Enhancing Year-Round Profitability for Small-Scale Ranchers: An Economic Analysis of Integrated Cattle and Mushroom Production System
Abstract
:1. Introduction
1.1. Brief Overview of the Economics of Integrated Farming Systems
1.2. The Integrated Mushroom and Cattle Production System (ICMPS) Concept
2. Materials and Methods
2.1. Model Construction
2.2. Economic Analysis
2.3. Statistical Analysis
3. Results
3.1. Estimation of Cost, Expected Yield, Revenue, and Profit for Oyster Mushroom
3.2. Estimation of Enterprise Budget for Small Cattle Production in North Carolina
3.3. Expected Net Returns of Integrated Cattle and Mushroom System
3.4. Five-Year Cash Flow and Net Present Value (NPV) Analysis for the Integrated System
3.5. Sensitivity Analysis
3.6. Monte Carlo Simulation Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Quaicoe, O.; Asiseh, F.; Baffoe-Bonnie, A.; Ng’ombe, J.N. Small farms in North Carolina, United States: Analyzing farm and operator characteristics in the pursuit of economic resilience and sustainability. Appl. Econ. Perspect. Policy 2023, 46, 13–31. [Google Scholar] [CrossRef]
- Gomez, Y.; Paloma, S.; Riesgo, L.; Louhichi, K. (Eds.) The Role of Smallholder Farms in Food and Nutrition Security; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-42147-2. [Google Scholar]
- Tey, Y.S.; Brindal, M. Factors Influencing Farm Profitability. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer International Publishing: Cham, Switzerland, 2015; Volume 15, pp. 235–255. ISBN 978-3-319-09131-0. [Google Scholar]
- Dhillon, R.; Moncur, Q. Small-Scale Farming: A Review of Challenges and Potential Opportunities Offered by Technological Advancements. Sustainability 2023, 15, 15478. [Google Scholar] [CrossRef]
- Louman, B.; Girolami, E.D.; Shames, S.; Primo, L.G.; Gitz, V.; Scherr, S.J.; Meybeck, A.; Brady, M. Access to Landscape Finance for Small-Scale Producers and Local Communities: A Literature Review. Land 2022, 11, 1444. [Google Scholar] [CrossRef]
- Bran, M.; Pătărlăgeanu, S.R.; Dinu, M.; Beia, S.I. Supporting a Healthy Environment through Livestock. 2022. Available online: https://openurl.ebsco.com/EPDB%3Agcd%3A7%3A22638999/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A152279637&crl=c (accessed on 21 January 2024).
- Kleppel, G.S. Do Differences in Livestock Management Practices Influence Environmental Impacts? Front. Sustain. Food Syst. 2020, 4, 141. [Google Scholar] [CrossRef]
- Mekuria, W.; Mekonnen, K.; Thorne, P.; Bezabih, M.; Tamene, L.; Abera, W. Competition for land resources: Driving forces and consequences in crop-livestock production systems of the Ethiopian highlands. Ecol. Process 2018, 7, 30. [Google Scholar] [CrossRef]
- Celik, Y.; Peker, K. Benefit/Cost Analysis of Mushroom Production for Diversification of Income in Developing Countries. Bulg. J. Agric. Sci. 2009, 15, 228–237. [Google Scholar]
- Tabassum, N.; Prasad Singh, M. Nutritional and Medicinal Values of Mushroom. In Mushrooms: A Wealth of Nutraceuticals and an Agent of Bioremediation; Prasad Singh, M., Nand Rai, S., Eds.; Bentham Science Publishers: Singapore, 2023; pp. 1–8. ISBN 978-981-5080-56-8. [Google Scholar]
- Lawrence, J.D.; Mintert, J.R.; Anderson, J.D.; Anderson, D.P. Feed grains and livestock: Impacts on meat supplies and prices. Choices 2008, 23, 11–15. [Google Scholar]
- Stewart, L.; Rossi, J. Using Cotton Byproducts in Beef Cattle Diets; University of Georgia Cooperative Extension, University of Georgia College of Agricultural and Environmental Sciences. 2010. Available online: https://extension.uga.edu/publications/detail.html?number=B1311&title=using-cotton-byproducts-in-beef-cattle-diets (accessed on 28 January 2024).
- Velázquez-De Lucio, B.S.; Hernández-Domínguez, E.M.; Téllez-Jurado, A.; Ayala-Martínez, M.; Soto-Simental, S.; Álvarez-Cervantes, J. Protein fraction, mineral profile, and chemical compositions of various fiber-based substrates degraded by Pleurotus ostreatus. BioResources 2020, 15, 8849–8861. [Google Scholar] [CrossRef]
- Minagawa, H.; Doi, T.; Sakata, H.; Nagai, M.; Nakatsubo, A.; Tanaka, K. Mushroom Cultivation on the Bed of Animal Feces. In Proceedings of the Livestock Environment VIII, Iguassu Falls, Brazil, 31 August–4 September 2008; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008. [Google Scholar]
- Halbwachs, H.; Bässler, C. No bull: Dung-dwelling mushrooms show reproductive trait syndromes different from their non-coprophilous allies. Mycol. Progress. 2020, 19, 817–824. [Google Scholar] [CrossRef]
- Anele, U.Y.; Anike, F.N.; Davis-Mitchell, A.; Isikhuemhen, O.S. Solid-state fermentation with Pleurotus ostreatus improves the nutritive value of corn stover-kudzu biomass. Folia Microbiol. 2021, 66, 41–48. [Google Scholar] [CrossRef]
- Xu, X.; Yan, H.; Chen, J.; Zhang, X. Bioactive proteins from mushrooms. Biotechnol. Adv. 2011, 29, 667–674. [Google Scholar] [CrossRef]
- Anike, F.N.; Yusuf, M.; Isikhuemhen, O.S. Co-Substrating of Peanut Shells with Cornstalks Enhances Biodegradation by Pleurotus ostreatus. J. Bioremed. Biodeg. 2016, 7, 327. [Google Scholar] [CrossRef]
- Seth, D.; Ghosh, P.; Roy, L. Integrated farming systems a way for long-term farming viability: A review. Plant Arch. 2023, 23, 185–190. [Google Scholar] [CrossRef]
- Shyam, C.S.; Shekhawat, K.; Rathore, S.S.; Babu, S.; Singh, R.K.; Upadhyay, P.K.; Dass, A.; Fatima, A.; Kumar, S.; Sanketh, G.D.; et al. Development of Integrated Farming System Model—A Step towards Achieving Biodiverse, Resilient and Productive Green Economy in Agriculture for Small Holdings in India. Agronomy 2023, 13, 955. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, D.K. Are linkages between crops and livestock important for the sustainability of the farming system. Asian Econ. Rev. 2005, 47, 90–101. [Google Scholar]
- Radhamani, S.; Balasubramanian, A.; Ramamootthy, K.; Geetalakshmi, V. Sustainable integrated farming systems for drylands—A review. Agric. Rev. 2003, 24, 204–210. [Google Scholar]
- Dadabhau, A.S.; Kisan, W.S. Sustainable rural livelihood security through integrated farming systems—A review. Agric. Rev. 2013, 34, 207. [Google Scholar] [CrossRef]
- Murthy, A.K.; Muninarayanappa, M. Sustainable Agriculture and Livestock Integrated Farming Systems for Small and Marginal Farmers: A Case Study of Kurnool District, Andhra Pradesh, India. JEAI 2023, 45, 57–62. [Google Scholar] [CrossRef]
- Reddy, A.D.; Nirmala, T.V.; Satish, J.V.; Balakrishna, C.H.; Subbaiah, K.V.; Deepthi, V.; Raju, G.S.; Reddy, M.R.; Satish, K.V.; KarunaSree, E.; et al. Amplification of Small and Marginal Farmers Income through Integrated Farming Systems. IJECC 2023, 13, 89–101. [Google Scholar] [CrossRef]
- Mir, M.S.; Naikoo, N.B.; Amin, Z.; Bhat, T.A.; Nazir, A.; Kanth, R.H.; Singh, P.; Raja, W.; Singh, L.; Fayaz, S.; et al. Integrated Farming System: A Tool for Doubling Farmer’s Income. JEAI 2022, 44, 47–56. [Google Scholar] [CrossRef]
