Previous Article in Journal
Storing Electric Energy Generated by a Photovoltaic Installation to Increase Profit from Its Sale—Case Study in Poland
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Article

Removal and Recovery of Europium with a New Functionalized Mesoporous Silica-Based Adsorbent

by
Charith Fonseka
1,
Seongchul Ryu
1,
Jaya Kandasamy
1,*,
Harsha Ratnaweera
2 and
Saravanamuthu Vigneswaran
1,2,*
1
Faculty of Engineering, University of Technology Sydney (UTS), P.O. Box 123, Broadway, Australia
2
Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway
*
Authors to whom correspondence should be addressed.
Sustainability 2024, 16(13), 5636; https://doi.org/10.3390/su16135636 (registering DOI)
Submission received: 1 June 2024 / Revised: 25 June 2024 / Accepted: 27 June 2024 / Published: 30 June 2024
(This article belongs to the Section Environmental Sustainability and Applications)

Abstract

The discharge of acid mine drainage (AMD), characterized by a high concentration of rare earth elements (REEs), poses a significant threat to the health of ecosystems surrounding water sources. The global market demand for REEs has experienced a notable surge in the past decade. Consequently, recovering REEs from waste streams like AMD not only benefits the environment but also offers financial advantages. Europium (Eu), the rarest among REEs, constitutes only 0.1% w/w in monazite and bastnaesite ores. Eu is extensively used in the production of phosphors, alloys, and additives, and is a critical raw material for developing smart devices, ranging from high-resolution color screens to circuitry. Traditional adsorbents typically exhibit limited selectivity towards REE recovery. Mesoporous silica materials, such as SBA15 (Santa Barbara Amorphous-15), provide excellent tunability and modification capabilities, making them an attractive and cost-effective alternative. This research focused on two key aspects: (i) evaluating the dynamic adsorption column performance of granulated SBA15–NH–PMIDA to preferentially recover Eu, and (ii) employing mathematical modeling to optimize the dynamic adsorption column’s operating conditions for real-world applications with a minimal number of experimental runs. Granulated SBA15–NH–PMIDA was chosen as the adsorbent due to its high adsorptive capacity and selectivity in capturing Eu. The study revealed that granulated SBA15–NH–PMIDA exhibited 57.47 mg/g adsorption capacity and an 81% selectivity towards Eu. Furthermore, SBA15–NH–PMIDA demonstrated preferential adsorption toward Eu in complex multi-component solutions, such as AMD. The linear driven force approximation model (LDFAM) provided an acceptable simulation (R2 > 0.91) under varying operational conditions. This validates the use of the model as a tool to effectively simulate and optimize column experiments that used granulated SBA15–NH–PMIDA to recover Eu.
Keywords: acid mine drainage; rare earth elements; adsorbents; modeling acid mine drainage; rare earth elements; adsorbents; modeling

Share and Cite

MDPI and ACS Style

Fonseka, C.; Ryu, S.; Kandasamy, J.; Ratnaweera, H.; Vigneswaran, S. Removal and Recovery of Europium with a New Functionalized Mesoporous Silica-Based Adsorbent. Sustainability 2024, 16, 5636. https://doi.org/10.3390/su16135636

AMA Style

Fonseka C, Ryu S, Kandasamy J, Ratnaweera H, Vigneswaran S. Removal and Recovery of Europium with a New Functionalized Mesoporous Silica-Based Adsorbent. Sustainability. 2024; 16(13):5636. https://doi.org/10.3390/su16135636

Chicago/Turabian Style

Fonseka, Charith, Seongchul Ryu, Jaya Kandasamy, Harsha Ratnaweera, and Saravanamuthu Vigneswaran. 2024. "Removal and Recovery of Europium with a New Functionalized Mesoporous Silica-Based Adsorbent" Sustainability 16, no. 13: 5636. https://doi.org/10.3390/su16135636

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop