The Integrating Impacts of Extreme Weather Events and Shrimp Farming Practices on Coastal Water Resource Quality in Ninh Thuan Province, Vietnam
Abstract
:1. Introduction
1.1. Effects of Climate Change and Extreme Weather on Coastal Shrimp Farming
1.2. Optimal Water Parameters for Shrimp Farming
1.3. Pollution Caused by Shrimp Farming Activities
1.4. Typical Weather Characteristics of the Ninh Thuan Province
1.5. Research Objectives and Contributions
2. Material and Methods
2.1. Study Area
2.2. Methods
2.2.1. Qualitative Analysis
2.2.2. Quantitative Analysis
2.2.3. Statistical Data Analysis
3. Results
3.1. Local Weather Conditions
3.2. Shrimp Farm Cultivation
3.3. Monitoring Supply Water Quality
3.3.1. Monitoring Groundwater Quality
3.3.2. Coastal Water Quality
3.4. Groundwater Quality Sampled
3.5. Analytical Results of Water Effluent Samples from Shrimp Ponds
3.5.1. Effects of Ambient Temperature on Shrimp Farming
3.5.2. Comparison of Effluent Characteristics from Shrimp Pond with and without Inlet Water Treatment Ponds
3.5.3. Comparison of Effluent from Different Shrimp Farming Areas
4. Discussion
4.1. Effects of Local Natural Conditions and Extreme Weather Events
4.2. Main Causes of Water Pollution from Shrimp Farming
4.3. Water Pollution from Coastal Shrimp Farming
4.4. Recommendations for Sustainable Shrimp Aquaculture in Ninh Thuan Province
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D.J.I. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Freitas, T.R.; Santos, J.A.; Silva, A.P.; Fraga, H.J.A. Reviewing the adverse climate change impacts and adaptation measures on almond trees (Prunus dulcis). Agriculture 2023, 13, 1423. [Google Scholar] [CrossRef]
- Mehrim, A.I.; Refaey, M.M.J.S. An overview of the implication of climate change on fish farming in Egypt. Sustainability 2023, 15, 1679. [Google Scholar] [CrossRef]
- Porter, J.R.; Semenov, M.A. Crop responses to climatic variation. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2021–2035. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef]
- Thanh, P.N.; Le Van, T.; Minh, T.T.; Ngoc, T.H.; Lohpaisankrit, W.; Pham, Q.B.; Gagnon, A.S.; Deb, P.; Pham, N.T.; Anh, D.T.J.S. Adapting to climate-change-induced drought stress to improve water management in Southeast Vietnam. Sustainability 2023, 15, 9021. [Google Scholar] [CrossRef]
- Mitra, A.; Abdel-Gawad, F.K.; Bassem, S.; Barua, P.; Assisi, L.; Parisi, C.; Temraz, T.A.; Vangone, R.; Kajbaf, K.; Kumar, V.J.W. Climate change and reproductive biocomplexity in fishes: Innovative management approaches towards sustainability of fisheries and aquaculture. Water 2023, 15, 725. [Google Scholar] [CrossRef]
- Weatherdon, L.V.; Magnan, A.K.; Rogers, A.D.; Sumaila, U.R.; Cheung, W.W. Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: An update. Front. Mar. Sci. 2016, 3, 48. [Google Scholar] [CrossRef]
- Intergovermental Panel on Climate Change. Climate Change 2007: Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2001. [Google Scholar]
- Ahmed, N.; Thompson, S.; Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef]
- Wiranegara, P.; Sunardi, S.; Sumiarsa, D.; Juahir, H.J.W. Characteristics and Changes in Water Quality Based on Climate and Hydrology Effects in the Cirata Reservoir. Water 2023, 15, 3132. [Google Scholar] [CrossRef]
