Recovery of Cleaning Solutions from Dairy Manufacturing Effluents Using Membrane Technology
Abstract
:1. Introduction
2. Materials and Methods
- Flux (L·m−2·h−1):
- Recovery rate (%):
- Normalized flux (%):
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morseletto, P.; Eline Mooren, C.; Munaretto, S. Circular economy of water: Definition, strategies and challenges. Circ. Econ. Sustain. 2022, 2, 1463–1477. [Google Scholar] [CrossRef]
- Ajiero, I.; Campbell, D. Benchmarking water use in the UK food and drink sector: Case study of three water-intensive dairy products. Water Conserv. Sci. Eng. 2018, 3, 1–17. [Google Scholar] [CrossRef]
- Pant, K.J.; Cotter, P.D.; Wilkinson, M.G.; Sheehan, J.J. Towards sustainable Cleaning-in-Place (CIP) in dairy processing: Exploring enzyme-based approaches to cleaning in the Cheese industry. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3602–3619. [Google Scholar] [CrossRef] [PubMed]
- AEB Cleaning Procedures. Available online: https://www.aeb-group.com/media/procedure-lavaggio/depliant/SINGLE-PHASE_PROCEDURES_AEB_LR.pdf (accessed on 25 January 2024).
- CIP Cleaning Operations by Single-Phase Acid Procedure, Italian Food Tech, February 2018. Available online: https://www.italianfoodtech.com/cip-cleaning-operations-by-single-phase-acid-procedure/ (accessed on 25 January 2024).
- Single-Step Acid Wash Cleaner to Improve Cleaning Efficiency. Available online: https://www.food-safety.com/articles/2521-single-step-acid-wash-cleaner-to-improve-cleaning-efficiency (accessed on 25 January 2024).
- Nagappan, S.; Phinney, D.M.; Heldman, D.R. Management of waste streams from dairy manufacturing operations using membrane filtration and dissolved air flotation. Appl. Sci. 2018, 8, 2694. [Google Scholar] [CrossRef]
- Kolev Slavov, A. Dairy wastewater treatment review. Food Technol. Biotechnol. 2017, 55, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Alalam, S.; Ben-Souilah, F.; Lessard, M.-H.; Chamberland, J.; Perreault, V.; Pouliot, Y.; Labrie, S.; Doyen, A. Characterization of chemical and bacterial compositions of dairy wastewaters. Dairy 2021, 2, 179–190. [Google Scholar] [CrossRef]
- Merin, U.; Gésan-Guiziou, G.; Boyaval, E.; Daufin, G. Cleaning-in-place in the dairy industry: Criteria for reuse of caustic (NaOH) solutions. Lait 2002, 82, 357–366. [Google Scholar] [CrossRef]
- Silva, L.D.; Aguiar, M.M.; Paiva, A.D.; Bernardes, P.C.; Gedraite, R.; Araújo Naves, E.A. Optimization of clean-in-place (CIP) procedure of pipelines contaminated with Bacillus cereus by applying pulsed flow. Food Control 2023, 147, 109565. [Google Scholar] [CrossRef]
- Fernández, P.; Riera, F.A.; Álvarez, R.; Álvarez, S. Nanofiltration regeneration of contaminated single-phase detergents used in the dairy industry. J. Food Eng. 2010, 97, 319–328. [Google Scholar] [CrossRef]
- Suárez, L.; Diez, M.A.; Riera, F.A. Recovery of detergents in food industry: An industrial approach. Desalin. Water Treat. 2015, 56, 967–976. [Google Scholar] [CrossRef]
- Kowalska, I. Concentration of contaminated single-phase detergents by means of unit and integrated membrane processes. Sep. Sci. Technol. 2016, 51, 1199–1209. [Google Scholar] [CrossRef]
- Kim, W.J.; Huellemeier, H.; Heldman, D.R. Recovery of cleaning agents from clean-in-place (CIP) wastewater using nanofiltration (NF) and forward osmosis (FO). J. Water Process Eng. 2023, 53, 103617. [Google Scholar] [CrossRef]
- Product Data Sheet of the Inside CeRam Modules. Available online: https://www.tami-industries.com/en/produits/inside-ceram-4/ (accessed on 25 January 2024).
