An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production
Abstract
:1. Introduction
2. Energy Production, Hydrogen Technologies, and Environmental Sustainability
2.1. Energy Production Methods
2.2. Hydrogen Production Methods
2.3. Global Greenhouse Gas (GHG) Emissions
3. Methodology
- Data collection: Data were extracted from specialized scientific study reports in the literature, as cited in the bibliography: [1,2,3,10,11,12,13,14,15,16,18,19,20,21,22,23,24,25,26,27,28,30,31,34,35,36,37,38,39,40,42,47,50,51,53,55,60,62,63,64,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137].
- Information authentication: The objective was to provide greater clarity on the advances made in the field of green hydrogen based on electrolysis. In this context, the rise of a relatively new technology promoted research and the development of articles in reputable journals, books, and academic institutions, allowing the identification of reports that added value to the field.
- Analysis of selected information: The most relevant and accurate information was chosen, making it possible to carry out the analysis and discussion presented later in this work. It was very useful to make a table of reference sources through the years and map the trend of the energy sector and the evolution of renewable technology.
4. Hydrogen as a Sustainable Solution for Electricity Production
Type | Fuel | Unit | Factor |
---|---|---|---|
Gaseous Fuels | LPG | Liters [L] | 1.55709 |
Natural gas | Cubic meter [m3] | 2.02135 | |
Liquid Fuels | Diesel | Liters [L] | 2.70553 |
Fuel oil | Liters [L] | 3.17522 | |
Solid Fuels | Coal | Tons [Tn] | 2252.34 |
Biogas | Biogas | Tons [Tn] | 1.21518 |
Biofuel | Biodiesel | Liters [L] | 0.16751 |
Renewable | Solar PV | N/A | 0.00 |
Wind | N/A | ||
Hydropower | N/A | ||
Geothermal | N/A |
Feedstocks | Energy | Production Process | Efficiency 1 (%) | GHG Emissions 2 (kg CO2 per kg of Hydrogen) | Price of Production 3 (USD per kg) | Reference |
---|---|---|---|---|---|---|
Water | Solar | Photolysis | N/A | 0 | 10.36 | [54,57,60,76,77,132] |
Electricity | Alkaline electrolysis | 60–80% | 2.93 | 1.84–2.88 | [37,49,52,57,60,77,98,122,126,139] | |
Proton exchange membrane electrolysis (PEM) | 70–90% | 2.37 | 4–6 | |||
Solid oxidant estate electrolysis (SOE) | 80–98% | 1.49 | 3.6 | |||
Thermal | Thermochemical water splitting (thermolysis) | 50 | 9–20 | 2.17–2.63 | [47,48,76,124,140] | |
Biomass | Thermal | Gasification | 35–50 | 2–3 | 1.77–2.05 | [55,124,128,130,141] |
Electricity | Microbial electrolysis cell | 78 | 1–2 | N/A | [41,55,74,123,134] | |
Hydrocarbons | Thermal | Steam reforming | 70–85 | 8–10 | 2.27 | [55,125,131] |
Partial oxidation | 60–75 | 9–12 | N/A | [36,37,125,126] | ||
Autothermal reforming | 60–75 | 9–12 | 2.08 | [37,55,125] | ||
Thermal decomposition (pyrolysis) | 58 | 10.9 | 2.6–3.2 | [37,47,55,124] | ||
Steam-iron process | N/A | 1–2 | N/A | [55,124,125,131] |
5. The Principal Characteristics of Energy Depend on the Production Process of Hydrogen
6. Efficiency Trends in Hydrogen Electrolysis and Fuel Cells Advances and Challenges
Year | PEM | AWE | SOE | Reference |
---|---|---|---|---|
1998 | 55% | - | - | [115] |
2002 | 55% | - | - | [101,113] |
2004 | 60% | 60–70 | 65% | [13,27] |
2010 | 55% | 61% | 98% 1 | [24,30,119] |
2012 | 65% | 60% | [28,120,121] | |
2014 | 70% | 70–75% | - | [14,27] |
2015 | 70% | 70–75% | 83% 2 | [40,117] |
2017 | 74.1% | 73% | 68–66% | [29,69] |
2019 | 74% | 80% | - | [26] |
2020 | 90% | 80% | 98% 3 | [22,23,116] |
2022 |
6.1. Fuel Cells
6.2. Current Challenges in Fuel Cell Technology
6.3. Improvements in Fuel Cell Efficiency
7. Recent Advancements in Hydrogen Production and Storage Technologies
7.1. Hydrogen Production
7.2. Hydrogen Storage Technologies
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFOLU | Agriculture, Forestry, and Other Land Uses |
CCUS | Carbon Capture, Utilization and Storage |
CHIRS | Compact Heat Integrated Reactor System |
DGs | Distributed Generators |
GHG | Greenhouse Gas |
GtCO2eq | Gigatons of Carbon Dioxide Equivalent |
H | Hydrogen |
H2O | Water |
ICE | Internal Combustion Engine |
IEA | International Energy Agency |
KOH | Potassium Hydroxide |
LOHCs | Liquid Organic Hydrogen Carriers |
MOFs | Advanced Metal-Organic Frameworks |
NaOH | Sodium Hydroxide |
O | Oxygen |
PEMFC | Proton Exchange Membrane Fuel Cell |
SMR | Steam Methane Reforming |
SOE | Solid Oxide Electrolysis |
STCG | Solar Thermochemical Hydrogen |
References
- Dunn, S. Hydrogen Futures: Toward a Sustainable Energy System. Int. J. Hydrogen Energy 2002, 27, 235–264. [Google Scholar] [CrossRef]
- Žarković, M.; Lakić, S.; Ćetković, J.; Pejović, B.; Redzepagic, S.; Vodenska, I.; Vujadinović, R. Effects of Renewable and Non-Renewable Energy Consumption, GHG, ICT on Sustainable Economic Growth: Evidence from Old and New EU Countries. Sustainability 2022, 14, 9662. [Google Scholar] [CrossRef]
- de León, C.M.; Ríos, C.; Brey, J.J. Cost of Green Hydrogen: Limitations of Production from a Stand-Alone Photovoltaic System. Int. J. Hydrogen Energy 2023, 48, 11885–11898. [Google Scholar] [CrossRef]
- Gabric, A.J. The Climate Change Crisis: A Review of Its Causes and Possible Responses. Atmosphere 2023, 14, 1081. [Google Scholar] [CrossRef]
- Short, J.R.; Farmer, A. Cities and Climate Change. Earth 2021, 2, 1038–1045. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Herve Bang, Y.; Di Noto, V. Hybrid Inorganic-Organic Proton-Conducting Membranes Based on SPEEK Doped with WO3 Nanoparticles for Application in Vanadium Redox Flow Batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- He, Y. Renewable and Non-Renewable Energy Consumption and Trade Policy: Do They Matter for Environmental Sustainability? Energies 2022, 15, 3559. [Google Scholar] [CrossRef]
- Geopolitics of the Energy Transformation: The Hydrogen Factor; IRENA: New York, NY, USA, 2022.
