 | ||||
7. Leverage | 0.177 *** | −0.350 *** | 0.502 *** | 1 | |||
8. Fixed asset | 0.033 *** | −0.070 *** | 0.115 *** | 0.086 *** | 1 | ||
9. Board size | 0.088 *** | 0.0120 | 0.266 *** | 0.135 *** | 0.144 *** | 1 | |
10. TMT overseas experience | −0.053 *** | 0.031 *** | 0.090 *** | −0.016 ** | −0.090 *** | 0.057 *** | 1 |
11. TMT average age | 0.185 *** | 0.038 *** | 0.348 *** | 0.117 *** | 0.169 *** | 0.225 *** | −0.022 *** |
12. TMT Female | 0.014 ** | 0.019 *** | −0.201 *** | −0.128 *** | −0.142 *** | −0.163 *** | 0.027 *** |
13. Training expenditure | 0.041 *** | 0.017 ** | 0.369 *** | 0.120 *** | 0.244 *** | 0.238 *** | −0.0110 |
14. Occupational health | 0.044 *** | 0.034 *** | 0.218 *** | 0.077 *** | 0.032 *** | 0.076 *** | 0.049 *** |
15. Average pay level | 0.024 *** | 0.020 *** | 0.244 *** | 0.069 *** | −0.208 *** | 0.062 *** | 0.118 *** |
Variable | 11 | 12 | 13 | 14 | 15 | ||
11. TMT average age | 1 | ||||||
12. TMT Female | −0.270 *** | 1 | |||||
13. Training expenditure | 0.284 *** | −0.183 *** | 1 | ||||
14. Occupational health | 0.125 *** | −0.059 *** | 0.125 *** | 1 | |||
15. Average pay level | 0.085 *** | −0.033 *** | 0.00100 | 0.083 *** | 1 |
Dependent Variable: Innovation Performance | Invention Patent Count t + 1 | Invention Patent Count t + 1 | Invention Patent Count t + 1 | Invention Patent Count t + 1 | Invention Patent Count t + 1 | Invention Patent Count t + 1 |
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
Independent variable | ||||||
H1: Process digitization | 7.940 *** | 16.234 *** | 16.465 *** | 16.544 *** | 16.776 *** | |
(6.29) | (5.97) | (6.15) | (6.11) | (6.29) | ||
H1: Process digitization2 | −12.274 *** | −13.325 *** | −13.967 *** | −15.039 *** | ||
(−3.30) | (−3.65) | (−3.80) | (−4.16) | |||
Interaction | ||||||
H2: Process digitization × Average Pay Level | −0.108 | −0.109 | ||||
(−0.98) | (−0.99) | |||||
H2: Process digitization2 × Average Pay Level | 0.432 *** | 0.436 *** | ||||
(2.92) | (2.97) | |||||
H3: Process digitization × Training Expenditure | −0.003 ** | −0.003 ** | ||||
(−2.07) | (−2.06) | |||||
H3: Process digitization2 × Training Expenditure | 0.008 *** | 0.008 *** | ||||
(4.39) | (4.43) | |||||
Constant | −288.340 *** | −278.986 *** | −302.755 *** | −306.528 *** | −316.280 *** | −320.166 *** |
(−5.13) | (−5.10) | (−5.53) | (−5.62) | (−5.78) | (−5.87) | |
Control variables | Controlled | Controlled | Controlled | Controlled | Controlled | Controlled |
Year and firm fixed | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 16,229 | 16,229 | 16,229 | 16,229 | 16,229 | 16,229 |
R2 | 0.880 | 0.880 | 0.881 | 0.881 | 0.881 | 0.882 |
Adj R2 | 0.848 | 0.849 | 0.849 | 0.850 | 0.850 | 0.851 |
F | 10.77 | 11.72 | 11.66 | 11.41 | 11.40 | 10.93 |
U-Test Results | ||||||
---|---|---|---|---|---|---|
Model 3 | Model 4 | Model 5 | ||||
Lower bound | Upper bound | Lower bound | Upper bound | Lower bound | Upper bound | |
Interval | 23.789 | 100 | 23.789 | 100 | 23.789 | 100 |
Slope | 0.164 | −0.435 | 0.157 | −0.463 | 0.152 | −0.482 |
t-value | 5.151 | −1.989 | 5.328 | −2.256 | 5.315 | −2.320 |
p > |t| | 0.000 | 0.0234 | 0.000 | 0.0120 | 0.000 | 0.010 |
Overall Test for an Inverted U-shaped Relationship | ||||||
Overall t-value | 1.99 | 2.26 | 2.32 | |||
Overall p > |t| | 0.0234 | 0.012 | 0.0102 | |||
Extreme point: | 44.688 | 43.103 | 42.040 | |||
95% Fieller interval for extreme points: | [33.129; 97.605] | [32.908; 80.904] | [32.384; 77.297] |
Dependent Variables | Process Digitization First Stage | Process Digitization2 First Stage | Invention Patent Count Second Stage | Invention Patent Count Second Stage |
---|---|---|---|---|
Independent variable | ||||
Industry Average State Ownership (IV) | 15.43 *** | 37.21 *** | ||
(3.874) | (9.079) | |||
Province Average State Ownership (IV) | −0.246 *** | −0.587 *** | ||
(0.0845) | (0.198) | |||
Instrument variable | ||||
Baidu index of digitization | 0.959 | −1.314 | ||
(0.598) | (27.36) | |||
Baidu index of digitization2 | −0.170 | −18.87 ** | ||
(0.164) | (7.587) | |||
Moderator variable | ||||
IV × average pay level | 0.017 | 0.884 *** | −0.0249 | −0.0364 |
(0.004) | (0.179) | (0.0363) | (0.0837) | |
IV2 × average pay level | −0.002 | −0.0765 ** | 0.0114 *** | 0.0234 *** |
(0.001) | (0.0311) | (0.00342) | (0.00787) | |
IV × training expenditure | −0.000 | −0.00906 | 0.00484 *** | 0.0108 *** |
(0.000) | (0.00730) | (0.00115) | (0.00260) | |
IV2 × training expenditure | −0.000 | −0.00529 ** | 0.000663 * | 0.00161 * |
(0.000) | (0.00252) | (0.000386) | (0.000875) | |
Constant | 45.069 | 1089 ** | −1030 *** | −2375 *** |
(9.857) | (450.5) | (152.3) | (353.8) | |
Control variables | Controlled | Controlled | Controlled | Controlled |
Year and firm controlled | Yes | Yes | Yes | Yes |
Observations | 16321 | 16321 | 16,321 | 16,321 |
Adj R2 | 0.389 | 0.041 | 0.446 | 0.060 |
Dependent Variable: Innovation Performance | Total Patent Count t + 1 | Total Patent Count t + 1 | Total Patent Count t + 1 | Total Patent Count t + 1 | Total Patent Count t + 1 | Total Patent Count t + 1 |
---|---|---|---|---|---|---|
Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | Model 12 | |
Independent variable | ||||||
H1: Process digitization | 14.631 *** | 31.735 *** | 32.266 *** | 32.221 *** | 32.754 *** | |
(5.50) | (5.84) | (5.99) | (5.97) | (6.12) | ||
H1: Process digitization2 | −25.310 *** | −27.421 *** | −27.775 *** | −29.919 *** | ||
(−3.32) | (−3.65) | (−3.71) | (−4.04) | |||
Interaction | ||||||
H2: Process digitization × Average pay level | −0.279 | −0.280 | ||||
(−1.26) | (−1.27) | |||||
H2: Process digitization2 × Average pay level | 0.897 *** | 0.904 *** | ||||
(2.94) | (2.97) | |||||
H3: Process digitization × Training expenditure | −0.005 | −0.004 | ||||
(−1.64) | (−1.62) | |||||
H3: Process digitization2 × Training expenditure | 0.012 *** | 0.012 *** | ||||
(2.97) | (2.98) | |||||
Constant | −628.960 *** | −607.822 *** | −656.839 *** | −665.106 *** | −676.528 *** | −684.983 *** |
(−5.48) | (−5.39) | (−5.79) | (−5.88) | (−5.97) | (−6.06) | |
Control variables | Controlled | Controlled | Controlled | Controlled | Controlled | Controlled |
Year and firm controlled | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 16,229 | 16,229 | 16,229 | 16,229 | 16,229 | 16,229 |
R2 | 0.890 | 0.891 | 0.891 | 0.892 | 0.892 | 0.892 |
Adj R2 | 0.864 | 0.865 | 0.865 | 0.865 | 0.865 | 0.866 |
F | 11.23 | 11.94 | 12.03 | 11.47 | 11.34 | 10.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Shen, Y. Can Process Digitization Improve Firm Innovation Performance? Process Digitization as Job Resources and Demands. Sustainability 2024, 16, 5295. https://doi.org/10.3390/su16135295
Qin Y, Shen Y. Can Process Digitization Improve Firm Innovation Performance? Process Digitization as Job Resources and Demands. Sustainability. 2024; 16(13):5295. https://doi.org/10.3390/su16135295
Chicago/Turabian StyleQin, Yize, and Yuqing Shen. 2024. "Can Process Digitization Improve Firm Innovation Performance? Process Digitization as Job Resources and Demands" Sustainability 16, no. 13: 5295. https://doi.org/10.3390/su16135295
APA StyleQin, Y., & Shen, Y. (2024). Can Process Digitization Improve Firm Innovation Performance? Process Digitization as Job Resources and Demands. Sustainability, 16(13), 5295. https://doi.org/10.3390/su16135295