- Product Data Sheet of the Romicon® Modules. Available online: https://www.kovalus.com/wp-content/uploads/2020/10/Romicon-5-inch-hollow-fiber-cartridges.pdf (accessed on 25 January 2024).
- Product Data Sheet of the PCI Modules. Available online: https://www.pcimembranes.com/wp-content/uploads/2019/10/Membrane-Data-Sheet-AFC30AFC40.pdf (accessed on 25 January 2024).
- Hofs, B.; Ogier, J.; Vries, D.; Beerendonk, E.F.; Cornelissen, E.R. Comparison of ceramic and polymeric membrane permeability and fouling using surface water. Sep. Purif. Technol. 2011, 79, 365–374. [Google Scholar] [CrossRef]
- Simon, A.; Price, W.E.; Nghiem, L.D. Influence of formulated chemical cleaning reagents on the surface properties and separation efficiency of nanofiltration membranes. J. Membr. Sci. 2013, 432, 73. [Google Scholar] [CrossRef]
- Oh, N.-W.; Jegal, J.; Lee, K.-H. Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). I. Preparation and modification of PAN supports. J. Appl. Polym. Sci. 2001, 80, 1854–1862. [Google Scholar] [CrossRef]
- Gul, A.; Hruza, J.; Dvorak, L.; Yalcinkaya, F. Chemical cleaning process of polymeric nanofibrous membranes. Polymers 2022, 14, 1102. [Google Scholar] [CrossRef] [PubMed]
- Jun, B.-M.; Yoon, Y.; Park, C.M. Post-Treatment of Nanofiltration Polyamide Membrane through Alkali-Catalyzed Hydrolysis to Treat Dyes in Model Wastewater. Water 2019, 11, 1645. [Google Scholar] [CrossRef]
- Pérez-Álvarez, L.; Ruiz-Rubio, L.; Moreno, I.; Vilas-Vilela, J.L. Characterization and Optimization of the Alkaline Hydrolysis of Polyacrylonitrile Membranes. Polymers 2019, 11, 1843. [Google Scholar] [CrossRef]
- Davoodi, S.H.; Shahbazi, R.; Esmaeili, S.; Sohrabvandi, S.; Mortazavian, A.; Jazayeri, S.; Taslimi, A. Health-related aspects of milk proteins. Iran. J. Pharm. Res. 2016, 15, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Farrell, H.M., Jr.; Jimenez-Flores, R.; Bleck, G.T.; Brown, E.M.; Butler, J.E.; Creamer, L.K.; Hicks, C.L.; Hollar, C.M.; Ng-Kwai-Hang, K.F.; Swaisgood, H.E. Nomenclature of the proteins of cows’ milk—Sixth revision. J. Dairy Sci. 2006, 87, 1641–1674. [Google Scholar] [CrossRef]
- Onwulata, C.I.; Isobe, S.; Tomasula, P.M.; Cooke, P.H. Properties of whey protein isolates extruded under acidic and alkaline conditions. J. Dairy Sci. 2006, 89, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Sun, J.; Cao, D.; Tuo, Y.; Jiang, S.; Mu, G. Experimental and modelling study of the denaturation of milk protein by heat treatment. Korean J. Food Sci. Anim. Resour. 2017, 37, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Post, A.E.; Arnold, B.; Weiss, J.; Hinrichs, J. Effect of temperature and pH on the solubility of caseins: Environmental influences on the dissociation of αS-and β-casein. J. Dairy Sci. 2012, 95, 1603–1616. [Google Scholar] [CrossRef]
- Loginov, M.; Doudiès, F.; Hengl, N.; Karrouch, M.; Leconte, N.; Garnier-Lambrouin, F.; Pérez, J.; Pignon, F.; Gésan-Guiziou, G. On the reversibility of membrane fouling by deposits produced during crossflow ultrafiltration of casein micelle suspensions. J. Membr. Sci. 2021, 630, 119289. [Google Scholar] [CrossRef]