- Hassan, Q.; Azzawi, I.D.J.; Sameen, A.Z.; Salman, H.M. Hydrogen Fuel Cell Vehicles: Opportunities and Challenges. Sustainability 2023, 15, 11501. [Google Scholar] [CrossRef]
- Liao, C.H.; Huang, C.W.; Wu, J.C.S. Hydrogen Production from Semiconductor-Based Photocatalysis via Water Splitting. Catalysts 2012, 2, 490–516. [Google Scholar] [CrossRef]
- Yousaf, M.; Mahmood, A.; Elkamel, A.; Rizwan, M.; Zaman, M. Techno-Economic Analysis of Integrated Hydrogen and Methanol Production Process by CO2 Hydrogenation. Int. J. Greenh. Gas Control. 2022, 115, 103615. [Google Scholar] [CrossRef]
- Ball, M.; Weeda, M. The Hydrogen Economy—Vision or Reality? In Compendium of Hydrogen Energy: Hydrogen Use, Safety and the Hydrogen Economy; Woodhead Publishing: Cambridge, UK, 2016; Volume 4, pp. 237–266. [Google Scholar] [CrossRef]
- Levin, D.B.; Chahine, R. Challenges for Renewable Hydrogen Production from Biomass. Int. J. Hydrogen Energy 2010, 35, 4962–4969. [Google Scholar] [CrossRef]
- Santos, D.M.F.; Sequeira, C.A.C.; Figueiredo, J.L. Hydrogen Production by Alkaline Water Electrolysis. Quim. Nova 2013, 36, 1176–1193. [Google Scholar] [CrossRef]
- Kyung, D.; Yu, C.-H.; Lin, Y.-P.; Yap, J.; Mclellan, B. A Historical Analysis of Hydrogen Economy Research, Development, and Expectations, 1972 to 2020. Environments 2023, 10, 11. [Google Scholar] [CrossRef]
- Brandon, N.P.; Kurban, Z. Clean Energy and the Hydrogen Economy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160400. [Google Scholar] [CrossRef] [PubMed]
- Vakulchuk, R.; Overland, I.; Scholten, D. Renewable Energy and Geopolitics: A Review. Renew. Sustain. Energy Rev. 2020, 122, 109547. [Google Scholar] [CrossRef]
- Scita, R.; Raimondi, P.P.; Noussan, M. Green Hydrogen: The Holy Grail of Decarbonisation? An Analysis of the Technical and Geopolitical Implications of the Future Hydrogen Economy. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Clark, W.W.; Rifkin, J. A Green Hydrogen Economy. Energy Policy 2006, 34, 2630–2639. [Google Scholar] [CrossRef]
- Sarker, A.K.; Azad, A.K.; Rasul, M.G.; Doppalapudi, A.T. Prospect of Green Hydrogen Generation from Hybrid Renewable Energy Sources: A Review. Energies 2023, 16, 1556. [Google Scholar] [CrossRef]
- Marnellos, E.; Zun, M.T.; Mclellan, B.C. Cost Projection of Global Green Hydrogen Production Scenarios. Hydrogen 2023, 4, 932–960. [Google Scholar] [CrossRef]
- Liu, Z.; Han, B.; Lu, Z.; Guan, W.; Li, Y.; Song, C.; Chen, L.; Singhal, S.C. Efficiency and Stability of Hydrogen Production from Seawater Using Solid Oxide Electrolysis Cells. Appl. Energy 2021, 300, 117439. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, X.; Wang, L.; Sun, K.; Wang, Y.; Xie, Z.; Wu, Q.; Bai, X.; Hamdy, M.S.; Chen, H.; et al. Status and Perspectives of Key Materials for PEM Electrolyzer. Nano Res. Energy 2022, 1, e9120032. [Google Scholar] [CrossRef]
- Pandian, M.S.; Anwari, M.; Husodo, B.Y.; Hiendro, A. Efficiency and Economics Analysis of Proton Exchange Membrane Fuel Cell. In Proceedings of the 2010 9th International Power and Energy Conference, IPEC 2010, Singapore, 27–29 October 2010; pp. 875–880. [Google Scholar] [CrossRef]
- Vidas, L.; Castro, R. Recent Developments on Hydrogen Production Technologies: State-of-the-Art Review with a Focus on Green-Electrolysis. Appl. Sci. 2021, 11, 11363. [Google Scholar] [CrossRef]
- Kumar, S.S.; Himabindu, V. Hydrogen Production by PEM Water Electrolysis—A Review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- James, B.D.; Nrel, J.M.M.; Saur, G.; Ramsden, T. Techno-Economic Analysis of PEM Electrolysis for Hydrogen Production; U.S. Department of Energy: Golden, CO, USA, 2014.