- Dey, S.; Botta, S.; Kallam, R.; Angadala, R.; Andugala, J.J.C.R.i.G.; Chemistry, S. Seasonal variation in water quality parameters of Gudlavalleru Engineering College pond. Curr. Res. Green Sustain. Chem. 2021, 4, 100058. [Google Scholar] [CrossRef]
- Wurts, W.A.; Durborow, R.M. Interactions of pH, Carbon Dioxide, Alkalinity and Hardness in Fish Ponds; SRAC Publication: Stoneville, MS, USA, 1992. [Google Scholar]
- Boyd, C.E.; Tucker, C.S.; Somridhivej, B. Alkalinity and hardness: Critical but elusive concepts in aquaculture. J. World Aquac. Soc. 2016, 47, 6–41. [Google Scholar] [CrossRef]
- Hoang, T.; Ho, H.C.; Le, N.P.T.; Bui, T.H.H.J.A. Effects of high temperature on survival and feed consumption of banana shrimp Penaeus merguiensis. Aquaculture 2020, 522, 735152. [Google Scholar] [CrossRef]
- Kim, C.W.; Lee, J.-W.; Kang, S.-W.; Kang, H.S.J.W. Study on Ferritin Gene Expression to Evaluate the Health of White Leg Shrimp (Lito Penaeus vannamei) Postlarvae Due to Changes in Water Temperature, Salinity, and pH. Water 2024, 16, 1477. [Google Scholar] [CrossRef]
- Islam, M.A.; Akber, M.A.; Ahmed, M.; Rahman, M.M.; Rahman, M.R. Climate change adaptations of shrimp farmers: A case study from southwest coastal Bangladesh. Clim. Dev. 2019, 11, 459–468. [Google Scholar] [CrossRef]
- Zhu, J.; Shi, W.; Zhao, R.; Gu, C.; Li, H.; Wang, L.; Wan, X.J.F. Effects of Cold Stress on the Hemolymph of the Pacific White Shrimp Penaeus vannamei. Fishes 2024, 9, 36. [Google Scholar] [CrossRef]
- Hoffling, F.B.; Marquezi, A.S.; Pinheiro, I.; Simon, C.; Rombenso, A.N.; Seiffert, W.Q.; Vieira, F.d.N.; Schleder, D.D.J.F. Aurantiochytrium sp. Meal as Feed Additive for Pacific White Shrimp Reared under Low Temperature and Challenged by WSSV in Association with Thermal Stress. Fishes 2024, 9, 108. [Google Scholar] [CrossRef]
- Barajas-Sandoval, D.R.; Escobedo-Fregoso, C.; Quiroz-Guzman, E.; Tovar-Ramírez, D.; Py, C.A.; Peña-Rodríguez, A.J.C.B.; Molecular, P.P.A.; Physiology, I. Effect of temporal thermal stress on Penaeus vannamei: Growth performance and physiological plasticity. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2024, 295, 111653. [Google Scholar] [CrossRef]
- Thanomchaisanit, P.; Koiwai, K.; Osawa, Y.; Kuwahara, D.; Nohara, S.; Kondo, H.; Hirono, I.J.F.S. Astaxanthin supplementation enhances low-temperature stress tolerance, immune-related genes, and resistance to Vibrio parahaemolyticus in Whiteleg Shrimp Penaeus vannamei. Fish. Sci. 2024, 1–13. [Google Scholar] [CrossRef]
- Wyban, J.; Walsh, W.A.; Godin, D.M. Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture 1995, 138, 267–279. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, L.-U.; Chen, J.-C. Effect of water temperature on the immune response of white shrimp Litopenaeus vannamei to Vibrio alginolyticus. Aquaculture 2005, 250, 592–601. [Google Scholar] [CrossRef]
- Le Moullac, G.; Haffner, P. Environmental factors affecting immune responses in Crustacea. Aquaculture 2000, 191, 121–131. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Quality in Warmwater Fish Ponds; Agricultural Experiment Station, Auburn University: Auburn, AL, USA, 1979. [Google Scholar]
- Ostrensky, A.; Marchiori, M.A.; Poersch, L.H. Toxicidade aguda da amônia no processo produtivo de pós-larvas de Penaeus paulensis, Pérez-Farfante, 1967. An. Acad. Bras. Ciências 1992, 64, 383–389. [Google Scholar]
