Synthesis of 4A Zeolite Molecular Sieves by Modifying Fly Ash with Water Treatment Residue to Remove Ammonia Nitrogen from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Reagents/Chemicals
2.2. Preparation of WTR–CFA Zeolite
2.3. Physical and Chemical Measurements
2.4. Batch Adsorption Experiment
2.5. Desorption and Regeneration
3. Results and Discussion
3.1. Characterization of the Physical and Chemical Properties
3.2. Effect of NH4+–N Adsorption Conditions
3.2.1. WTR–CFA Zeolite Dosage
3.2.2. Effect of pH
3.2.3. Effect of Coexisting Cations
3.3. Adsorption Isotherms
3.4. Adsorption Kinetics
3.5. Desorption/Regeneration
3.6. Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sprynskyy, M.; Lebedynets, M.; Zbytniewski, R.; Namieśnik, J.; Buszewski, B. Ammonium removal from aqueous solution by natural zeolite, Transcarpathian mordenite, kinetics, equilibrium and column tests. Sep. Purif. Technol. 2005, 46, 155–160. [Google Scholar] [CrossRef]
- Randall, D.J.; Tsui, T.K.N. Ammonia toxicity in fish. Mar. Pollut. Bull. 2002, 45, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, B.; Sekar, K.; Baran, M.A.; Ganesan, S. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: Kinetic, isotherm, and thermodynamic studies. Environ. Sci. Pollut. Res. 2013, 20, 533–542. [Google Scholar]
- Fu, Q.; Zheng, B.H.; Zhao, X.R.; Wang, L.J.; Liu, C.M. Ammonia pollution characteristics of centralized drinking water sources in China. J. Environ. Sci. 2012, 24, 1739–1743. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.R.; Othman, M.H.D.; Samah, R.A.; Puteh, M.H.; Ismail, A.F.; Mustafa, A.; Rahman, M.A.; Jaafar, J. Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development. Sep. Purif. Technol. 2019, 213, 114–132. [Google Scholar] [CrossRef]
- Huang, J.Y.; Kankanamge, N.R.; Chow, C.; Welsh, D.T.; Li, T.L.; Teasdale, P.R. Removing ammonium from water and wastewater using cost-effective adsorbents: A review. J. Environ. Sci. 2018, 63, 174–197. [Google Scholar] [CrossRef] [PubMed]
- Khabzina, Y.; Farrusseng, D. Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions. Microporous Mesoporous Mater. 2018, 265, 143–148. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, J.P. Key factors for optimum performance in phosphate removal from contaminated water by a Fe-Mg-La tri-metal composite sorbent. J. Colloid Interface Sci. 2015, 445, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.D.; Jiang, X.G.; Zhao, Y.M.; Yan, J.H. Zeolite greenly synthesized from fly ash and its resource utilization: A review. Sci. Total Environ. 2022, 851, 158182. [Google Scholar] [CrossRef]
- Melo, C.R.; Riella, H.G.; Kuhnen, N.C.; Melo, A.R.; Rocha, M.R.; Mendes, E.; Antunes, L.; Angioletto, E. Adsorption of iron and manganese from acid mine drainage using 4A-zeolite synthesised from waste with high kaolin concentrations. Int. J. Environ. Pollut. 2014, 56, 79–93. [Google Scholar] [CrossRef]
- Wu, Z.S.; Chen, T.H.; Liu, H.B.; Wang, C.; Cheng, P.; Chen, D.; Xie, J.J. An insight into the comprehensive application of opal-palygorskite clay: Synthesis of 4A zeolite and uptake of Hg2+. Appl. Clay Sci. 2018, 165, 103–111. [Google Scholar] [CrossRef]