- Zhang, H.; Su, S.; Lin, G.; Chen, J. Efficiency Calculation and Configuration Design of a PEM Electrolyzer System for Hydrogen Production. Int. J. Electrochem. Sci 2012, 7, 4143–4157. [Google Scholar] [CrossRef]
- Dobó, Z.; Palotás, Á.B. Impact of the Voltage Fluctuation of the Power Supply on the Efficiency of Alkaline Water Electrolysis. Int. J. Hydrogen Energy 2016, 41, 11849–11856. [Google Scholar] [CrossRef]
- Wang, Z.; Mori, M.; Araki, T. Steam Electrolysis Performance of Intermediate-Temperature Solid Oxide Electrolysis Cell and Efficiency of Hydrogen Production System at 300 Nm3 H−1. Int. J. Hydrogen Energy 2010, 35, 4451–4458. [Google Scholar] [CrossRef]
- Scheepers, F.; Stähler, M.; Stähler, A.; Rauls, E.; Müller, M.; Carmo, M.; Lehnert, W. Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization. Energies 2020, 13, 612. [Google Scholar] [CrossRef]
- Ang, T.-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A Comprehensive Study of Renewable Energy Sources: Classifications, Challenges and Suggestions. Energy Strategy Rev. 2022, 43, 2211–2467. [Google Scholar] [CrossRef]
- Nehrir, M.H.; Wang, C. Modeling and Control of Fuel Cells: Distributed Generation Applications; Wiley: New York, NY, USA, 2009; p. 296. [Google Scholar]
- Rosen, M.A.; Koohi-Fayegh, S. The Prospects for Hydrogen as an Energy Carrier: An Overview of Hydrogen Energy and Hydrogen Energy Systems. Energy Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Darko, C.K.; Obiako, P.C.; Kuang, B.; Sun, X.; Jenkins, K. A Comparative Analysis of Different Hydrogen Production Methods and Their Environmental Impact. Clean Technol. 2023, 5, 1344–1380. [Google Scholar] [CrossRef]
- da Rosa, A.V.; Ordóñez, J.C. Hydrogen Production. In Fundamentals of Renewable Energy Processes; Academic Press: Cambridge, MA, USA, 2022; pp. 419–470. [Google Scholar] [CrossRef]
- Kayfeci, M.; Keçebaş, A.; Bayat, M. Hydrogen Production. In Solar Hydrogen Production: Processes, Systems and Technologies; Academic Press: Cambridge, MA, USA, 2019; pp. 45–83. [Google Scholar] [CrossRef]
- Ayers, K.E.; Anderson, E.B.; Capuano, C.; Carter, B.; Dalton, L.; Hanlon, G.; Manco, J.; Niedzwiecki, M. Research Advances towards Low Cost, High Efficiency PEM Electrolysis. ECS Trans. 2010, 33, 3–15. [Google Scholar] [CrossRef]
- Hinkley, J.; Hayward, J.; Mcnaughton, R.; Gillespie, R.; Watt, M.; Lovegrove, K. Cost Assessment of Hydrogen Production from PV and Electrolysis Ayako Matsumoto (Mitsui Global Strategic Studies Institute); CSIRO: Perth, Australia, 2016. [Google Scholar]
- Rashid, M.; Khaloofah, M.; Mesfer, A.; Naseem, H.; Danish, M.; Mesfer, M.K. Al Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis. Int. J. Eng. Adv. Technol. 2015, 4, 2249–8958. [Google Scholar]
- Wang, A.; Shao, P.; Lan, F.; Jin, H. Organic Chemicals in Coal Available to Microbes to Produce Biogenic Coalbed Methane: A Review of Current Knowledge. J. Nat. Gas Sci. Eng. 2018, 60, 40–48. [Google Scholar] [CrossRef]
- Das, A.; Peu, S.D. A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector. Sustainability 2022, 14, 11206. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. 3.1 Hydrogen Production. In Comprehensive Energy Systems; Elsevier: Amsterdam, The Netherlands, 2018; Volume 3, pp. 1–40. [Google Scholar] [CrossRef]
- Office of Fossil Energy United States Department of Energy. Hydrogen Strategy Enabling A Low-Carbon Economy; United States Department of Energy: Washington, DC, USA, 2020.
- Kumar, A.; Jones, D.D.; Hanna, M.A. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies 2009, 2, 556–581. [Google Scholar] [CrossRef]
- Weiland, N. Systems Analysis on Biomass Gasification to Carbon-Negative Hydrogen; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2023. [Google Scholar]
- Norton, B.; Eames, P.C.; Lo, S.N.G. Full-Energy-Chain Analysis of Greenhouse Gas Emissions for Solar Thermal Electric Power Generation Systems. Renew Energy 1998, 15, 131–136. [Google Scholar] [CrossRef]
- Falter, C.; Sizmann, A. Solar Thermochemical Hydrogen Production in the USA. Sustainability 2021, 13, 7804. [Google Scholar] [CrossRef]
- Acevedo, Y.; Prosser, J.; Huya-Kouadio, J.; McNamara, K.; James, B. Hydrogen Production Cost with Alkaline Electrolysis; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2023. [Google Scholar]
- Kotisaari, M.; Thomann, O.; Montinaro, D.; Kiviaho, J. Evaluation of a SOE Stack for Hydrogen and Syngas Production: A Performance and Durability Analysis. Fuel Cells 2017, 17, 571–580. [Google Scholar] [CrossRef]
- Yu, J.; Ju, F.; Wahab, M.; Agyekum, E.B.; Matasane, C.; Uhunamure, S.E. Estimating the Effects of Economic Complexity and Technological Innovations on CO2 Emissions: Policy Instruments for N-11 Countries. Sustainability 2022, 14, 16856. [Google Scholar] [CrossRef]
- Liu, H.; Clausen, L.R.; Wang, L.; Chen, M. Pathway toward Cost-Effective Green Hydrogen Production by Solid Oxide Electrolyzer. Energy Env. Sci 2023, 16, 2090–2111. [Google Scholar] [CrossRef]
- World Nuclear Association. Carbon Dioxide Emissions from Electricity. Available online: https://world-nuclear.org/information-library/energy-and-the-environment/carbon-dioxide-emissions-from-electricity (accessed on 17 September 2023).
- Greenhouse Gas Emissions from Energy Data Explorer—Data Tools—IEA. Available online: https://www.iea.org/data-and-statistics/data-tools/greenhouse-gas-emissions-from-energy-data-explorer (accessed on 17 September 2023).
- Methodology for Determining the Greenhouse Gas Emissions Associated with the Production of Hydrogen. Available online: https://unece.org/sites/default/files/2023-09/2.%20Laurent%20Antoni%20-2023_09_12_H2_Antoni_IPHE.pdf (accessed on 17 September 2023).
- Our World in Data. Greenhouse Gas Emissions by Sector, World. 2023. Available online: https://ourworldindata.org/grapher/ghg-emissions-by-sector (accessed on 17 September 2023).
- World Energy Balances—Data Product—IEA. Available online: https://www.iea.org/data-and-statistics/data-product/world-energy-balances (accessed on 17 September 2023).
- GHG Protocol. Scope 2 Guidance. Available online: https://ghgprotocol.org/sites/default/files/2023-03/Scope%202%20Guidance.pdf (accessed on 12 November 2023).
- United Nations Sustainable Development Goals. 2020. Available online: https://unstats.un.org/sdgs/report/2020/The-Sustainable-Development-Goals-Report-2020.pdf (accessed on 17 September 2023).
- Executive Summary—Energy Efficiency 2021—Analysis—IEA. Available online: https://www.iea.org/reports/energy-efficiency-2021/executive-summary (accessed on 17 September 2023).
- Ritchie, H.; Roser, M.; Rosado, P. Energy. 2022. Available online: https://ourworldindata.org/energy (accessed on 17 September 2023).
- GHG Protocol. IPCC Emissions Factor Database. Available online: https://ghgprotocol.org/Third-Party-Databases/IPCC-Emissions-Factor-Database (accessed on 4 May 2023).
- Zhou, Y.; Li, R.; Lv, Z.; Liu, J.; Zhou, H.; Xu, C. Green Hydrogen: A Promising Way to the Carbon-Free Society. Chin. J. Chem. Eng. 2022, 43, 2–13. [Google Scholar] [CrossRef]
- Thanapalan, K.K.T.; Williams, J.G.; Liu, G.P.; Rees, D. Modelling of a pem fuel cell system. IFAC Proc. Vol. 2008, 41, 4636–4641. [Google Scholar] [CrossRef]
- Montilla-DJesus, M.; Santos-Martin, D.; Arnaltes, S.; Castronuovo, E.D. Optimal Reactive Power Allocation in an Offshore Wind Farms with LCC-HVdc Link Connection. Renew Energy 2012, 40, 157–166. [Google Scholar] [CrossRef]
- Welcome to the International Association for Hydrogen Energy. Available online: https://www.iahe-hyes.org/ (accessed on 26 June 2023).
- Iliev, I.K.; Beloev, H.I.; Ilieva, D.I.; Badur, J. A Novel Method for Calculating Greenhouse Gas Emissions from the Combustion of Energy Fuels. Arch. Thermodyn. 2023, 43, 3–20. [Google Scholar] [CrossRef]
- Harrison, K.W.; Remick, R.; Martin, G.D. Hydrogen Production: Fundamentals and Case Study Summaries. In Proceedings of the 18th World Hydrogen Energy Conference, Essen, Germany, 16–20 May 2010. [Google Scholar]
- Barelli, L.; Bidini, G.; Cinti, G. Airflow Management in Solid Oxide Electrolyzer (SOE) Operation: Performance Analysis. ChemEngineering 2017, 1, 13. [Google Scholar] [CrossRef]
- Keçebaş, A.; Kayfeci, M. Hydrogen Properties. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–29. [Google Scholar]
- Nastasi, B. Hydrogen Policy, Market, and R&D Projects. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 31–44. [Google Scholar]
- Karellas, S.; Roumpedakis, T.C. Solar Thermal Power Plants. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 179–235. [Google Scholar]
- Keçebaş, A.; Kayfeci, M.; Bayat, M. Electrochemical Hydrogen Generation. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 299–317. [Google Scholar]
- Touloupakis, E.; Torzillo, G. Photobiological Hydrogen Production. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 511–525. [Google Scholar]
- Villafán-Vidales, H.I.; Arancibia-Bulnes, C.A.; Valades-Pelayo, P.J.; Romero-Paredes, H.; Cuentas-Gallegos, A.K.; Arreola-Ramos, C.E. Hydrogen from Solar Thermal Energy. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 319–363. [Google Scholar]
- Guzmán, H.; Farkhondehfal, M.A.; Tolod, K.R.; Hernández, S.; Russo, N. Photo/Electrocatalytic Hydrogen Exploitation for CO2 Reduction toward Solar Fuels Production. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 365–418. [Google Scholar]
- Narayanan, H.; Viswanathan, B.; Krishnamurthy, K.R.; Nair, H. Hydrogen from Photo-Electrocatalytic Water Splitting. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 419–486. [Google Scholar]
- Harrison, K.W.; Remick, R.; Martin, G.D.; Hoskin, A. Hydrogen Production: Fundamentals and Cas Study Summaries; National Renewable Energy Laboratory: Golden, CO, USA, 2010; preprint. [Google Scholar]
- Möller, M.C.; Krauter, S. Hybrid Energy System Model in Matlab/Simulink Based on Solar Energy, Lithium-Ion Battery and Hydrogen. Energies 2022, 15, 2201. [Google Scholar] [CrossRef]
- Fan, L.; Tu, Z.; Chan, S.H. Recent Development of Hydrogen and Fuel Cell Technologies: A Review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar] [CrossRef]
- Ammendola, P.; Yan, X.; Zheng, W.; Wei, Y.; Yan, Z. Current Status and Economic Analysis of Green Hydrogen Energy Industry Chain. Processes 2024, 12, 315. [Google Scholar] [CrossRef]
- Report on the Status of the Solid Oxide Fuel Cell Program; United States Department of Energy: Washington, DC, USA, 2019.
- Williams, M.C.; Vora, S.D.; Jesionowski, G. Worldwide Status of Solid Oxide Fuel Cell Technology. ECS Trans 2020, 96, 1–10. [Google Scholar] [CrossRef]
- Next Generation Solid Oxide Fuel Cell and Electrolysis Technology|NewSOC|Project|Fact Sheet|H2020|CORDIS|European Commission. Available online: https://www.clean-hydrogen.europa.eu/projects-dashboard/projects-repository/newsoc_en (accessed on 18 March 2023).
- Rathore, S.S.; Biswas, S.; Fini, D.; Kulkarni, A.P.; Giddey, S. Direct Ammonia Solid-Oxide Fuel Cells: A Review of Progress and Prospects. Int. J. Hydrogen Energy 2021, 46, 35365–35384. [Google Scholar] [CrossRef]
- Smolinka, T. Fuels—Hydrogen Production|Water Electrolysis. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2009; pp. 394–413. [Google Scholar] [CrossRef]
- United States Department of Energy. DOE Hydrogen Program Record 23003: Electrolyzer Installations in the United States; United States Department of Energy: Washington, DC, USA, 2023.
- Innovation in Alkaline Electrolysis—Stargate Hydrogen. Available online: https://stargatehydrogen.com/why-us/innovation-in-alkaline-electrolysis/ (accessed on 18 March 2023).
- 100MW Green Hydrogen Plant. Available online: https://www.sinohyenergy.com/100mw-green-hydrogen-plant/ (accessed on 17 March 2023).
- Laurent For More Information on HyDeal Ambition and Its Ecosystem of Production-Supply of Green Hydrogen at Competitive Prices, Please Contact. Available online: https://mcphy.com/en/news/hydeal-ambition/ (accessed on 17 March 2023).
- Wappler, M.; Unguder, D.; Lu, X.; Ohlmeyer, H.; Teschke, H.; Lueke, W. Building the Green Hydrogen Market e Current State and Outlook on Green Hydrogen Demand and Electrolyzer Manufacturing. Int. J. Hydrogen Energy 2022, 47, 33551–33570. [Google Scholar] [CrossRef]
- UNFCCC. Greenhouse Gas Emissions Calculator. Available online: https://unfccc.int/documents/271269 (accessed on 17 March 2023).
- Padro, C.E.G.; Putsche, V. Survey of the Economics of Hydrogen Technologies; National Renewable Energy Laboratory: Golden, CO, USA, 1999. [Google Scholar] [CrossRef]
- Hill, N.; Bramwell, R.; Karagianni, E.; Jones, L.; Maccarthy, J.; Hinton, S.; Walker, C. 2020 Government Greenhouse Gas Conversion Factors for Company Reporting Methodology Paper for Conversion Factors Final Report 2; Department for Business, Energy & Industrial Strategy (BEIS): London, UK, 2020.
- Global Average Levelised Cost of Hydrogen Production by Energy Source and Technology, 2019 and 2050—Charts—Data & Statistics—IEA. Available online: https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050 (accessed on 10 March 2024).
- GHG Protocol. Calculation Tools and Guidance. Available online: https://ghgprotocol.org/calculation-tools-and-guidance (accessed on 7 March 2023).
- Vickers, J.; Peterson, D.; Randolph, K.; Irwin, L.; Desantis, D.; Hamdan, M.; Stetson, N.; Miller, E.; Satyapal, S. DOE Hydrogen and Fuel Cells Program Record Title: Cost of Electrolytic Hydrogen Production with Existing Technology. 2000. Available online: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/20004-cost-electrolytic-hydrogen-production.pdf?Status=Master (accessed on 7 March 2023).