- Boyd, C.E.; Green, B.W. Coastal water quality monitoring in shrimp farming areas, an example from Honduras. In Report Prepared under the World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment. Work in Progress for Public Discussion; FAO Consortium: Rome, Italy, 2002; 29p. [Google Scholar]
- Ferreira, N.; Bonetti, C.; Seiffert, W. Hydrological and water quality indices as management tools in marine shrimp culture. Aquaculture 2011, 318, 425–433. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhang, Q.; Liu, P.; Guo, R.; Jin, S.; Liu, J.; Chen, L.; Ma, Z.; Liu, Y. Evaluation and analysis of water quality of marine aquaculture area. Int. J. Environ. Res. Public Health 2020, 17, 1446. [Google Scholar] [CrossRef]
- Kibria, G.; Nugegoda, D.; Rose, G.; Haroon, A.Y. Climate change impacts on pollutants mobilization and interactive effects of climate change and pollutants on toxicity and bioaccumulation of pollutants in estuarine and marine biota and linkage to seafood security. Mar. Pollut. Bull. 2021, 167, 112364. [Google Scholar] [CrossRef]
- Jamal, M.R.; Kristiansen, P.; Kabir, M.J.; de Bruyn, L.L. Risks and adaptation dynamics in shrimp and prawn-based farming systems in southwest coastal Bangladesh. Aquaculture 2023, 562, 738819. [Google Scholar] [CrossRef]
- Li, T.; Zhang, B.; Zhu, C.; Su, J.; Li, J.; Chen, S.; Qin, J. Effects of an ex situ shrimp-rice aquaponic system on the water quality of aquaculture ponds in the Pearl River estuary, China. Aquaculture 2021, 545, 737179. [Google Scholar] [CrossRef]
- Drizo, A.; Shaikh, M.O. An assessment of approaches and techniques for estimating water pollution releases from aquaculture production facilities. Mar. Pollut. Bull. 2023, 196, 115661. [Google Scholar] [CrossRef]
- Mustafa, A.; Paena, M.; Athirah, A.; Ratnawati, E.; Asaf, R.; Suwoyo, H.S.; Sahabuddin, S.; Hendrajat, E.A.; Kamaruddin, K.; Septiningsih, E. Temporal and spatial analysis of coastal water quality to support application of whiteleg shrimp Litopenaeus vannamei intensive pond technology. Sustainability 2022, 14, 2659. [Google Scholar] [CrossRef]
- Bull, E.; Cunha, C.d.L.d.N.; Scudelari, A. Water quality impact from shrimp farming effluents in a tropical estuary. Water Sci. Technol. 2021, 83, 123–136. [Google Scholar] [CrossRef]
- Kais, S.M.; Islam, M.S. Impacts of and resilience to climate change at the bottom of the shrimp commodity chain in Bangladesh: A preliminary investigation. Aquaculture 2018, 493, 406–415. [Google Scholar] [CrossRef]
- Lebel, L.; Jutagate, T.; Thanh Phuong, N.; Akester, M.J.; Rangsiwiwat, A.; Lebel, P.; Phousavanh, P.; Navy, H.; Soe, K.M.; Lebel, B. Climate risk management practices of fish and shrimp farmers in the Mekong Region. Aquac. Econ. Manag. 2021, 25, 388–410. [Google Scholar] [CrossRef]
- Adger, W.N. Social vulnerability to climate change and extremes in coastal Vietnam. World Dev. 1999, 27, 249–269. [Google Scholar] [CrossRef]
- Cuesta, J.; Cai, L.; Madrigal, L.; Pecorari, N.J.S. Exposure to Climatic Risks and Social Sustainability in Vietnam. Sustainability 2023, 15, 3260. [Google Scholar] [CrossRef]
- Vien, T.D. Climate change and its impact on agriculture in Vietnam. J. Int. Soc. Southeast Asian Agric. Sci. 2011, 17, 17–21. [Google Scholar]
- Nguyen, M.-L.; Kim, M.-S.; Nguyen, N.-T.N.; Nguyen, X.-T.; Cao, V.-L.; Nguyen, X.-V.; Vieira, C.J.P. Marine floral biodiversity, threats, and conservation in Vietnam: An updated review. Plants 2023, 12, 1862. [Google Scholar] [CrossRef] [PubMed]
- Nhung, N.T.T.; Hoang, L.T.; Tuyet Hanh, T.T.; Toan, L.Q.; Thanh, N.D.; Truong, N.X.; Son, N.A.; Nhat, H.V.; Quyen, N.H.; Nhu, H.V. Effects of Heatwaves on Hospital Admissions for Cardiovascular and Respiratory Diseases, in Southern Vietnam, 2010–2018: Time Series Analysis. Int. J. Environ. Res. Public Health 2023, 20, 3908. [Google Scholar] [CrossRef] [PubMed]
- Brander, K.M. Global fish production and climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19709–19714. [Google Scholar] [CrossRef]
- Muruganandam, M.; Rajamanickam, S.; Sivarethinamohan, S.; Reddy, M.K.; Velusamy, P.; Gomathi, R.; Ravindiran, G.; Gurugubelli, T.R.; Munisamy, S.K. Impact of climate change and anthropogenic activities on aquatic ecosystem–A review. Environ. Res. 2023, 238, 117233. [Google Scholar]
- De Silva, S.S.; Soto, D. Climate change and aquaculture: Potential impacts, adaptation and mitigation. In Climate Change Implications for Fisheries and Aquaculture: Overview of Current Scientific Knowledge; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2009; Volume 530, pp. 151–212. [Google Scholar]
- Craeye, B. Analysis of the Aquaculture Sector in Ninh Thuan Province, Vietnam. Master’s Thesis, Université de Liège, Liège, Belgium, 2019. [Google Scholar]
- McIntosh, D.; Fitzsimmons, K. Characterization of effluent from an inland, low-salinity shrimp farm: What contribution could this water make if used for irrigation. Aquac. Eng. 2003, 27, 147–156. [Google Scholar] [CrossRef]
- Van, T.B.; Quang, T.T.; The, K.N. Climate Change Vulnerability of Urban Development in Phanrang-Thapcham (Ninh Thuan, Vietnam). In Global Changes and Sustainable Development in Asian Emerging Market Economies; Volume 2: Proceedings of EDESUS 2019; Springer: Cham, Switzerland, 2022; pp. 843–856. [Google Scholar]
- Tuan, N.H.; Canh, T.T. Analysis of trends in drought with the non-parametric approach in Vietnam: A case study in Ninh Thuan Province. Am. J. Clim. Chang. 2021, 10, 51. [Google Scholar] [CrossRef]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. (Eds.) Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA/AWWA/WEF: Washington, DC, USA, 2012. [Google Scholar]
- APHA; AWWA; WPCE. Standard Methods for Examination of Water and Waste Water, 18th ed.; APHA/AWWA/WPCE: Washington, DC, USA, 1992. [Google Scholar]
- ISO 9963/1:1994; Water Quality—Determination of Alkalinity—Part 1: Determination of Total and Composite Alkalinity. ISO: Geneva, Switzerland, 1994.
- TCVN 6625:2000; Water Quality—Determination Suspended Solids by Filtration Through Glass-Fibre Filters. Ministry of Science, Technology and Environment: Hanoi, Vietnam, 2000; 11p.
- ISO 5664; Water Quality—Determination of Ammonium—Distillation and Titration Method. ISO: Geneva, Switzerland, 1984.
- ISO 6777:1984; Water Quality—Determination of Nitrite—Molecular Absorption Spectrometric Method. ISO: Geneva, Switzerland, 1984.
- ISO 7890-3:1988; Water Quality—Determination of Nitrate—Part 3: Spectrometric Method Using Sulfosalicylic Acid. ISO: Geneva, Switzerland, 1988.
- ISO 6878:2004; Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method. ISO: Geneva, Switzerland, 2004.
- ISO 6060:1989; Water Quality—Determination of the Chemical Oxygen Demand. ISO: Geneva, Switzerland, 1989.
- ISO 5815-1:2003; Water Quality: Determination of Biochemical Oxygen Demand after n Days (BODn), Part 1: Dilution and Seeding Method with Allylthiourea Addition. ISO: Geneva, Switzerland, 2003.
- ISO 6059-1984; Determination of Total Content of Calcium and Magnesium. Titration Method Using Ethylenedia-Minetetraacetic Acid. ISO: Geneva, Switzerland, 1984.
- ISO 9308-1:1990; Water Quality. Detection and Enumeration of Coliform Organisms, Thermotolerant Organisms and Presuntive Escherichia coli. Part 1: Membrane Filtration Method. ISO: Geneva, Switzerland, 1990.
- QCVN 09:2023/BTNMT; National Technical Regulation on Ground Water Quality. Ministry of Science and Technology: Hanoi, Vietnam, 2023.
- QCVN 02-19:2014/BNNPTNT; National Technical Regulation on Brackish Water Shrimp Farming—Conditions for Ensuring Veterinary Hygiene, Environmental Protection and Food Safety. Ministry of Science and Technology: Hanoi, Vietnam, 2014.
- Krenkel, P. Water Quality Management; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- QCVN 10:2023/BTNMT; National Technical Regulation on Marine Water Quality. Ministry of Science and Technology: Hanoi, Vietnam, 2023.
- Boyd, C.E. Guidelines for aquaculture effluent management at the farm-level. Aquaculture 2003, 226, 101–112. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Quality for Pond Aquaculture; International Center for Aquaculture and Aquatic Environments, Alabama Agricultural Experiment Station, Auburn University: Auburn, AL, USA, 1998. [Google Scholar]
- Allan, G.L.; Maguire, G.B. Lethal levels of low dissolved oxygen and effects of short-term oxygen stress on subsequent growth of juvenile Penaeus monodon. Aquaculture 1991, 94, 27–37. [Google Scholar] [CrossRef]
- Samocha, T.M.; Lopez, I.; Jones, E.; Jackson, S.; Lawrence, A. Characterization of intake and effluent waters from intensive and semi-intensive shrimp farms in texas. Aquac. Res. 2004, 35, 321–339. [Google Scholar] [CrossRef]
- Dhar, A.R.; Uddin, M.T.; Roy, M.K. Assessment of organic shrimp farming sustainability from economic and environmental viewpoints in Bangladesh. Environ. Res. 2020, 180, 108879. [Google Scholar] [CrossRef]
- Jayasinghe, J.; Gamage, D.; Jayasinghe, J. Combating climate change impacts for shrimp aquaculture through adaptations: Sri Lankan perspective. In Sustainable Solutions for Food Security: Combating Climate Change by Adaptation; Springer: Cham, Switzerland, 2019; pp. 287–309. [Google Scholar]
- Didar-Ul Islam, S.; Bhuiyan, M.A.H. Impact scenarios of shrimp farming in coastal region of Bangladesh: An approach of an ecological model for sustainable management. Aquac. Int. 2016, 24, 1163–1190. [Google Scholar] [CrossRef]
Parameter | Monitoring Value (*) (Mean ± Std) | Control Limit 1 (a) | Control Limit 2 (b) | Warning Limit |
---|---|---|---|---|
pH | 8.1 ± 0.4 | 5.5–8.5 | 7.0–9.0 | 6.0–9.0 (c) |
Alkalinity total as CaCO3 (mg·L−1) | 162 ± 29 | - | 60–180 | >100 (d) |
Salinity (g·L−1) | 28.2 ± 6.1 | - | 5–35 | - |
NH4-N (mg·L−1) | 0.22 ± 0.16 | 1.00 | <0.30 | <3.00 (c) |
NO2-N (mg·L−1) | 0.10 ± 0.00 | 1.00 | - | ≤0.09 (e) |
PO4-P (mg·L−1) | 0.44 ± 0.30 | - | - | <0.10 (c) |
Parameter | Monitoring Value (*) (Mean ± Std) | Control Limit 1 (a) | Control Limit 2 (b) | Warning Limit |
---|---|---|---|---|
pH | 7.6 ± 0.3 | 6.5–8.5 | 7.0–9.0 | 6–9 (c) |
DO (mg·L−1) | 5.3 ± 1.1 | ≥5 | - | 5–6 (c) |
TSS (mg·L−1) | 21.8 ± 13.0 | 50 | - | <100 (d) |
BOD5 (mg·L−1) | 55 ± 18 | - | ≤20 | <6 (c) |
NH4-N (mg·L−1) | 0.87 ± 0.71 | - | <0.3 | <3 (c) |
NO2-N (mg·L−1) | 0.03 ± 0.05 | - | - | <0.09 (e) |
NO3-N (mg·L−1) | 0.58 ± 1.13 | - | - | <10 (f) |
PO4-P (mg·L−1) | 0.06 ± 0.05 | 0.2 | - | <0.1 (c) |
Parameter | Measured Value (Mean ± Std) | Control Limit 1 (a) | Control Limit 2 (b) | Control Limit 3 (c) | Warning Limit |
---|---|---|---|---|---|
pH | 7.35 ± 0.27 | 5.5–8.5 | 7.0–9.0 | 6.5–8.5 | 6.0–9.0 (d) |
Alkalinity total as CaCO3 (mg·L−1) | 120 ± 20 | - | 60–180 | - | >100 (e) |
Salinity (g·L−1) | 27.74 ± 7.23 | - | 5–35 | - | - |
TDS (mg·L−1) | 38.61 ± 10.46 | 1500 | - | - | - |
Turbidity (NTU) | 22.01 ± 16.76 | - | - | - | - |
DO (mg·L−1) | 2.81 ± 1.37 | - | ≥3.5 | ≥5.0 | <2.0 (g) |
BOD5 (mg·L−1) | 11.40 ± 7.44 | - | - | - | - |
COD (mg·L−1) | 50.80 ± 30.05 | - | - | - | - |
NO3-N (mg·L−1) | <0.03 | 15 | - | - | <3.0 (d) |
NO2-N (mg·L−1) | 0.68 ± 0.86 | 1 | - | - | ≤0.09 (f) |
TN (mg·L−1) | 8.76 ± 5.44 | - | - | - | - |
PO4-P (mg·L−1) | 4.67 ± 3.6 | - | - | 0.2 | <0.1 (d) |
Total Iron (mg·L−1) | 0.58 ± 0.53 | 5 | - | 0.5 | - |
Hardness total as CaCO3 (mg·L−1) | 350 ± 50 | 500 | - | - | - |
Total Coliform (MPN/100 mL) | 104 | 3 | - | 1000 | - |
Parameter | Measured Value (Mean ± Std) | Control Limit (a) | Ref. 1 (b) (Mean ± Std) | Ref. 2 (c) (Mean ± Std) |
---|---|---|---|---|
pH | 7.89 ± 0.31 | 5.5–9.0 | 8.09 ± 0.05 | 7.77 ± 0.03 |
Salinity (g·L−1) | 22.06 ± 7.83 | - | 38.49 ± 0.62 | 12.66 ± 0.31 |
TSS (mg·L−1) | 45.01 ± 28.67 | ≤100 | 9.3 ± 3.0 | 92.97 ± 7.79 |
DO (mg·L−1) | 2.5 ± 2.0 | - | 5.21 ± 0.7 | 4.80 ± 0.06 |
BOD5 (mg·L−1) | 44.95 ± 29.67 | ≤50 | - | 2.95 ± 0.18 |
COD (mg·L−1) | 102.89 ± 76.63 | ≤150 | - | - |
NO3-N (mg·L−1) | 1.26 ± 0.69 | - | 0.14 ± 0.05 | 0.67 ± 0.04 |
NO2-N (mg·L−1) | 0.1 ± 0.14 | - | 0.0002 ± 0.0003 | 0.41 ± 0.03 |
