Research on Zoning and Carbon Sink Enhancement Strategies for Ecological Spaces in Counties with Different Landform Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
3. Methodologies
3.1. Carbon Sink Coefficient Method
3.2. Multivariate Comprehensive Identification Model of Ecological Space under the Dual Carbon Targets
3.3. Computational Method for the Identification Indicators of Ecological Space
3.4. Implementation of the AHP Method
4. Results
4.1. Distribution Characteristics of Land Use in Counties with Different Landform Types
4.2. Analysis of Carbon Sink Discrepancies in Counties with Different Landform Types
4.3. Distribution Characteristics of Ecological Spaces in Counties with Different Landform Types
5. Discussion
5.1. Carbon Sink Enhancement Strategies of Ecological Spaces in Counties with Different Landform Types
5.2. Advantages and Limitations of Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rohatyn, S.; Yakir, D.; Rotenberg, E.; Carmel, Y. Limited climate change mitigation potential through forestation of the vast dryland regions. Science 2022, 377, 1436–1439. [Google Scholar] [CrossRef] [PubMed]
- Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 2020, 11, 5427. [Google Scholar] [CrossRef] [PubMed]
- Ontl, T.A.; Janowiak, M.K.; Swanston, C.W.; Daley, J.; Handler, S.; Cornett, M.; Hagenbuch, S.; Handrick, C.; McCarthy, L.; Patch, N. Forest management for carbon sequestration and climate adaptation. J. For. 2020, 118, 86–101. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef] [PubMed]
- Huovila, A.; Siikavirta, H.; Rozado, C.A.; Rökman, J.; Tuominen, P.; Paiho, S.; Hedman, Å.; Ylén, P. Carbon-neutral cities: Critical review of theory and practice. J. Clean. Prod. 2022, 341, 130912. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Li, X.; Hu, Y.; Wang, Y. Mapping ecological space quality changes for ecological management: A case study in the Pearl River Delta urban agglomeration, China. J. Environ. Manag. 2020, 267, 110658. [Google Scholar] [CrossRef]
- Ruehr, S.; Keenan, T.F.; Williams, C.; Zhou, Y.; Lu, X.; Bastos, A.; Canadell, J.G.; Prentice, I.C.; Sitch, S.; Terrer, C. Evidence and attribution of the enhanced land carbon sink. Nat. Rev. Earth Environ. 2023, 4, 518–534. [Google Scholar] [CrossRef]
- Ahmadi Mirghaed, F.; Souri, B. Effect of landscape fragmentation on soil quality and ecosystem services in land use and landform types. Environ. Earth Sci. 2022, 81, 330. [Google Scholar] [CrossRef]
- Derakhshan-Babaei, F.; Nosrati, K.; Mirghaed, F.A.; Egli, M. The interrelation between landform, land-use, erosion and soil quality in the Kan catchment of the Tehran province, central Iran. CATENA 2021, 204, 105412. [Google Scholar] [CrossRef]
- Bordoloi, R.; Das, B.; Tripathi, O.; Sahoo, U.; Nath, A.; Deb, S.; Das, D.; Gupta, A.; Devi, N.; Charturvedi, S. Satellite based integrated approaches to modelling spatial carbon stock and carbon sequestration potential of different land uses of Northeast India. Environ. Sustain. Indic. 2022, 13, 100166. [Google Scholar] [CrossRef]
- Fu, J.; Gao, Q.; Jiang, D.; Li, X.; Lin, G. Spatial–temporal distribution of global production–living–ecological space during the period 2000–2020. Sci. Data 2023, 10, 589. [Google Scholar] [CrossRef]
- Aizizi, Y.; Kasimu, A.; Liang, H.; Zhang, X.; Zhao, Y.; Wei, B. Evaluation of ecological space and ecological quality changes in urban agglomeration on the northern slope of the Tianshan Mountains. Ecol. Indic. 2023, 146, 109896. [Google Scholar] [CrossRef]
- Wellmann, T.; Lausch, A.; Andersson, E.; Knapp, S.; Cortinovis, C.; Jache, J.; Scheuer, S.; Kremer, P.; Mascarenhas, A.; Kraemer, R. Remote sensing in urban planning: Contributions towards ecologically sound policies? Landsc. Urban Plan. 2020, 204, 103921. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Zhao, J.; Zhang, G.; Qu, G.; Ma, S.; Liu, X. Spatiotemporal evolution and Sustainably comprehensive zoning optimization of production–living–ecological functions in the Mountain–Flatland areas. Heliyon 2024, 10, e23425. [Google Scholar] [CrossRef]
- Bharathy, P.; Suthakar, K.; Wijeyamohan, S.; Surendran, S. Geospatial Analysis of Land Use/Land Cover Changes in the Northern Province, Sri Lanka. Int. J. Geoinform. 2024, 20, 1–12. [Google Scholar]
- Zhang, Z.; Wei, Y.; Li, X.; Wan, D.; Shi, Z. Study on Tianjin Land-Cover Dynamic Changes, Driving Factor Analysis, and Forecasting. Land 2024, 13, 726. [Google Scholar] [CrossRef]
- Guan, S.; Gao, Y.; Dong, Z. Assessing the dynamics of ecosystem service value in China: A perspective on equality and efficiency. Ecol. Indic. 2024, 165, 112176. [Google Scholar] [CrossRef]
- Coscieme, L.; Marchettini, N.; Niccolucci, V.; Sporchia, F. Mapping the flows of ecosystem service values in the global land market: The winners and losers of large-scale land acquisitions. Ecosyst. Serv. 2024, 67, 101629. [Google Scholar] [CrossRef]
- Fischer, G.; Nachtergaele, F.O.; Van Velthuizen, H.; Chiozza, F.; Francheschini, G.; Henry, M.; Muchoney, D.; Tramberend, S. Global Agro-Ecological Zones (Gaez v4)-Model Documentation; FAO: Rome, Italy, 2021. [Google Scholar]
- Wang, J.; Qiu, C.; Qin, S.; Yao, S.; Chen, J.; Lei, S.; Tan, S.; Zhou, B. Effects of “source-sink” landscape on spatiotemporal differentiation of phosphorus output in multiple watersheds in mountainous areas based on the modified location-weighted landscape index. Ecol. Indic. 2024, 158, 111397. [Google Scholar] [CrossRef]
- Hou, Y.; Liu, Y.; Wu, Z.; Zeng, H. Construction of regional multi-scenario spatially balanced ecological security pattern based on self-organizing feature map: A case study of Guangzhou, China. Ecol. Inform. 2024, 82, 102690. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Yang, J.; Yang, S.; Wang, Y.; Hu, X. Quantitative identification and spatial analysis of land use ecological-production-living functions in rural areas on China’s southeast coast. Habitat Int. 2020, 100, 102182. [Google Scholar] [CrossRef]
- Li, J.; Hu, D.; Wang, Y.; Chu, J.; Yin, H.; Ma, M. Study of identification and simulation of ecological zoning through integration of landscape ecological risk and ecosystem service value. Sustain. Cities Soc. 2024, 107, 105442. [Google Scholar] [CrossRef]
- Potschin, M.B.; Haines-Young, R.H. Ecosystem services: Exploring a geographical perspective. Prog. Phys. Geogr. 2011, 35, 575–594. [Google Scholar] [CrossRef]
- Lisha, J.; Xietian, L.; Huiling, C. The spatial and temporal evolution of land use change and ecosystem service value in Dongting Lake Ecological Economic Zone from 2000 to 2020. Acad. J. Environ. Earth Sci. 2024, 6, 8–19. [Google Scholar]
- Peng, L.; Zhang, L.; Li, X.; Zhao, W.; Liu, Y.; Wang, Z.; Wang, H.; Jiao, L. A spatially explicit framework for assessing ecosystem service supply risk under multiple land-use scenarios in the Xi’an Metropolitan Area of China. Land Degrad. Dev. 2024, 35, 2754–2770. [Google Scholar] [CrossRef]
- Mandle, L.; Shields-Estrada, A.; Chaplin-Kramer, R.; Mitchell, M.G.; Bremer, L.L.; Gourevitch, J.D.; Hawthorne, P.; Johnson, J.A.; Robinson, B.E.; Smith, J.R. Increasing decision relevance of ecosystem service science. Nat. Sustain. 2021, 4, 161–169. [Google Scholar] [CrossRef]
- Li, H.; Peng, Y.; Li, M.; Zhuang, Y.; He, X.; Lin, J. Analyzing spatial patterns and influencing factors of different illegal land use types within ecological spaces: A case study of a fast-growing city. J. Clean. Prod. 2023, 424, 138883. [Google Scholar] [CrossRef]
- Chang, H.; Xiong, K.; Zhu, D.; Zhang, Z.; Zhang, W. Ecosystem Services Value Realization and Ecological Industry Design in Scenic Areas of Karst in South China. Forests 2024, 15, 363. [Google Scholar] [CrossRef]
- Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [PubMed]
- Tatem, A.J. WorldPop, open data for spatial demography. Sci. Data 2017, 4, 1–4. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Mandourah, A.; Hochmair, H.H. Analysing the use of OpenAerialMap images for OpenStreetMap edits. Geo-Spat. Inf. Sci. 2024, 1–16. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Lou, H.; Shi, X.; Ren, X.; Yang, S.; Cai, M.; Pan, Z.; Zhu, Y.; Feng, D.; Zhou, B. Limited terrestrial carbon sinks and increasing carbon emissions from the Hu Line spatial pattern perspective in China. Ecol. Indic. 2024, 162, 112035. [Google Scholar] [CrossRef]
- Yi, H.; Penghui, J.; Manchun, L. The impact of agricultural land use change on agricultural GHG emissions in China. Environ. Earth Sci. 2024, 83, 61. [Google Scholar] [CrossRef]
- Song, S.; Kong, M.; Su, M.; Ma, Y. Study on carbon sink of cropland and influencing factors: A multiscale analysis based on geographical weighted regression model. J. Clean. Prod. 2024, 447, 141455. [Google Scholar] [CrossRef]
- Huang, X.; Tian, P. How does heterogeneous environmental regulation affect net carbon emissions: Spatial and threshold analysis for China. J. Environ. Manag. 2023, 330, 117161. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Zhang, H. Economic value of wetland ecosystem services in the Heihe National Nature Reserve of Zhangye. Acta Ecol. Sin. 2015, 35, 972–983. [Google Scholar]
- Yang, S.; Bai, Y.; Alatalo, J.M.; Shi, Y.; Yang, Z. Exploring an assessment framework for the supply–demand balance of carbon sequestration services under land use change: Towards carbon strategy. Ecol. Indic. 2024, 165, 112211. [Google Scholar] [CrossRef]
- Li, J.; Liu, S.; Peng, B.; Ye, H.; Zhang, Z. Identification and Optimization of County-Level Ecological Spaces under the Dual-Carbon Target: A Case Study of Shaanxi Province, China. Remote Sens. 2023, 15, 4009. [Google Scholar] [CrossRef]
- Chen, W.; Gu, T.; Xiang, J.; Luo, T.; Zeng, J.; Yuan, Y. Ecological restoration zoning of territorial space in China: An ecosystem health perspective. J. Environ. Manag. 2024, 364, 121371. [Google Scholar] [CrossRef] [PubMed]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Chen, C.; Sun, W.; Yang, Z.; Yang, G.; Jia, M.; Zhang, Z.; Liang, J.; Chen, Y.; Ren, T.; Hu, X. Tracking dynamics characteristics of tidal flats using landsat time series and Google Earth Engine cloud platform. Resour. Conserv. Recycl. 2024, 209, 107751. [Google Scholar] [CrossRef]
- Avcı, İ.; Koca, M. A Novel Security Risk Analysis Using the AHP Method in Smart Railway Systems. Appl. Sci. 2024, 14, 4243. [Google Scholar] [CrossRef]
- Qiu, S.; Fang, M.; Yu, Q.; Niu, T.; Liu, H.; Wang, F.; Xu, C.; Ai, M.; Zhang, J. Study of spatialtemporal changes in Chinese forest eco-space and optimization strategies for enhancing carbon sequestration capacity through ecological spatial network theory. Sci. Total Environ. 2023, 859, 160035. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Yang, Q.; Tong, Z.; Du, W.; Zhang, J. Coupling coordination analysis of production, living, and ecological spaces in wetlands: A case study of Xianghai Wetland nature reserve, China. Ecol. Indic. 2024, 158, 111578. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Kumar, V.; Dayal, P.; Gairola, A.; Borate, R.B.; Srivastava, R. The role of carbon in life’s blueprint and carbon cycle under-standing earth’s essential cycling system: Benefits and harms to our planet. Int. J. 2023, 1, 21–32. [Google Scholar]