- Bossel, U.; Eliasson, B. Energy Hydrogen Economy. Available online: https://afdc.energy.gov/files/pdfs/hyd_economy_bossel_eliasson.pdf (accessed on 17 September 2023).
- Home International Partnership for Hydrogen&Fuel Cells in the Economy. Available online: https://www.energy.gov/eere/fuelcells/international-partnership-hydrogen-and-fuel-cells-economy (accessed on 1 December 2023).
- Hydrogen Fuel Cell Engines Module 4: Fuel Cell Engine Technology Contents. 2022. Available online: https://www.energy.gov/sites/default/files/2014/03/f12/fcm04r0.pdf (accessed on 17 September 2023).
- Janssen, J.L.L.C.C.; Weeda, M.; Detz, R.J.; van der Zwaan, B. Country-Specific Cost Projections for Renewable Hydrogen Production through off-Grid Electricity Systems. Appl. Energy 2022, 309, 118398. [Google Scholar] [CrossRef]
- Global Hydrogen Review 2021; OECD: Paris, France, 2021. [CrossRef]
- Nasser, M.; Megahed, T.F.; Ookawara, S.; Hassan, H. A Review of Water Electrolysis–Based Systems for Hydrogen Production Using Hybrid/Solar/Wind Energy Systems. Environ. Sci. Pollut. Res. 2022, 29, 86994–87018. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Yao, J.G.; Clough, P.T.; Da Costa, J.C.D.; Anthony, E.J.; Fennell, P.S.; Wang, W.; Zhao, M. Enhanced Hydrogen Production from Thermochemical Processes. Energy Environ. Sci 2018, 11, 2647–2672. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and perspectives for Achieving Carbon Neutrality. Innovation 2021, 35, 48. [Google Scholar] [CrossRef]
- Felseghi, R.A.; Carcadea, E.; Raboaca, M.S.; Trufin, C.N.; Filote, C. Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications. Energies 2019, 12, 4593. [Google Scholar] [CrossRef]
- Ganci, F.; Baguet, T.; Aiello, G.; Cusumano, V.; Mandin, P.; Sunseri, C.; Inguanta, R. Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers. Energies 2019, 12, 3669. [Google Scholar] [CrossRef]
- Karaca, A.E.; Qureshy, A.M.M.I.; Dincer, I. An Overview and Critical Assessment of Thermochemical Hydrogen Production Methods. J. Clean Prod. 2023, 385, 135706. [Google Scholar] [CrossRef]
- Rajalakshmi, N.; Balaji, R.; Ramakrishnan, S. Recent Developments in Hydrogen Fuel Cells: Strengths and Weaknesses. In Sustainable Fuel Technologies Handbook; Academic Press: Cambridge, MA, USA, 2021; pp. 431–456. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; van Herle, J.; Maréchal, F.; Desideri, U. Techno-Economic Optimization of CO2-to-Methanol with Solid-Oxide Electrolyzer. Energies 2019, 12, 3742. [Google Scholar] [CrossRef]
- Vostakola, M.F.; Ozcan, H.; El-Emam, R.S.; Horri, B.A. Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production. Energies 2023, 16, 3327. [Google Scholar] [CrossRef]
- Yu, M.; Wang, K.; Vredenburg, H. Insights into Low-Carbon Hydrogen Production Methods: Green, Blue and Aqua Hydrogen. Int. J. Hydrogen Energy 2021, 46, 21261–21273. [Google Scholar] [CrossRef]
- Shapiro, D.S. PEM Electrolyzer and Gas Storage for a Regenerative Fuel Cell System. 2002. Available online: https://www.proquest.com/openview/4268d79e22093d975884c7d7a430714c/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 17 September 2023).
- de Jesús Yaritza, M.L. Characterization of Proton Exchange Membrane Fuel Cell and PEM Electrolyzer Using Non-Steady State Electrochemical Techniques. 2004. Available online: https://scholar.uprm.edu/entities/publication/9b4c67f7-6117-474c-a84e-c73937062c8b (accessed on 17 September 2023).
- Knobbe, M.W. Analysis of PEM Electrolyzers; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 1998. [Google Scholar]
- Brauns, J.; Turek, T. Alkaline Water Electrolysis Powered by Renewable Energy: A Review. Processes 2020, 8, 248. [Google Scholar] [CrossRef]
- Peters, R.; Deja, R.; Blum, L.; Nguyen, V.N.; Fang, Q.; Stolten, D. Influence of Operating Parameters on Overall System Efficiencies Using Solid Oxide Electrolysis Technology. Int. J. Hydrogen Energy 2015, 40, 7103–7113. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, D. Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Jun, A.; Kim, J.; Shin, J.; Kim, G. Supporting Information Achieving High Efficiency and Eliminating Degradation in Solid Oxide Electrochemical Cells Using High Oxygen-Capacity Perovskite. 2016. Available online: https://www.researchgate.net/publication/307949925_Achieving_High_Efficiency_and_Eliminating_Degradation_in_Solid_Oxide_Electrochemical_Cells_Using_High_Oxygen-Capacity_Perovskite (accessed on 17 September 2023).
