Enhanced Adaptive Dynamic Surface Sliding Mode Control for Optimal Performance of Grid-Connected Photovoltaic Systems
Abstract
:1. Introduction
2. System Description
2.1. Proposed Control of the Three-Phase Grid-Connected System
2.2. PI Control
2.3. Adaptive Surface SMC
- Sliding Control: This control law is used when the system is nearing S(t) = 0 or in the sliding phase. Maintaining the system on the sliding surface is its main goal.
- Hitting Control: This control law is triggered when the system is in the reaching phase, or when S(t) is not equal to zero. Its purpose is to direct the system towards the sliding surface once again.
3. Results and Discussion Comparison of Simulation for PI Control System and SMC
3.1. Comparison Results under Ramp Changes in Solar Radiation
3.2. Comparison Results under Random Changes in Solar Radiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saleh, B.; Yousef, A.M.; Abo-Elyousr, F.K.; Mohamed, M.; Abdelwahab, S.A.M.; Elnozahy, A. Performance Analysis of Maximum Power Point Tracking for Two Techniques with Direct Control of Photovoltaic Grid-Connected Systems. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 44, 413–434. [Google Scholar] [CrossRef]
- Rekioua, D.; Bensmail, S.; Bettar, N. Development of hybrid photovoltaic-fuel cell system for stand-alone application. Int. J. Hydrog. Energy 2013, 39, 1604–1611. [Google Scholar] [CrossRef]
- Hwang, J.J.; Lai, L.K.; Wu, W.; Chang, W.R. Dynamic modeling of a photovoltaic hydrogen fuel cell hybrid system. Int. J. Hydrog. Energy 2009, 34, 9531–9542. [Google Scholar] [CrossRef]
- Yunez-Cano, A.; González-Huerta, R.G.; Tufiño-Velázquez, M.; Barbosa, R.; Escobar, B. Solar-hydrogen hybrid system integrated to a sustainable house in Mexico. Int. J. Hydrog. Energy 2016, 41, 19539–19545. [Google Scholar] [CrossRef]
- Yousef, A.M.; Ebeed, M.; Abo-Elyousr, F.K.; Elnozohy, A.; Mohamed, M.; Abdelwahab, S.A.M. Optimization of PID Controller for Hybrid Renewable Energy System Using Adaptive Sine Cosine Algorithm. Int. J. Renew. Energy Res.-IJRER 2020, 10, 670–677. [Google Scholar]
- Xu, X.; Li, Y.; Yan, Z.; Ma, H.; Shahidehpour, M. Hierarchical Central-Local Inverter-Based Voltage Control in Distribution Networks Considering Stochastic PV Power Admissible Range. IEEE Trans. Smart Grid 2023, 14, 1868–1879. [Google Scholar] [CrossRef]
- Gulzar, M.M.; Iqbal, A.; Sibtain, D.; Khalid, M. An Innovative Converterless Solar PV Control Strategy for a Grid Connected Hybrid PV/Wind/Fuel-Cell System Coupled with Battery Energy Storage. IEEE Accesss 2023, 11, 23245–23259. [Google Scholar] [CrossRef]
- Wang, H.; Hua, L.; Guo, Y.; Lu, C. Control of Z-Axis MEMS Gyroscope Using Adaptive Fractional Order Dynamic Sliding Mode Approach. IEEE Access 2019, 7, 133008–133016. [Google Scholar] [CrossRef]
- Ibrahim, N.F.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Comparative Analysis of Three-Phase PV Grid Connected Inverter Current Control Schemes in Unbalanced Grid Conditions. IEEE Access 2023, 11, 42204–42221. [Google Scholar] [CrossRef]
- Mishra, M.K.; Lal, V.N. A Multiobjective Control Strategy for Harmonic Current Mitigation with Enhanced LVRT Operation of a Grid-Tied PV System without PLL Under Abnormal Grid Conditions. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 2164–2177. [Google Scholar] [CrossRef]
- Sonawane, A.J.; Umarikar, A.C. Voltage and Reactive Power Regulation with Synchronverter-Based Control of PV-STATCOM. IEEE Access 2023, 11, 52129–52140. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, G.; Ouyang, H.; Mei, L. An Adaptive Super Twisting Nonlinear Fractional Order PID Sliding Mode Control of Permanent Magnet Synchronous Motor Speed Regulation System Based on Extended State Observer. IEEE Access 2020, 8, 53498–53510. [Google Scholar] [CrossRef]
- Xu, S.S.; Chen, C.; Wu, Z. Study of Nonsingular Fast Terminal Sliding-Mode Fault-Tolerant Control. IEEE Trans. Ind. Electron. 2015, 62, 3906–3913. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Z. Integrated fault estimation and fault tolerant attitude control for rigid spacecraft with multiple actuator faults and saturation. IET Control Theory Appl. 2019, 13, 2365–2375. [Google Scholar] [CrossRef]
- Khorashadi-Zadeh, H. Power transformer differential protection scheme based on symmetrical component and artificial neural network. In Proceedings of the 7th Seminar on Neural Network Applications in Electrical Engineering, 2004 NEUREL, Belgrade, Serbia, 23–25 September 2004; pp. 261–265. [Google Scholar]
- Mishra, S.; Ramasubramanian, D.; Sekhar, P.C. A Seamless Control Methodology for a Grid Connected and Isolated PV-Diesel Microgrid. IEEE Trans. Power Syst. 2013, 28, 4393–4404. [Google Scholar] [CrossRef]
- Abdelwahab, S.A.M.; Hegazy, H.Y.; Mohamed, W.I. Experimental investigation and theoretical for the performance improvement of MPPT technique with PV systems connected to the grid. Int. J. Smart Grid Clean Energy 2021, 10, 253–269. [Google Scholar] [CrossRef]
- Moustafa, G.; Ginidi, A.R.; Elshahed, M.; Shaheen, A.M. Economic environmental operation in bulk AC/DC hybrid interconnected systems via enhanced artificial hummingbird optimizer. Electr. Power Syst. Res. 2023, 222, 109503. [Google Scholar] [CrossRef]
- Smaili, H.; Almalawi, D.R.; Shaheen, A.M.; Mansour, H.S.E. Optimizing PV Sources and Shunt Capacitors for Energy Efficiency Improvement in Distribution Systems Using Subtraction-Average Algorithm. Mathematics 2024, 12, 625. [Google Scholar] [CrossRef]
- Moustafa, G.; Smaili, I.H.; Almalawi, D.R.; Ginidi, A.R.; Shaheen, A.M.; Elshahed, M.; Mansour, H.S. Dwarf Mongoose Optimizer for Optimal Modeling of Solar PV Systems and Parameter Extraction. Electronics 2023, 12, 4990. [Google Scholar] [CrossRef]
- Chen, J.; Park, J.H.; Xu, S. Stability Analysis for Neural Networks with Time-Varying Delay via Improved Techniques. IEEE Trans. Cybern. 2019, 49, 4495–4500. [Google Scholar] [CrossRef]
- Yousef, A.M.; Ibrahem, H.A.; Abo-elyousr, F.K.; Mohamed, M. Sliding Mode Control for Three Phase PV Grid Connected Energy System Using LCL Filter. Minia J. Eng. Technol. 2017, 36, 10159–10174. [Google Scholar]
- Hamed, S.B.; Abid, A.; Hamed, M.B.; Sbita, L.; Bajaj, M.; Ghoneim, S.S.M.; Zawbaa, H.M.; Kamel, S. A robust MPPT approach based on first-order sliding mode for triple-junction photovoltaic power system supplying electric vehicle. Energy Rep. 2023, 9, 4275–4297. [Google Scholar] [CrossRef]
- Lubbad, M.M.; El-Amary, N.H.; Abdelaziz, A.Y. Sliding Mode Control for Hybrid Power Sources Micro-grid. In Proceedings of the 2019 21st International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 17–19 December 2019; pp. 650–655. [Google Scholar]
- Qi, G.; Chen, A.; Chen, J. Improved control strategy of interlinking converters with synchronous generator characteristic in islanded hybrid AC/DC microgrid. in CPSS Trans. Power Electron. Appl. 2017, 2, 149–158. [Google Scholar] [CrossRef]
- Elnozahy, A.; Yousef, A.M.; Abo-Elyousr, F.K.; Mohamed, M.; Abdelwahab, S.A. Performance improvement of hybrid renewable energy sources connected to the grid using artificial neural network and sliding mode control. J. Power Electron. 2021, 21, 1166–1179. [Google Scholar] [CrossRef]
- Rmili, L.; Hamouda, M.; Rahmani, S.; Fortin, H.; Al-Haddad, B.K. PWM-based Integral Sliding-mode Controller for Unity Input Power Factor Operation of Indirect Matrix Converter. J. Power Electron. 2017, 17, 1048–1057. [Google Scholar]