- Quesada-Román, A.; Umaña-Ortíz, J.; Zumbado-Solano, M.; Islam, A.; Abioui, M.; Tefogoum, G.Z.; Kariminejad, N.; Mutaqin, B.W.; Pupim, F. Geomorphological regional mapping for environmental planning in developing countries. Environ. Dev. 2023, 48, 100935. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, B.; Lei, K.; Wu, Y.; Wei, D.; Zhang, B. Assessing rural landscape diversity for management and conservation: A case study in Lichuan, China. Environ. Dev. Sustain. 2024, 1–29. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, B.; Ye, S.; Grigoryan, S.; Zhang, Y.; Hu, Y. Spatial Pattern and Coordination Relationship of Production–Living–Ecological Space Function and Residents’ Behavior Flow in Rural–Urban Fringe Areas. Land 2024, 13, 446. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, X.; He, J.; Yuan, Y.; Qu, L. Identification and optimization strategy of county ecological security pattern: A case study in the Loess Plateau, China. Ecol. Indic. 2020, 112, 106030. [Google Scholar] [CrossRef]
- Gao, D.; Wang, Z.; Gao, X.; Chen, S.; Chen, R.; Gao, Y. Constructing an Ecological Network Based on Heat Environment Risk Assessment: An Optimisation Strategy for Thermal Comfort Coupling Society and Ecology. Sustainability 2024, 16, 4109. [Google Scholar] [CrossRef]
- Ding, T.; Chen, J.; Fang, L.; Ji, J. Identifying and optimizing ecological security patterns from the perspective of the water-energy-food nexus. J. Hydrol. 2024, 632, 130912. [Google Scholar] [CrossRef]
- Yang, R.; Chen, S.; Ye, Y. Toward potential area identification for land consolidation and ecological restoration: An integrated framework via land use optimization. Environ. Dev. Sustain. 2024, 26, 3127–3146. [Google Scholar] [CrossRef]
- Hong, W.; Liao, C.; Guo, R.; An, Q.; Li, X.; Ma, T. Predicting the minimum scale of urban ecological space based on socio-ecological systems analysis. Sci. Total Environ. 2023, 863, 160912. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.K.; Mishra, I. COP26: More challenges than achievements. Environ. Sustain. 2021, 4, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Fujii, H. Trend Changes and the Driving Forces of Environmental Indicators in Countries Worldwide: A Structural Change Analysis of Variations in CO2 Emissions and Eco-Efficiency. Sustainability 2024, 16, 4937. [Google Scholar] [CrossRef]
Name | Resolution | Calculated Indicators | Source |
---|---|---|---|
GlobeLand30 [30] | 30 m | habitat quality, carbon sink intensity | http://www.globallandcover.com (accessed on 18 June 2023) |
SRTM DEM | 30 m | elevation, slope, relief degree | https://earthexplorer.usgs.gov (accessed on 27 July 2023) |
Woldpop [31] | 100 m | population density | https://www.worldpop.org.uk (accessed on 27 July 2023) |
NPP-VIIRS-like NTL data [32] | 500 m | nighttime light intensity | http://nnu.geodata.cn/data (accessed on 27 July 2023) |
OpenStreetMap [33] | \ | traffic network density | https://www.openstreetmap.org (accessed on 18 August 2023) |
1-km monthly mean temperature dataset for China [34] | 1000 m | surface temperature | https://poles.tpdc.ac.cn/zh-hans (accessed on 18 August 2023) |
MOD13Q1 | 250 m | normalized difference vegetation index (NDVI) | https://ladsweb.modaps.eosdis.nasa.gov (accessed on 18 August 2023) |
Administrative boundary | \ | \ | http://www.dsac.cn (accessed on 15 June 2023) |
Type | Indicator | Method |
---|---|---|
Natural ecosystem | Elevation | The SRTM DEM data was obtained from the GEE (ID: USGS/SRTMGL1_003), and then, the elevation data was generated based on administrative boundary data and the clipping function. |
Slope | Utilizing the DEM data of the study region, the slope was computed through the slope function on the GEE. | |
Relief degree | The expression of relief degree is as follows: (2) The relief degree is denoted by , and signifies the mean elevation in the area. and respectively represent the maximum and minimum elevations of the designated area. is the flat terrain within the specific region, represents the overall area of the designated zone, and 500 is the base elevation of China. Based on expression (2) and the DEM data of the study area, the relief degree was calculated using the Zonal Statistics and Raster Calculator tools in ArcGIS 10.3. | |