- Laguna-Bercero, M.A. Recent Advances in High Temperature Electrolysis Using Solid Oxide Fuel Cells: A Review. J. Power Sources 2012, 203, 4–16. [Google Scholar] [CrossRef]
- Marini, S.; Salvi, P.; Nelli, P.; Pesenti, R.; Villa, M.; Berrettoni, M.; Zangari, G.; Kiros, Y. Advanced Alkaline Water Electrolysis. Electrochim. Acta 2012, 82, 384–391. [Google Scholar] [CrossRef]
- Badgett, A.; Ruth, M.; Pivovar, B. Economic Considerations for Hydrogen Production with a Focus on Polymer Electrolyte Membrane Electrolysis. In Electrochemical Power Sources: Fundamentals, Systems, and Applications Hydrogen Production by Water Electrolysis; Elsevier: Amsterdam, The Netherlands, 2022; pp. 327–364. [Google Scholar] [CrossRef]
- Chanthakett, A.; Arif, M.T.; Khan, M.M.K.; Oo, A.M.T. Hydrogen Production from Municipal Solid Waste (MSW) for Cleaner Environment; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Arcos, J.M.M.; Santos, D.M.F. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases 2023, 3, 25–46. [Google Scholar] [CrossRef]
- Cho, H.H.; Strezov, V.; Evans, T.J. Environmental Impact Assessment of Hydrogen Production via Steam Methane Reforming Based on Emissions Data. Energy Rep. 2022, 8, 13585–13595. [Google Scholar] [CrossRef]
- Uusitalo, V.; Väisänen, S.; Inkeri, E.; Soukka, R. Potential for Greenhouse Gas Emission Reductions Using Surplus Electricity in Hydrogen, Methane and Methanol Production via Electrolysis. Energy Convers. Manag. 2017, 134, 125–134. [Google Scholar] [CrossRef]
- Palmer, G.; Roberts, A.; Hoadley, A.; Dargaville, R.; Honnery, D. Life-Cycle Greenhouse Gas Emissions and Net Energy Assessment of Large-Scale Hydrogen Production via Electrolysis and Solar PV. Energy Environ. Sci 2021, 14, 5113–5131. [Google Scholar] [CrossRef]
- Dufour, J.; Serrano, D.P.; Gálvez, J.L.; Moreno, J.; González, A. Hydrogen Production from Fossil Fuels: Life Cycle Assessment of Technologies with Low Greenhouse Gas Emissions. Energy Fuels 2011, 25, 2194–2202. [Google Scholar] [CrossRef]
- Granovskii, M.; Dincer, I.; Rosen, M.A. Economic Aspects of Greenhouse Gas Emissions Reduction by Utilisation of Wind and Solar Energies to Produce Electricity and Hydrogen. In Proceedings of the 2006 IEEE EIC Climate Change Technology Conference, EICCCC 2006, Ottawa, ON, Canada, 10–12 May 2006. [Google Scholar] [CrossRef]
- Gemechu, E.D.; Kumar, A. The Environmental Performance of Hydrogen Production Pathways Based on Renewable Sources. In Renewable-Energy-Driven Future: Technologies, Modelling, Applications, Sustainability and Policies; Academic Press: Cambridge, MA, USA, 2021; pp. 375–406. [Google Scholar] [CrossRef]
- Busch, P.; Kendall, A.; Lipman, T. A Systematic Review of Life Cycle Greenhouse Gas Intensity Values for Hydrogen Production Pathways. Renew. Sustain. Energy Rev. 2023, 184, 113588. [Google Scholar] [CrossRef]
- Fereidooni, M.; Mostafaeipour, A.; Kalantar, V.; Goudarzi, H. A Comprehensive Evaluation of Hydrogen Production from Photovoltaic Power Station. Renew. Sustain. Energy Rev. 2018, 82, 415–423. [Google Scholar] [CrossRef]
- Muradov, N.Z.; Veziroǧlu, T.N. From Hydrocarbon to Hydrogen–Carbon to Hydrogen Economy. Int. J. Hydrogen Energy 2005, 30, 225–237. [Google Scholar] [CrossRef]
- Dincer, I.; Acar, C. Review and Evaluation of Hydrogen Production Methods for Better Sustainability. Int. J. Hydrogen Energy 2015, 40, 11094–11111. [Google Scholar] [CrossRef]
- Gallardo, F.I.; Ferrario, A.M.; Lamagna, M.; Bocci, E.; Garcia, D.A.; Baeza-Jeria, T.E. A Techno-Economic Analysis of Solar Hydrogen Production by Electrolysis in the North of Chile and the Case of Exportation from Atacama Desert to Japan. Int. J. Hydrogen Energy 2021, 46, 13709–13728. [Google Scholar] [CrossRef]
- Ayers, K.E.; Capuano, C.; Anderson, E.B. Recent Advances in Cell Cost and Efficiency for PEM-Based Water Electrolysis. ECS Trans. 2012, 41, 15–22. [Google Scholar] [CrossRef]
- Babic, U.; Suermann, M.; Büchi, F.N.; Gubler, L.; Schmidt, T.J. Critical Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development. J. Electrochem. Soc. 2017, 164, F387–F399. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Paris, France, 2006.
- Wang, Y.; Pang, Y.; Xu, H.; Martinez, A.; Chen, K.S. PEM Fuel Cell and Electrolysis Cell Technologies and Hydrogen Infrastructure Development—A Review. Energy Environ. Sci. 2022, 15, 2288–2328. [Google Scholar] [CrossRef]
- Barone, G.; Buonomano, A.; Forzano, C.; Palombo, A. Solar Thermal Collectors. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 151–178. [Google Scholar]
- Verma, A. Life Cycle Assessment and Greenhouse Gas Abatement Costs of Hydrogen Production from Underground Coal Gasification. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2015. [Google Scholar]
- Buffo, G.; Marocco, P.; Ferrero, D.; Lanzini, A.; Santarelli, M. Power-to-X and Power-to-Power Routes. In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 529–557. [Google Scholar]
- Bayod-Rújula, A.A. Solar Photovoltaics (PV). In Solar Hydrogen Production; Elsevier: Amsterdam, The Netherlands, 2019; pp. 237–295. [Google Scholar]
- Beijing SinoHy Energy Co., Ltd. Available online: https://www.sinohyenergy.com/ (accessed on 13 March 2024).
- Fakhreddine, O.; Gharbia, Y.; Derakhshandeh, J.F.; Amer, A.M. Challenges and Solutions of Hydrogen Fuel Cells in Transportation Systems: A Review and Prospects. World Electr. Veh. J. 2023, 14, 156. [Google Scholar] [CrossRef]
- Kovtunenko, V.A. The Holby–Morgan Model of Platinum Catalyst Degradation in PEM Fuel Cells: Range of Feasible Parameters Achieved Using Voltage Cycling. Technologies 2023, 11, 184. [Google Scholar] [CrossRef]
- Tellez-Cruz, M.M.; Escorihuela, J.; Solorza-Feria, O.; Compañ, V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers 2021, 13, 3064. [Google Scholar] [CrossRef] [PubMed]
- Le, T.H.; Kim, M.P.; Park, C.H.; Tran, Q.N. Recent Developments in Materials for Physical Hydrogen Storage: A Review. Materials 2024, 17, 666. [Google Scholar] [CrossRef] [PubMed]
- Khzouz, M.; Gkanas, E.I. Hydrogen Technologies for Mobility and Stationary Applications: Hydrogen Production, Storage and Infrastructure Development. In Renewable Energy—Resources, Challenges and Applications; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Borja, N.K.; Fabros, C.J.E.; Doma, B.T. Prediction of Hydrogen Adsorption and Moduli of Metal–Organic Frameworks (MOFs) Using Machine Learning Strategies. Energies 2024, 17, 927. [Google Scholar] [CrossRef]
- MOFs for Advanced Applications; MDPI: Basel, Switzerland, 2022; ISBN 978-3-0365-3542-5.