TN (mg·L−1) | 5.57 ± 2.71 | - | - | - |
PO4-P (mg·L−1) | 0.24 ± 0.42 | - | 0.035 ± 0.043 | 0.24 ± 0.03 |
Parameter | Type 1 | Type 2 | p-Value (*) |
---|---|---|---|
(Mean ± Std) | (Mean ± Std) | ||
pH | 7.947 ± 0.293 | 7.793 ± 0.308 | <0.05 |
Salinity (g·L−1) | 23.111 ± 7.768 | 23.307 ± 6.399 | <0.05 |
TSS (mg·L−1) | 38.083 ± 26.229 | 53.129 ± 28.706 | <0.05 |
BOD5 (mg·L−1) | 50.37 ± 29.771 | 43.769 ± 32.963 | 0.79 |
COD (mg·L−1) | 103.74 ± 76.613 | 93.842 ± 74.438 | <0.05 |
NO3-N (mg·L−1) | 1.188 ± 0.71 | 1.403 ± 0.633 | <0.05 |
NO2-N (mg·L−1) | 0.091 ± 0.117 | 0.091 ± 0.162 | 0.28 |
TN (mg·L−1) | 4.821 ± 2.309 | 6.664 ± 3.296 | <0.05 |
PO4-P (mg·L−1) | 0.287 ± 0.51 | 0.216 ± 0.308 | 0.21 |
Parameter | Area 1 | Area 2 | Area 3 | p-Value (*) |
---|---|---|---|---|
(Mean ± Std) | (Mean ± Std) | (Mean ± Std) | ||
pH | 7.872 ± 0.266 | 7.972 ± 0.383 | 7.878 ± 0.305 | <0.05 |
Salinity (g·L−1) | 21.102 ± 5.207 | 18.652 ± 8.14 | 23.959 ± 8.484 | <0.05 |
TSS (mg·L−1) | 40.05 ± 30.13 | 56.56 ± 30.50 | 42.64 ± 25.89 | <0.05 |
BOD5 (mg·L−1) | 49.37 ± 33.14 | 36.65 ± 28.34 | 47.30 ± 29.05 | 0.403 |
COD (mg·L−1) | 110.39 ± 81.90 | 129.93 ± 82.02 | 88.68 ± 68.08 | <0.05 |
NO3-N (mg·L−1) | 0.978 ± 0.651 | 1.451 ± 0.676 | 1.338 ± 0.669 | <0.05 |
NO2-N (mg·L−1) | 0.113 ± 0.148 | 0.172 ± 0.195 | 0.061 ± 0.086 | <0.05 |
TN (mg·L−1) | 5.812 ± 2.813 | 6.048 ± 2.537 | 5.123 ± 2.709 | 0.16 |
PO4-P (mg·L−1) | 0.352 ± 0.577 | 0.189 ± 0.34 | 0.191 ± 0.288 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, T.T.; Nguyen, K.L.P.; Le, H.A.; Eppe, G. The Integrating Impacts of Extreme Weather Events and Shrimp Farming Practices on Coastal Water Resource Quality in Ninh Thuan Province, Vietnam. Sustainability 2024, 16, 5701. https://doi.org/10.3390/su16135701
Cao TT, Nguyen KLP, Le HA, Eppe G. The Integrating Impacts of Extreme Weather Events and Shrimp Farming Practices on Coastal Water Resource Quality in Ninh Thuan Province, Vietnam. Sustainability. 2024; 16(13):5701. https://doi.org/10.3390/su16135701
Chicago/Turabian StyleCao, Thu Thuy, Kieu Lan Phuong Nguyen, Hung Anh Le, and Gauthier Eppe. 2024. "The Integrating Impacts of Extreme Weather Events and Shrimp Farming Practices on Coastal Water Resource Quality in Ninh Thuan Province, Vietnam" Sustainability 16, no. 13: 5701. https://doi.org/10.3390/su16135701
APA StyleCao, T. T., Nguyen, K. L. P., Le, H. A., & Eppe, G. (2024). The Integrating Impacts of Extreme Weather Events and Shrimp Farming Practices on Coastal Water Resource Quality in Ninh Thuan Province, Vietnam. Sustainability, 16(13), 5701. https://doi.org/10.3390/su16135701