Artificial ecosystem | Population density | Population density information was derived for the study area by accessing the WorldPop dataset through the GEE platform (ID: WorldPop/GP/100 m/pop) and applying the dataset to the defined administrative boundaries utilizing the image clipping functionality. |
Nighttime light intensity | Using NPP-VIIRS-like NTL data, the nighttime light intensity for the study area was acquired by employing the Extract by Mask tool in ArcGIS 10.3 software. The nighttime light intensity within the study region was extracted utilizing the NPP-VIIRS-like NTL dataset, achieved through the application of the ‘Extract by Mask’ functionality embedded in ArcGIS 10.3 software. | |
Traffic network density | The traffic network density was calculated by employing the ‘Line Density’ feature in ArcGIS 10.3, making use of the OpenStreetMap dataset that covers the region. | |
Surface temperature | The annual mean temperature was calculated for the study area by utilizing the ‘Raster Calculator’ tool integrated within ArcGIS 10.3 software, working with the 1-km monthly mean temperature dataset for China. | |
Natural–artificial interaction ecosystem | NDVI | After obtaining the MOD13Q1 data for the study area from the GEE platform (ID: MODIS/006/MOD13Q1), the monthly average NDVI was calculated using the mean function. |
Habitat quality | Utilizing the GlobeLand30 dataset of the study area, habitat quality was assessed using the ‘Habitat Quality’ component of the InVEST modeling framework. | |
Carbon sink element | Carbon sink intensity | Combining the carbon sink coefficient method with GlobeLand30 dataset of the study area, the total carbon sink for a unit land area (100 m × 100 m) was ascertained using the Zonal Statistics and Raster Calculator tools in ArcGIS 10.3 software. |
County Name | Carbon Sink Proportion (%) | Total Carbon Sink (×104 t) | |||||
---|---|---|---|---|---|---|---|
Forest | Grassland | Shrubland | Wetland | Water | Bareland | ||
Jingbian County | 7.20 | 86.36 | 1.35 | 0.76 | 4.32 | 0.01 | 4.75 |
Fuping County | 92.92 | 6.06 | 0.00 | 0.00 | 1.02 | 0.00 | 1.05 |
Chenggu County | 98.45 | 0.29 | 0.04 | 0.00 | 1.22 | 0.00 | 13.52 |
County Name | Dominant Ecological Space | Optimization Strategies |
---|---|---|
Jingbian County (Loess Plateau) | Baseline ecological space |
|
| ||
| ||
| ||
| ||
Fuping County (Guanzhong Plain) | Non-ecological space |
|
| ||
| ||
| ||
| ||
Chenggu County (Qinba Mountains) | Core ecological space |
|
| ||
| ||
| ||
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, Y.; Xia, L.; Wang, J.; Ye, H.; Liu, S.; Zhang, Z. Research on Zoning and Carbon Sink Enhancement Strategies for Ecological Spaces in Counties with Different Landform Types. Sustainability 2024, 16, 5700. https://doi.org/10.3390/su16135700
Li J, Zhang Y, Xia L, Wang J, Ye H, Liu S, Zhang Z. Research on Zoning and Carbon Sink Enhancement Strategies for Ecological Spaces in Counties with Different Landform Types. Sustainability. 2024; 16(13):5700. https://doi.org/10.3390/su16135700
Chicago/Turabian StyleLi, Jianfeng, Yang Zhang, Longfei Xia, Jing Wang, Huping Ye, Siqi Liu, and Zhuoying Zhang. 2024. "Research on Zoning and Carbon Sink Enhancement Strategies for Ecological Spaces in Counties with Different Landform Types" Sustainability 16, no. 13: 5700. https://doi.org/10.3390/su16135700
APA StyleLi, J., Zhang, Y., Xia, L., Wang, J., Ye, H., Liu, S., & Zhang, Z. (2024). Research on Zoning and Carbon Sink Enhancement Strategies for Ecological Spaces in Counties with Different Landform Types. Sustainability, 16(13), 5700. https://doi.org/10.3390/su16135700