- Zeleňák, V.; Saldan, I. Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review. Nanomaterials 2021, 11, 1638. [Google Scholar] [CrossRef] [PubMed]
- Dall’Armi, C.; Pivetta, D.; Taccani, R. Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects. Energies 2023, 16, 2022. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Sayed, E.T.; Elsaid, K.; Abdelkareem, M.A. Prospects of Fuel Cell Combined Heat and Power Systems. Energies 2020, 13, 4104. [Google Scholar] [CrossRef]
- Cigolotti, V.; Genovese, M.; Fragiacomo, P. Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems. Energies 2021, 14, 4963. [Google Scholar] [CrossRef]
- Renau, J.; García, V.; Domenech, L.; Verdejo, P.; Real, A.; Giménez, A.; Sánchez, F.; Lozano, A.; Barreras, F. Novel Use of Green Hydrogen Fuel Cell-Based Combined Heat and Power Systems to Reduce Primary Energy Intake and Greenhouse Emissions in the Building Sector. Sustainability 2021, 13, 1776. [Google Scholar] [CrossRef]
- Luo, Y.; Meng, Q.; Chi, Y.; Wang, Q.; Zeng, Y.; Deng, Z.; Zou, Y. A Low-Carbon Optimal Operation Method for an Industrial Park Multi-Energy Coupling System Utilizing By-Product Hydrogen. Sustainability 2024, 16, 2354. [Google Scholar] [CrossRef]
- Costa, P.; Pinto, F.; André, R.N.; Marques, P. Integration of Gasification and Solid Oxide Fuel Cells (SOFCs) for Combined Heat and Power (CHP). Processes 2021, 9, 254. [Google Scholar] [CrossRef]
- Chakraborty, S.; Elangovan, D.; Palaniswamy, K.; Fly, A.; Ravi, D.; Seelan, D.A.S.; Rajagopal, T.K.R. A Review on the Numerical Studies on the Performance of Proton Exchange Membrane Fuel Cell (PEMFC) Flow Channel Designs for Automotive Applications. Energies 2022, 15, 9520. [Google Scholar] [CrossRef]
- Yan, S.; Yang, M.; Sun, C.; Xu, S. Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method. Energies 2023, 16, 6010. [Google Scholar] [CrossRef]
- Tang, X.; Yang, M.; Shi, L.; Hou, Z.; Xu, S.; Sun, C. Adaptive State-of-Health Temperature Sensitivity Characteristics for Durability Improvement of PEM Fuel Cells. Chem. Eng. J. 2024, 491, 151951. [Google Scholar] [CrossRef]
- Corda, G.; Breda, S.; D’Adamo, A. A MATLAB/Simulink Model of a PEM Fuel Cell System Including Ageing Phenomenon; SAE: Warrendale, PA, USA, 2023. [Google Scholar]
- Safarishaal, M.; Sarvi, M. New Hybrid Maximum Power Point Tracking Methods for Fuel Cell Using Artificial Intelligent. AIP Adv. 2023, 13, 045207. [Google Scholar] [CrossRef]
- Rubio, A.; Agila, W.; González, L.; Aviles-Cedeno, J. Distributed Intelligence in Autonomous PEM Fuel Cell Control. Energies 2023, 16, 4830. [Google Scholar] [CrossRef]
- Shuai, Q.; Wang, Y.; Jiang, Z.; Hua, Q. Reinforcement Learning-Based Energy Management for Fuel Cell Electrical Vehicles Considering Fuel Cell Degradation. Energies 2024, 17, 1586. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, K.; Zhang, T.; Xia, J.; Wu, J.; Zhang, Z.; Zhang, B. Surface Modified CoCrFeNiMo High Entropy Alloys for Oxygen Evolution Reaction in Alkaline Seawater. Processes 2023, 11, 245. [Google Scholar] [CrossRef]
- Mohammed-Ibrahim, J.; Moussab, H. Recent Advances on Hydrogen Production through Seawater Electrolysis. Mater. Sci. Energy Technol. 2020, 3, 780–807. [Google Scholar] [CrossRef]
- Sun, F.; Qin, J.; Wang, Z.; Yu, M.; Wu, X.; Sun, X.; Qiu, J. Energy-Saving Hydrogen Production by Chlorine-Free Hybrid Seawater Splitting Coupling Hydrazine Degradation. Nat. Commun. 2021, 12, 4182. [Google Scholar] [CrossRef] [PubMed]
- Khaodee, W.; Jiwanuruk, T.; Ountaksinkul, K.; Charojrochkul, S.; Charoensuk, J.; Wongsakulphasatch, S.; Assabumrungrat, S. Compact Heat Integrated Reactor System of Steam Reformer, Shift Reactor and Combustor for Hydrogen Production from Ethanol. Processes 2020, 8, 708. [Google Scholar] [CrossRef]
- Slobodkin, I.; Davydova, E.; Sananis, M.; Breytus, A.; Rothschild, A. Electrochemical and Chemical Cycle for High-Efficiency Decoupled Water Splitting in a near-Neutral Electrolyte. Nat. Mater. 2024, 23, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.; Abdelhamid, H.N.; Fouad, D.M.; El-Bery, H.M. Enhancing Photocatalytic Water Splitting: Comparative Study of TiO2 Decorated Nanocrystals (Pt and Cu) Using Different Synthesis Methods. Fuel 2023, 354, 129248. [Google Scholar] [CrossRef]
- IEA. It Is Time for CCUS to Deliver; IEA: Paris, France, 2024.
- IEA. CCUS in Clean Energy Transitions; IEA: Paris, France, 2020.
- Wang, S.; Wang, J.; Zhang, Y.; Dong, L.; Dong, H.; Du, Q.; Gao, J. Effect of External Mineral Addition on PM Generated from Zhundong Coal Combustion. Energies 2023, 16, 730. [Google Scholar] [CrossRef]
- Edem, D.E.; Abba, M.K.; Nourian, A.; Babaie, M.; Naeem, Z. Experimental Study on the Interplay between Different Brine Types/Concentrations and CO2 Injectivity for Effective CO2 Storage in Deep Saline Aquifers. Sustainability 2022, 14, 986. [Google Scholar] [CrossRef]
- Hasan, M.M.F.; Zantye, M.S.; Kazi, M.-K. Challenges and Opportunities in Carbon Capture, Utilization and Storage: A Process Systems Engineering Perspective. Comput. Chem. Eng. 2022, 166, 107925. [Google Scholar] [CrossRef]
- Nath, F.; Mahmood, M.N.; Yousuf, N. Recent Advances in CCUS: A Critical Review on Technologies, Regulatory Aspects and Economics. Geoenergy Sci. Eng. 2024, 238, 212726. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, X.; Yue, L.; He, Y.; Chen, B. Porous Metal–Organic Frameworks for Hydrogen Storage. Chem. Commun. 2022, 58, 11059–11078. [Google Scholar] [CrossRef] [PubMed]
- Dutt, S.; Kumar, A.; Singh, S. Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications. Clean Technol. 2023, 5, 140–166. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Zhang, C.; Ding, Z.; Jin, X. Application and Analysis of Liquid Organic Hydrogen Carrier (LOHC) Technology in Practical Projects. Energies 2024, 17, 1940. [Google Scholar] [CrossRef]
- Le, T.-H.; Tran, N.; Lee, H.-J. Development of Liquid Organic Hydrogen Carriers for Hydrogen Storage and Transport. Int. J. Mol. Sci. 2024, 25, 1359. [Google Scholar] [CrossRef] [PubMed]
- Niermann, M.; Drünert, S.; Kaltschmitt, M.; Bonhoff, K. Liquid Organic Hydrogen Carriers (LOHCs)—Techno-Economic Analysis of LOHCs in a Defined Process Chain. Energy Environ. Sci 2019, 12, 290–307. [Google Scholar] [CrossRef]