- Wang, W.Q.; Feng, Q.M.; Liu, K.; Zhang, G.F.; Liu, J.; Huang, Y. A novel magnetic 4A zeolite adsorbent synthesised from kaolinite type pyrite cinder (KTPC). Solid State Sci. 2015, 39, 52–58. [Google Scholar] [CrossRef]
- Djioko, K.H.F.; Fotsop, G.C.; Youbi, K.G.; Nwanonenyi, C.S.; Oguzie, E.E.; Madu, A.C. Efficient removal of pharmaceutical contaminant in wastewater using low-cost zeolite 4A derived from kaolin: Experimental and theoretical studies. Mater. Chem. Phys. 2024, 315, 128994. [Google Scholar] [CrossRef]
- Lokesh, K.; Raminder, K.; Jaigopal, S. The efficiency of zeolites in water treatment for combating ammonia—An experimental study on Yamuna River water treated sewage effluents. Inorg. Chem. Commun. 2021, 134, 108978. [Google Scholar]
- He, L.Z.; Wang, M.C.; Chen, L.; Wang, M.; Jiang, W.J.; Chen, Y. Synergistic effect of zeolite on removal of chemical oxygen demand and ammonia nitrogen from the shale gas distillate. Environ. Eng. Sci. 2020, 38, 50–57. [Google Scholar] [CrossRef]
- Zhang, X.; Tong, D.Q.; Jia, W.; Tang, D.X.; Li, X.Y.; Yang, R.C. Studies on room-temperature synthesis of zeolite NaA. Mater. Res. Bull. 2014, 52, 96–102. [Google Scholar] [CrossRef]
- Peng, Z.D.; Lin, X.M.; Zhang, Y.L.; Hu, Z.; Yang, X.J.; Chen, C.Y.; Chen, H.Y.; Li, Y.T.; Wang, J.J. Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. Sci. Total Environ. 2021, 772, 145355. [Google Scholar] [CrossRef]
- Bing, H.; Clayton, B.; Wei, Z.; Zheng, H.J.; Deli, C. Adsorbent materials for ammonium and ammonia removal: A review. J. Clean. Prod. 2020, 283, 124611. [Google Scholar]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Aquino, T.F.D.; Estevam, S.T.; Viola, V.O.; Marques, C.R.M.; Zancan, F.L.; Vasconcelos, L.B.; Riella, H.G.; Pires, M.J.R.; Morales-Ospino, R.; Torres, A.E.B.; et al. CO2 adsorption capacity of zeolites synthesized from coal fly ashes. Fuel 2020, 276, 118143. [Google Scholar] [CrossRef]
- Kurda, R.; Silvestre, J.D.; Brito, J.D. Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A review. Heliyon 2018, 4, e00611. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, T.; Harun, Z.; Othman, M.H.D. A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process. Adv. Powder Technol. 2017, 28, 1827–1840. [Google Scholar] [CrossRef]
- Fukasawa, T.; Karisma, A.D.; Shibata, D.; Huang, A.N.; Fukui, K. Synthesis of zeolite from coal fly ash by microwave hydrothermal treatment with pulverization process. Adv. Powder Technol. 2016, 28, 798–804. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H. Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 2016, 125, 253–267. [Google Scholar] [CrossRef]
- Yang, L.Y.; Qian, X.M.; Yuan, P.; Bai, H.; Miki, T.; Men, F.X.; Li, H.; Nagasaka, T. Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3. J. Clean. Prod. 2019, 212, 250–260. [Google Scholar] [CrossRef]
- Musyoka, M.N.; Petrik, F.L.; Fatoba, O.O.; Hums, E. Synthesis of zeolites from coal fly ash using mine waters. Miner. Eng. 2013, 53, 9–15. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Sharma, A.; Ma, Q.S.; Zhu, Y.X.; Li, D.W.; Liu, Z.Y.; Yang, Y.N. A developed hybrid fixed-bed bioreactor with Fe-modified zeolite to enhance and sustain biohydrogen production. Sci. Total Environ. 2020, 758, 143658. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.H.; Zhang, Y.B.; Quan, X.; Chen, S. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res. 2014, 52, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, J.A.; Barbarick, K.A.; Elliott, H.A. Drinking water treatment residuals: A review of recent uses. J. Environ. Qual. 2011, 40, 1–12. [Google Scholar] [CrossRef]