- Manjunath, B.L.; Itnal, C.J. Farming system options for small and marginal holdings in different topographies of Goa. IJA 2001, 48, 4–7. [Google Scholar] [CrossRef]
- Sekaran, U.; Lai, L.; Ussiri, D.A.N.; Kumar, S.; Clay, S. Role of integrated crop-livestock systems in improving agriculture production and addressing food security—A review. J. Agric. Food Res. 2021, 5, 100190. [Google Scholar] [CrossRef]
- Allen, V.G.; Brown, C.P.; Kellison, R.; Segarra, E.; Wheeler, T.; Dotray, P.A.; Conkwright, J.C.; Green, C.J.; Acosta-Martinez, V. Integrating Cotton and Beef Production to Reduce Water Withdrawal from the Ogallala Aquifer in the Southern High Plains. Agron. J. 2005, 97, 556–567. [Google Scholar] [CrossRef]
- Solaiappan, U.; Subramanian, V.; Sankar, G.R. Selection of suitable integrated farming system model for rainfed semi-arid vertic inceptisols in Tamil Nadu. Indian J. Agron. 2007, 52, 194–197. [Google Scholar] [CrossRef]
- Russelle, M.P.; Entz, M.H.; Franzluebbers, A.J. Reconsidering Integrated Crop–Livestock Systems in North America. Agron. J. 2007, 99, 325–334. [Google Scholar] [CrossRef]
- Ravisankar, N.; Pramanik, S.C.; Rai, R.B.; Nawaz, S.; Biswas, T.K.; Bibi, N. Study on integrated farming system in hilly upland areas of Bay Islands. IJA 2001, 52, 45206. [Google Scholar] [CrossRef]
- Tracy, B.F.; Zhang, Y. Soil Compaction, Corn Yield Response, and Soil Nutrient Pool Dynamics within an Integrated Crop-Livestock System in Illinois. Crop Sci. 2008, 48, 1211–1218. [Google Scholar] [CrossRef]
- Elamathi, S.; Singh, S.; Rangaraj, T.; Anandhi, P. Integrated Farming System Model for Sustained Farm Income and Employment Generation Under Rainfed Vertisol of Southern Zone of Tamil Nadu. Natl. Acad. Sci. Lett. 2021, 44, 485–487. [Google Scholar] [CrossRef]
- Sheikh, M.M.; Riar, T.S.; Pervez, A.K.M.K. Integrated Farming Systems: A Review of Farmers Friendly Approaches. AJAEES 2021, 39, 88–99. [Google Scholar] [CrossRef]
- Singh, J.P.; Gill, M.S. Livelihood security and resource conservation through integrated farming system. Indian Farming 2010, 60, 9. [Google Scholar]
- Vinholis, M.D.; Souza Filho, H.M.; Shimata, I.; Oliveira, P.P.; Pedroso, A.D. Economic viability of a crop-livestock integration system. Ciência Rural 2020, 51, e20190538. [Google Scholar] [CrossRef]
- Behera, U.K.; France, J. Integrated Farming Systems and the Livelihood Security of Small and Marginal Farmers in India and Other Developing Countries. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2016; Volume 138, pp. 235–282. ISBN 978-0-12-804774-3. [Google Scholar]
- Nageswaran, M.; Selvaganapathy, E.; Subbiah, V.R.; Nair, S. Demonstration and replication of integrated farming systems at Chidambaram. In Report of MS Swaminathan Research Foundation (MSSRF), Chennai; MS Swaminathan Research Foundation (MSSRF): Chennai, India, 2009; pp. 16–53. [Google Scholar]
- Channabasavanna, A.S.; Biradar, D.P.; Prabhudev, K.N.; Hegde, M. Development of profitable integrated farming system model for small and medium farmers of Tungabhadra project area of Karnataka. Karnataka J. Agric. Sci. 2010, 22, 25–27. [Google Scholar]