- Hartani, M.A.; Hamouda, M.; Abdelkhalek, O.; Benhamou, A.; Ali, B.; Mekhilef, S. Robust Frequency-Decoupling-Based Power Split of Battery/Supercapacitor Hybrid Energy Storage Systems in DC Microgrids. In Proceedings of the 1st International Conference on Physics of Semiconductor Devices, Renewable Energies and Environment, Bechar, Algeria, 14–16 November 2022; MDPI: Basel, Switzerland, 2023; p. 6. [Google Scholar]
Processes | Classification | Description | Price of Production (USD per kg) | Reference |
---|---|---|---|---|
Thermochemical | Natural Gas Reforming | Officially termed steam methane reforming (SMR), natural gas reforming stands out as a mature and sophisticated production method that capitalizes on the pre-existing natural gas distribution infrastructure. | 1.43–2.27 | [37,43,44] |
Gasification of Biomass | This represents a mature technological pathway employing a controlled process involving heat, steam, and oxygen to convert biomass into hydrogen and other products, all without combustion. | 3.64 | [13,45,46] | |
Solar Thermochemical Hydrogen (STCH) | The thermochemical division of water utilizes high temperatures, obtained either from concentrated solar energy or residual heat from nuclear energy reactions, combined with chemical reactions to produce hydrogen and oxygen from water. | 2.4–3.6 | [37,47,48] | |
Water Electrolysis | Alkaline Water Electrolysis (AWE) | In AWE, an electrolytic cell consisting of an anode and a cathode immersed in an alkaline electrolyte, such as potassium hydroxide (KOH) or sodium hydroxide (NaOH), is utilized. The cell is supplied with direct electric current, inducing electrochemical reactions at each electrode. | 1.84–2.88 | [14,40,49] |
Proton Exchange Membrane Fuel Cell Electrolysis (PEMFC) | Hydrogen production through PEMFC has emerged as a promising method for clean and sustainable energy. PEMFC employs a polymeric membrane as an electrolyte to facilitate the electrochemical reaction between hydrogen and oxygen, generating electricity and water as byproducts. | 4–6 | [26,27,40] | |
Solid Oxide Electrolysis (SOE) | Solid oxide electrolysis (SOE) is a notable method used in pursuing sustainable energy solutions. SOE utilizes a solid oxide material as the electrolyte to enable an electrochemical reaction between steam and hydrogen, producing hydrogen while releasing oxygen as a byproduct. | 3.6 | [50,51,52] |
Fuel Cell Type | Country | Status | Reference |
---|---|---|---|
Proton exchange membrane fuel cells (PEMFCs) | United States, China | Leaders in hydrogen production | [87,88,89,91] |
Germany, Spain, France | Development of green hydrogen generated by solar energy | [90,91] | |
Solid oxide fuel cells (SOFCs) | Europe | Planned implementation of new SOC materials and fabrication processes according to life cycle impact and cost assessment | [84,85] |
China, United States | R&D and implementation to increase the reliability, robustness, and durability of cell, stack, and system technology | [82,83,85] | |
Japan | Leader in the total number of demonstrations with over 60 kW—class demonstration | [83,85] | |
Alkaline fuel cells (AFCs) | United States | Lowest capital cost of implementation | [86,88] |
China | Hydrogen production of between dozens and 2000 Nm3/h | [81,144] |
Technology | Production Process | Advantages | Disadvantages | Key Developments | Reference |
---|---|---|---|---|---|
Mixed Seawater | Electrolysis | There is an abundant seawater resource with no pre-treatment required for use | The corrosion and energy consumption of the process | Utilizing seawater without pre-treatment; addressing corrosion and energy consumption | [166,167,168] |
Compact Heat Integrated Reactor System (CHIRS) | Steam Reforming | Suitable for portable and stationary applications | Overall efficiency of compact systems is slightly lower than traditional systems | Efficiency improved by splitting water addition in conventional systems | [169] |
Decoupled Water Splitting | Electrochemical and chemical cycle in near-neutral NaBr electrolyte | High Faradaic and electrolytic efficiency, continuous operation without membranes | Requires complex control of electrolyte conditions | Has demonstrated high efficiency and scalability, using bromide/bromate redox couple to make continuous hydrogen and oxygen production | [170] |
Decorated Nanocrystals | Photocatalysis | Enhanced hydrogen production and improved efficiency of water splitting | Potential cost and complexity of synthesis methods | Metallic nanocrystals of Pt and Cu can act as co-catalysts when combined with TiO2 semiconductors to generate hydrogen | [171] |
Technology | Key Developments | Status | Potential Applications | Reference |
---|---|---|---|---|
Advanced Metal-Organic Frameworks (MOFs) | Development of new MOFs with higher storage capacities and improved release mechanism | Development | Portable and stationary storage systems | [178,179] |
Liquid Organic Hydrogen Carriers (LOHCs) | Advancements in catalysts to improve the efficiency of hydrogen release from LOHCs | Research and Development | Transportation of hydrogen and large-scale storage projects | [180,181,182] |
Hybrid Energy Storage System | Frequency-decoupling-based power split with dual-loop control, hysteresis current control, and low-pass filtering | Development | Energy storage in DC microgrids, improved bus voltage regulation and current management | [183] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Rodríguez, N.F.; De La Rosa-Leonardo, D.A.; Tapia-Marte, R.; Ramírez-Rivera, F.A.; Faxas-Guzmán, J.; Rey-Boué, A.B.; Reyes-Archundia, E. An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production. Sustainability 2024, 16, 5569. https://doi.org/10.3390/su16135569
Guerrero-Rodríguez NF, De La Rosa-Leonardo DA, Tapia-Marte R, Ramírez-Rivera FA, Faxas-Guzmán J, Rey-Boué AB, Reyes-Archundia E. An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production. Sustainability. 2024; 16(13):5569. https://doi.org/10.3390/su16135569
Chicago/Turabian StyleGuerrero-Rodríguez, Nestor F., Daniel A. De La Rosa-Leonardo, Ricardo Tapia-Marte, Francisco A. Ramírez-Rivera, Juan Faxas-Guzmán, Alexis B. Rey-Boué, and Enrique Reyes-Archundia. 2024. "An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production" Sustainability 16, no. 13: 5569. https://doi.org/10.3390/su16135569
APA StyleGuerrero-Rodríguez, N. F., De La Rosa-Leonardo, D. A., Tapia-Marte, R., Ramírez-Rivera, F. A., Faxas-Guzmán, J., Rey-Boué, A. B., & Reyes-Archundia, E. (2024). An Overview of the Efficiency and Long-Term Viability of Powered Hydrogen Production. Sustainability, 16(13), 5569. https://doi.org/10.3390/su16135569