- Li, Z.F.; Jiang, N.; Wu, F.F.; Zhou, Z. Experimental investigation of phosphorus adsorption capacity of the waterworks sludges from five cities in China. Ecol. Eng. 2013, 53, 165–172. [Google Scholar] [CrossRef]
- Abo-EI-Enein, S.A.; Shebl, A.; Abo EI-Dahab, S.A. Drinking water treatment sludge as an efficient adsorbent for heavy metals removal. Appl. Clay Sci. 2017, 146, 343–349. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Scheckel, K.G.; Barbarick, K.A. Selenium adsorption to aluminum-based water treatment residuals. J. Colloid Interface Sci. 2009, 338, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Freundlich, H. Über die adsorption in lösungen. Z. Für Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Du, Q.; Liu, S.J.; Cao, Z.H.; Wang, Y.Q. Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Sep. Purif. Technol. 2004, 44, 229–234. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.Y.; Xu, D.; Han, L.; Niu, D.D.; Tian, B.H.; Zhang, J.; Zhang, L.Y.; Wu, W.S. Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination 2011, 271, 111–121. [Google Scholar] [CrossRef]
- Zhao, Y.; Niu, Y.C.; Hu, X.; Xi, B.D.; Peng, X.; Liu, W.F.; Guan, W.X.; Wang, L. Removal of ammonium ions from aqueous solutions using zeolite synthesized from red mud. Desalination Water Treat. 2015, 57, 4720–4731. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Liu, S.J.; Xu, Z.; Han, T.W.; Chuan, S.; Zhu, T. Ammonia removal from leachate solution using natural Chinese clinoptilolite. J. Hazard. Mater. 2006, 136, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Murayama, N.; Yoshida, S.; Takami, Y.; Yamamoto, H.; Shibata, J. Simultaneous removal of NH4+ and PO43− in aqueous solution and its mechanism by using zeolite synthesized from coal fly ash. Sep. Sci. Technol. 2003, 38, 113–130. [Google Scholar] [CrossRef]
- Luna, D.; Mark, D.G.; Futalan, C.M.; Jurado, C.A., Jr.; Colades, J.I.; Wan, M.W. Removal of ammonium-nitrogen from aqueous solution using chitosan-coated bentonite: Mechanism and effect of operating parameters. J. Appl. Polym. Sci. 2018, 135, 45924. [Google Scholar] [CrossRef]
- Martins, T.H.; Souza, T.S.O.; Foresti, E. Ammonium removal from landfill leachate by Clinoptilolite adsorption followed by bioregeneration. J. Environ. Chem. Eng. 2017, 5, 63–68. [Google Scholar] [CrossRef]
- Yusof, A.M.; Keat, L.K.; Ibrahim, Z.; Majid, Z.A.; Nizam, N.A. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite. J. Hazard. Mater. 2009, 174, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, C.J.; Zhao, J.J.; Zhang, Z.H.; Wang, H.Q.; Zhou, S.; Wu, L.M. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. J. Clean. Prod. 2018, 202, 11–22. [Google Scholar] [CrossRef]
- Guaya, D.; Valderrama, C.; Farran, A.; Armijos, C.; Cortina, J.L. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chem. Eng. J. 2015, 271, 204–213. [Google Scholar] [CrossRef]
- Liu, G.Q.; Lin, Y.X.; Zhang, L.L.; Zhang, M.W.; Gu, C.C.; Li, J.; Zheng, T.C.; Chai, J. Preparation of NaA zeolite molecular sieve based on solid waste fly ash by high-speed dispersion homogenization-assisted alkali fusion-hydrothermal method and its performance of ammonia-nitrogen adsorption. J. Sci.-Adv. Mater. Dev. 2024, 9, 100673. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Garcia, G.; Cardenas, E.; Cabrera, S.; Hedlund, J.; Mouzon, J. Synthesis of zeolite y from diatomite as silica source. Microporous Mesoporous Mater. 2016, 219, 29–37. [Google Scholar] [CrossRef]
- Jha, B.; Singh, D.N. Chemlnform abstract: A review on synthesis, characterization and industrial applications of fly ash zeolites. Chemlnform 2012, 43, 65–132. [Google Scholar]
- Mohau, M.; Misael, S.N.; Veronica, O. A review of the chemistry, structure, properties and applications of zeolites. Am. J. Mater. Sci. 2017, 7, 196–221. [Google Scholar]
Material | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
R2 | qm (mg/g) | KL (L/mg) | R2 | n | KF (mg/g) | |
CFA–zeolite | 0.9959 | 27.08 | 0.0629 | 0.8458 | 2.418 | 3.162 |
WTR–CFA zeolite | 0.9954 | 31.03 | 0.0628 | 0.8237 | 2.495 | 4.007 |
Adsorbents | Raw Materials | Adsorption Capacity (mg/g) | References |
---|---|---|---|
Naturally occurring clinoptilolite | / | 14.72 | [41] |
Naturally occurring mordenite | / | 15.13 | [42] |
Zeolite P1 | CFA and Na2SiO3·9H2O | 25.13 | [43] |
HAlO–modified Zeolite | Hydrated aluminum oxide and natural zeolite | 30.00 | [44] |
Faujasite | Low–calcium fly ash | 28.65 | [36] |
NaA zeolite | CFA | 27.50 | [45] |
CFA–zeolite | CFA | 27.08 | This study |
WTR–CFA zeolite | CFA and WTR | 31.03 | This study |
Material | Pseudo–First Order Model | Pseudo–Second Order Model | ||||
---|---|---|---|---|---|---|
R2 | qm (mg/g) | K1 (min−1) | R2 | qe (mg/g) | K2 (g/(mg·min)) | |
CFA–zeolite | 0.7609 | 19.24 | 0.00340 | 0.9997 | 18.98 | 0.0538 |
WTR–CFA Zeolite | 0.7530 | 23.08 | 0.00223 | 0.9996 | 22.72 | 0.0448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Cai, Y.; Fan, X.; Ning, K.; Yu, X.; Zheng, S.; Chen, H.; Xie, Y. Synthesis of 4A Zeolite Molecular Sieves by Modifying Fly Ash with Water Treatment Residue to Remove Ammonia Nitrogen from Water. Sustainability 2024, 16, 5683. https://doi.org/10.3390/su16135683
Huang Z, Cai Y, Fan X, Ning K, Yu X, Zheng S, Chen H, Xie Y. Synthesis of 4A Zeolite Molecular Sieves by Modifying Fly Ash with Water Treatment Residue to Remove Ammonia Nitrogen from Water. Sustainability. 2024; 16(13):5683. https://doi.org/10.3390/su16135683
Chicago/Turabian StyleHuang, Zhuochun, Yuantao Cai, Xiaoling Fan, Kai Ning, Xiaohong Yu, Shaocheng Zheng, Hansong Chen, and Yunlong Xie. 2024. "Synthesis of 4A Zeolite Molecular Sieves by Modifying Fly Ash with Water Treatment Residue to Remove Ammonia Nitrogen from Water" Sustainability 16, no. 13: 5683. https://doi.org/10.3390/su16135683
APA StyleHuang, Z., Cai, Y., Fan, X., Ning, K., Yu, X., Zheng, S., Chen, H., & Xie, Y. (2024). Synthesis of 4A Zeolite Molecular Sieves by Modifying Fly Ash with Water Treatment Residue to Remove Ammonia Nitrogen from Water. Sustainability, 16(13), 5683. https://doi.org/10.3390/su16135683