- Lin, X.; Wen, Y.; Yu, R.; Yu, J.; Wen, H. Improved Weak Grids Synchronization Unit for Passivity Enhancement of Grid-Connected Inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 7084–7097. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C. Virtual-Vector-Based Robust Predictive Current Control for Dual Three-Phase PMSM. IEEE Trans. Ind. Electron. 2021, 68, 2048–2058. [Google Scholar] [CrossRef]
- Taghieh, A.; Mohammadzadeh, A.; Zhang, C.; Kausar, N.; Castillo, O. A type-3 fuzzy control for current sharing and voltage balancing in microgrids. Appl. Soft Comput. 2022, 129, 109636. [Google Scholar] [CrossRef]
- Abid, S.; El-Rifaie, A.M.; Elshahed, M.; Ginidi, A.R.; Shaheen, A.M.; Moustafa, G.; Tolba, M.A. Development of Slime Mold Optimizer with Application for Tuning Cascaded PD-PI Controller to Enhance Frequency Stability in Power Systems. Mathematics 2023, 11, 1796. [Google Scholar] [CrossRef]
- Eker, I. Second-order sliding mode control with experimental application. ISA Trans. 2010, 49, 394–405. [Google Scholar] [CrossRef]
- Edwards, C.; Spurgeon, S.K. Sliding Mode Control: Theory and Applications; Taylor & Francis: London, UK, 1998. [Google Scholar]
- Holkar, K.S.; Waghmare, L.M. Sliding Mode Control with Predictive PID Sliding Surface for Improved Performance. Int. J. Comput. Appl. 2013, 78, 1–5. [Google Scholar]
- Eker, I. Sliding mode control with PID sliding surface and experimental application to electromechanical plant. ISA Trans. 2006, 45, 109–118. [Google Scholar] [CrossRef] [PubMed]
Reference | Year | Type of Renewable Energy | Technique Type |
---|---|---|---|
[1] | 2021 | Grid-connected PV system | PI and H-infinity Control (H∞C) |
[2] | 2013 | Hybrid PV/fuel cell/battery/wind | PI control |
[3] | 2009 | Hybrid PV/fuel cell/hydrogen tank | Conventional |
[4] | 2016 | ) | Conventional |
[5] | 2020 | PV/wind and external battery charging | Sine cosine algorithm (SCA) and adaptive sine cosine optimization algorithm (ASCA) |
[8] | 2019 | Conventional | Control method for Z-axis MEMS gyroscopes using fractional calculus and adaptive dynamic S.M.C. method |
[12] | 2020 | Conventional | ASTNLFOPIDSMC |
[13] | 2015 | Conventional | NTSMC and NFTSMC |
[14] | 2019 | Conventional | NFTSM and NN algorithm |
[15] | 2004 | Conventional | Artificial neural network |
[16] | 2013 | PV and diesel generator | Conventional |
[6] | 2023 | PV system | Admissible range (AR) and affine decision rule (ADR) |
[7] | 2023 | Hybrid PV/wind/fuel-cell system, with battery energy storage | Artificial intelligence-based algorithm |
[9] | 2023 | Grid-connected PV system | Average active–reactive control (AARC) and fuzzy logic |
[10] | 2023 | Grid-connected PV system | Multiobjective control strategy (MOCS) and conventional control strategy (COCS) |
[11] | 2023 | Grid-connected PV system | Active–reactive control by microcontroller |
Case study | ___ | Grid-connected PV systems | PI and adaptive dynamic sliding mode control |
Parameters | Values |
---|---|
Maximum power of PV module | 305.2 W |
Short-circuit current of PV module | 5.96 A |
Open-circuit voltage of PV module | 64.2 V |
Maximum current of PV module | 5.58 A |
Maximum voltage of module | 54.7 V |
Parallel strings of PV array | 132 |
Series-connected modules per string | 5 |
Boost converter inductance | 5 mH |
Boost converter resistance | 0.005 Ω |
Boost converter capacitance | 100 μF |
Reference voltage of DC link | 500 V |
Filter inductance | 0.25 mH |
Filter resistance | 0.015 Ω |
Step-up transformer | 260 V/25 kV |
Voltage of grid | 25 kV |
Frequency of grid | 60 Hz |
Kp, current regulatory control at PI | 0.5 |
Ki, current regulatory control at PI | 25 |
Kp, voltage source control at PI | 9 |
Ki, voltage source control at PI | 950 |
Type of Controller | ) | Time (s) | (V) | (KW) |
---|---|---|---|---|
PI | 330 | 0:0.5 | 248.933 (fluctuations) | 62.5715 |
263.664 (fluctuations) | 63.876 | |||
660 | 1:1.5 | 272.236 (fluctuations) | 131.828 | |
272.223 (fluctuations) | 131.865 | |||
260 | 2:2.5 | 255.248 (fluctuations) | 48.596 | |
243.699 (fluctuations) | 46.579 | |||
SMC | 330 | 0:0.5 | 258.536 | 64.858 |
271.457 | 64.885 | |||
660 | 1:1.5 | 274.112 | 131.928 | |
274.442 | 131.938 | |||
260 | 2:2.5 | 259.013 | 48.5259 | |
248.436 | 46.1036 |
Type of Controller | Time (s) | Grid Power (kW) | Grid Id | Grid Iq |
---|---|---|---|---|
PI | 0.1504 | 61.8671 | 0.8241 | 0.8425 |
0.5033 | 62.5225 | 0.7362 | 0.7452 | |
1.2496 | 129.3521 | 1.4573 | 1.4624 | |
1.9898 | 53.580 | 0.5623 | 0.8524 | |
2.525 | 46.385 | 0.5321 | 0.5741 | |
3.221 | 84.558 | 0.8624 | 0.8741 | |
SMC | 0.1504 | 67.442 | −0.5231 | 0.5426 |
0.5033 | 66.039 | 0.03312 | 0.5624 | |
1.2496 | 129.960 | 0.01426 | 1.4328 | |
1.9898 | 55244.3 | 0.25425 | 0.9465 | |
2.525 | 46481.1 | 0.01542 | 0.6482 | |
3.221 | 84773.4 | 0.01454 | 0.8745 |
Type of Controller | ) | Time (s) | (V) | (KW) |
---|---|---|---|---|
PI | 331.324:360.025 | 0:0.5 | 209.678 (fluctuations) | 60.5241 |
254.322 (fluctuations) | 54.667 | |||
686.285:659.676 | 1:1.5 | 272.955 (fluctuations) | 129.118 | |
264.094 (fluctuations) | 131.837 | |||
247.793:297.868 | 2:2.5 | 230.094 (fluctuations) | 22.0368 | |
225.002 (fluctuations) | 41.2277 | |||
SMC | 331.324:360.025 | 0:0.5 | 254.253 | 67.995 |
274.682 | 68.0101 | |||
686.285:659.676 | 1:1.5 | 279.641 | 136.442 | |
275.551 | 134.224 | |||
247.793:297.868 | 2:2.5 | 270.235 | 58.4029 | |
271.341 | 50.9526 |
Type of Controller | Time (s) | Grid Power (kW) | Grid Id | Grid Iq |
---|---|---|---|---|
PI | 0.1313 | 65.361.1 | 0.6566 | 0.3304 |
0.6805 | 61.208 | 0.7927 | 0.0024 | |
1.2514 | 131.599 | 1.2703 | 0.0101 | |
2.1982 | 49.096 | 0.5432 | 0.0257 | |
2.5216 | 46.655 | 0.5187 | 0.0131 | |
3.2151 | 91.754 | 0.9514 | 0.0362 | |
SMC | 0.1313 | 77.872 | 0.7512 | 1.111- |
0.6805 | 71.235 | 0.6127 | 0.0061- | |
1.2514 | 128.404 | 1.3275 | 0.0503- | |
2.1982 | 54.246 | 0.5045 | 0.05644 | |
2.5216 | 49.933 | 0.4676 | 0.05244 | |
3.2151 | 91.941 | 0.9231 | 0.04241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnami, H.; Hakmi, S.H.; Abdelwahab, S.A.M.; Abdellatif, W.S.E.; Hegazy, H.Y.; Mohamed, W.I.; Mohamed, M. Enhanced Adaptive Dynamic Surface Sliding Mode Control for Optimal Performance of Grid-Connected Photovoltaic Systems. Sustainability 2024, 16, 5590. https://doi.org/10.3390/su16135590
Alnami H, Hakmi SH, Abdelwahab SAM, Abdellatif WSE, Hegazy HY, Mohamed WI, Mohamed M. Enhanced Adaptive Dynamic Surface Sliding Mode Control for Optimal Performance of Grid-Connected Photovoltaic Systems. Sustainability. 2024; 16(13):5590. https://doi.org/10.3390/su16135590
Chicago/Turabian StyleAlnami, Hashim, Sultan H. Hakmi, Saad A. Mohamed Abdelwahab, Walid S. E. Abdellatif, Hossam Youssef Hegazy, Wael I. Mohamed, and Moayed Mohamed. 2024. "Enhanced Adaptive Dynamic Surface Sliding Mode Control for Optimal Performance of Grid-Connected Photovoltaic Systems" Sustainability 16, no. 13: 5590. https://doi.org/10.3390/su16135590
APA StyleAlnami, H., Hakmi, S. H., Abdelwahab, S. A. M., Abdellatif, W. S. E., Hegazy, H. Y., Mohamed, W. I., & Mohamed, M. (2024). Enhanced Adaptive Dynamic Surface Sliding Mode Control for Optimal Performance of Grid-Connected Photovoltaic Systems. Sustainability, 16(13), 5590. https://doi.org/10.3390/su16135590