- Kumar, S. Livelihood improvement through integrated farming system interventions to resource poor farmers: Integrated Farming system interventions for Poor farmers. J. AgriSearch 2018, 5, 19–24. [Google Scholar] [CrossRef]
- Nababan, F.E.; Regina, D. The challenges of integrated farming system development towards sustainable agriculture in Indonesia. In Proceedings of the E3S Web of Conferences; EDP Sciences: Les Ulis Cedex A, France, 2021; Volume 306, p. 05015. [Google Scholar]
- Haobijam, J.W.; Maisnam, G.; Singh, K.C.; Tania, C. Integrated Farming System: A Modern Tactic to Maintain Equilibrium Between Agriculture, Environment and Economy: A Review. Indian J. Econ. Dev. 2022, 18, 465–476. [Google Scholar] [CrossRef]
- DelCurto, T.; Hess, B.W.; Huston, J.E.; Olson, K.C. Optimum supplementation strategies for beef cattle consuming low-quality roughages. J. Anim. Sci. 2000, 77, 1–16. [Google Scholar] [CrossRef]
- Chand, S.; Singh, B. Mushroom Cultivation for Increasing Income and Sustainable Development of Small and Marginal Farmers. AJAHR 2022, 9, 11–16. [Google Scholar] [CrossRef]
- Rawat, N.; Negi, R.S.; Singh, S. Cost-Benefit Analysis of Different Mushroom Production for Diversification of Income in Srinagar Garhwal Valley, Uttarakhand. JSTR 2020, 2, 1–5. [Google Scholar] [CrossRef]
- Defining the Specialty Mushroom Industry—Cornell Small Farms 2020. Available online: https://smallfarms.cornell.edu/projects/mushrooms/specialty-mushroom-cultivation/defining-the-specialty-mushroom-industry/ (accessed on 3 February 2024).
- Lucier, G.; Allshouse, J.E.; Lin, B.-H. Factors Affecting US Mushroom Consumption; U.S. Department of Agriculture: Washington, DC, USA, 2003.
- Li, J.; Azzam, A.M. US mushroom import demand estimation with the source-differentiated AIDS model. IJTGM 2017, 10, 339. [Google Scholar] [CrossRef]
- Kim, M.-K.; Lee, H.-G.; Park, J.-A.; Kang, S.-K.; Choi, Y.-J. Recycling of Fermented Sawdust-based Oyster Mushroom Spent Substrate as a Feed Supplement for Postweaning Calves. Asian Australas. J. Anim. Sci. 2011, 24, 493–499. [Google Scholar] [CrossRef]
- Andrews, A.; Singh, S.; Chandhrapati, A.I.; Kumar, Y.V. Utilization of spent mushroom substrate: A review. Pharma Innov. J. 2021, 10, 1017–1021. [Google Scholar]
- Deborah Paripuranam, T.; Divya, V.V.; Ulaganathan, P.; Balamurugan, V.; Umamaheswari, S. Replacing fish meal with earthworm and mushroom meals in practical diets of Labeo rohita and Hemigrammus caudovittatus fingerlings. Indian J. Anim. Res. 2011, 45, 115–119. [Google Scholar]
- Etela, I.; Ogbeide, A.; Ukanwoko, A.I.; Adedokun, O.M. Spent Substrates from Three Species of Mushroom As Alternative Feed Resources for Ruminant Livestock. J. Solid Waste Technol. Manag. 2018, 44, 15–20. [Google Scholar] [CrossRef]
- Adamović, M.; Grubić, G.; Milenković, I.; Jovanović, R.; Protić, R.; Sretenović, L.; Stoićević, L. The biodegradation of wheat straw by Pleurotus ostreatus mushrooms and its use in cattle feeding. Anim. Feed Sci. Technol. 1998, 71, 357–362. [Google Scholar] [CrossRef]
- Kim, Y.I.; Lee, Y.H.; Kim, K.H.; Oh, Y.K.; Moon, Y.H.; Kwak, W.S. Effects of Supplementing Microbially-fermented Spent Mushroom Substrates on Growth Performance and Carcass Characteristics of Hanwoo Steers (a Field Study). Asian Australas. J. Anim. Sci. 2012, 25, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Gliessman, S.R. Package Price Agroecology: The Ecology of Sustainable Food Systems; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Barney, J. Special Theory Forum The Resource-Based Model of the Firm: Origins, Implications, and Prospects. J. Manag. 1991, 17, 97–98. [Google Scholar] [CrossRef]
- Appiah-Nkansah, N.B.; Li, J.; Rooney, W.; Wang, D. A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renew. Energy 2019, 143, 1121–1132. [Google Scholar] [CrossRef]
- Gupta, S.; Summuna, B.; Gupta, M.; Mantoo, A. Mushroom cultivation: A means of nutritional security in India. World 2016, 3, 6–50. [Google Scholar]
- Vargas, N.; Gutierrez, C.; Restrepo, S.; Velasco, N. Oyster Mushroom Cultivation as an Economic and Nutritive Alternative for Rural Low-Income Women in Villapinzón (Colombia). In Women in Industrial and Systems Engineering; Smith, A.E., Ed.; Women in Engineering and Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 561–587. ISBN 978-3-030-11865-5. [Google Scholar]
- Cowley, C. Long-Term Pressures and Prospects for the U.S. Cattle Industry. ER 2021, 107, 1. [Google Scholar] [CrossRef]
- Shanmugam, P.M.; Sangeetha, S.P.; Prabu, P.C.; Varshini, S.V.; Renukadevi, A.; Ravisankar, N.; Parasuraman, P.; Parthipan, T.; Satheeshkumar, N.; Natarajan, S.K.; et al. Crop–livestock-integrated farming system: A strategy to achieve synergy between agricultural production, nutritional security, and environmental sustainability. Front. Sustain. Food Syst. 2024, 8, 1338299. [Google Scholar] [CrossRef]
- Hou, Y.; Oenema, O.; Zhang, F. Integrating Crop and Livestock Production Systems—Towards Agricultural Green Development. Front. Agric. Sci. Eng. 2021, 8, 1. [Google Scholar] [CrossRef]
- Baptista, F.; Almeida, M.; Paié-Ribeiro, J.; Barros, A.N.; Rodrigues, M. Unlocking the Potential of Spent Mushroom Substrate (SMS) for Enhanced Agricultural Sustainability: From Environmental Benefits to Poultry Nutrition. Life 2023, 13, 1948. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.; Rosati, L.; Wilson, C. Incorporating risk factors in transport project economic evaluations. In Proceedings of the Australasian Transport Research Forum (ATRF), 40th, 2018, Darwin, Australia, 30 October–1 November 2018. [Google Scholar]
- Loarte-Flores, F.; Vasquez-Olivera, Y.; Mamani-Macedo, N.; Raymundo-Ibañez, C.; Dominguez, F. Comprehensive Strategic Risk Management System to Reduce Evaluation Times in Small-Scale Mining Projects. In Human Interaction, Emerging Technologies and Future Applications II; Ahram, T., Taiar, R., Gremeaux-Bader, V., Aminian, K., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2020; Volume 1152, pp. 603–609. ISBN 978-3-030-44266-8. [Google Scholar]
Scenario | Cost (USD) | Yield (kg) | Price (USD/kg) | Revenue (USD) | Profit (USD) |
---|---|---|---|---|---|
LC-LR | 23,529.6 | 6750 | USD 6.70 | 45,225 | 21,695.4 |
LC-HR | 23,529.6 | 11,600 | USD 13.33 | 154.628 | 131,098.4 |
HC-LR | 28,108.8 | 6750 | USD 6.70 | 45,225 | 17,116.2 |
HC-HR | 28,108.8 | 11,600 | USD 13.33 | 154.628 | 126,519.2 |
Average | 25,819.2 | 9100 | USD 10.02 | 91,182 | 65,362.8 |
Item | Cost |
---|---|
Fixed Initial Investment | |
Land | 150,000 |
Fencing | 10,000 |
Facilities | 15,000 |
Water Infrastructure | 15,000 |
Tractor | 12,000 |
Hay Equipment | 6000 |
Livestock Purchase | 62,000 |
Variable Operation | |
Property Taxes and Insurance | 1000 |
Feed Costs | 12,000 |
Grass Seeds | 1400 |
Fertilizer | 5000 |
Hired Labor | 39,000 |
Farmer’s Labor | 10,950 |
Veterinary Care | 250 |
Maintenance | 2500 |
Fuel Cost | 1000 |
Total | 343,100 |
Production System | Cost | Revenue | Profit |
---|---|---|---|
Cattle only (conventional) | 73,100 | 31,200 | −41,900 |
Oyster mushroom only | 25,819.2 | 91,182 | 65,362.8 |
Integrated cattle and mushroom | 95,319.2 | 122,382 | 27,062.8 |
Revenue | Expense | Cash Flow | Net Present Value | |
---|---|---|---|---|
Year 0 | −95,319.20 | −95,319.20 | −95,319.20 | |
Year 1 | 122,382.00 | 95,319.20 | 27,062.80 | 25,774.10 |
Year 2 | 126,000.00 | 100,000.00 | 26,000.00 | 23,582.77 |
Year 3 | 135,000.00 | 105,000.00 | 30,000.00 | 25,915.13 |
Year 4 | 144,000.00 | 110,000.00 | 34,000.00 | 27,971.88 |
Year 5 | 153,000.00 | 115,000.00 | 38,000.00 | 29,773.99 |
Total | 579,062.80 | 525,319.20 | 59,243.60 | 37,698.67 |
Scenario | Mortality Increase | Pest Damage | Adjusted Profit |
---|---|---|---|
Baseline | 0% | 0% | USD 27,062.80 |
Mortality 2% | 2% | 0% | USD 26,438.80 |
Mortality 5% | 5% | 0% | USD 25,502.80 |
Pest Damage 5% | 0% | 5% | USD 22,503.70 |
Pest Damage 10% | 0% | 10% | USD 17,944.60 |
Mortality 2% + Pest Damage 5% | 2% | 5% | USD 21,879.70 |
Mortality 5% + Pest Damage 5% | 5% | 5% | USD 20,943.70 |
Mortality 2% + Pest Damage 10% | 2% | 10% | USD 17,320.60 |
Mortality 5% + Pest Damage 10% | 5% | 10% | USD 16,384.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaicoe, O.; Asiseh, F.; Aloka, A.S. Enhancing Year-Round Profitability for Small-Scale Ranchers: An Economic Analysis of Integrated Cattle and Mushroom Production System. Sustainability 2024, 16, 5320. https://doi.org/10.3390/su16135320
Quaicoe O, Asiseh F, Aloka AS. Enhancing Year-Round Profitability for Small-Scale Ranchers: An Economic Analysis of Integrated Cattle and Mushroom Production System. Sustainability. 2024; 16(13):5320. https://doi.org/10.3390/su16135320
Chicago/Turabian StyleQuaicoe, Obed, Fafanyo Asiseh, and Atta Selorm Aloka. 2024. "Enhancing Year-Round Profitability for Small-Scale Ranchers: An Economic Analysis of Integrated Cattle and Mushroom Production System" Sustainability 16, no. 13: 5320. https://doi.org/10.3390/su16135320
APA StyleQuaicoe, O., Asiseh, F., & Aloka, A. S. (2024). Enhancing Year-Round Profitability for Small-Scale Ranchers: An Economic Analysis of Integrated Cattle and Mushroom Production System. Sustainability, 16(13), 5320. https://doi.org/10.3390/su16135320