- Arunkumar, A.; Etzel, M.R. Milk protein concentration using negatively charged ultrafiltration membranes. Foods 2018, 7, 134. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, A.S.; Jönsson, B. The influence of nonionic and ionic surfactants on hydrophobic and hydrophilic ultrafiltration membranes. J. Membr. Sci. 1991, 56, 49. [Google Scholar] [CrossRef]
- Huang, j.; Luo, J.; Chen, X.; Feng, S.; Wan, Y. New insights into effect of alkaline cleaning on fouling behavior of polyamide nanofiltration membrane for wastewater treatment. Sci. Total Environ. 2021, 780, 146632. [Google Scholar] [CrossRef]
- Kowalska, I. Dead-end and cross-flow ultrafiltration of ionic and non-ionic surfactants. Des. Water Treat. 2012, 50, 397–410. [Google Scholar] [CrossRef]
- Sharma, A. Equilibrium dialysis studies on the binding of anionic surfactants with bovine milk casein. J. Appl. Pharm. Sci. 2012, 2, 102–105. [Google Scholar]
- Madaeni, S.S.; Rostami, E.; Rahimpour, A. Surfactant cleaning of ultrafiltration membranes fouled by whey. Int. J. Dairy Technol. 2010, 63, 273–283. [Google Scholar] [CrossRef]
- Jelińska, A.; Zagożdżon, A.; Górecki, M.; Wisniewska, A.; Frelek, J.; Holyst, R. Denaturation of proteins by surfactants studied by the Taylor dispersion analysis. PLoS ONE 2017, 20, e175838. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.Y.; Hussain, S.; Tsay, R.Y.; Noskov, B.A.; Akentiev, A.; Lin, S.Y. On the equilibrium surface tension of aqueous protein solutions—Bovine serum albumin. J. Mol. Liq. 2022, 347, 118305. [Google Scholar] [CrossRef]
- Marinova, K.G.; Basheva, E.S.; Nenova, B.; Temelska, M.; Mirarefi, A.Y.; Campbell, B.; Ivanov, I.B. Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocoll. 2009, 23, 1864–1876. [Google Scholar] [CrossRef]
Parameter | Value | Procedure |
---|---|---|
pH | 12.85 ± 0.05 | Hach pH-meter |
Conductivity, mS/cm | 30.3 ± 0.6 | Hach conductivity meter |
NaOH, % | 0.59 ± 0.02 | a titration method, with the use of 0.1 M HCl and phenolphthalein as an indicator |
Turbidity, NTU | 1161 ± 66 | Hach 2100 N Turbidity Meter |
Anionic surfactant, mg/L | 26.6 ± 1.4 | Metrohm 785 DMP Titrino |
COD, mg O2/L | 3558 ± 384 | Hach DR/2000, cuvette tests, |
TDS, mg/L | 11,485 ± 1385 | Standard Methods |
Surface tension, mN/m | 38.1 ± 1.3 | Krüss EasyDyne tensiometer (22 °C) |
Protein, mg/L | 498 ± 32 | Bradford method |
Lactose, mg/L | 706 ± 51 | Miller method |
Parameter | Module | |||
---|---|---|---|---|
Ceramic | Polymeric | |||
C5 | C10 | PM5 | AFC30 | |
Type | UF | UF | UF | NF |
Cut-off, Da | 5000 | 10,000 | 5000 | 200 |
Salt rejection, % | 75 for CaCl2 | |||
Material | zirconium dioxide/titanium dioxide | zirconium dioxide/titanium dioxide | polysulfone | polyamide |
Module area, m2 | 0.013 | 0.013 | 0.090 | 0.024 |
Configuration | tubular | tubular | hollow fibre | tubular |
Pure water permeability of clean module a, L·m−2·h−1·bar−1 | 15.7 | 72.3 | 75.2 | 2.9 |
Process | RR, % | 100-FN, % |
---|---|---|
C5 | 77 | 55 |
C10 | 77 | 64 |
PM5 | 74 | 61 |
C5 + AFC30 * | 74 | −6 ** |
C10 + AFC30 * | 74 | 12 |
PM5 + AFC30 * | 75 | 11 |
Process | Parameter | |||
---|---|---|---|---|
pH | Conductivity, mS/cm | Turbidity, NTU | TDS, mg/L | |
C5 | 12.78 ± 0.17 | 22.90 ± 0.64 | 2.7 ± 0.19 | 7109 ± 376 |
C5 + AFC30 | 12.53 ± 0.21 | 20.90 ± 0.65 | 0.9 ± 0.08 | 5511 ± 489 |
C10 | 12.65 ± 0.19 | 25.90 ± 0.82 | 3.6 ± 0.24 | 8860 ± 354 |
C10 + AFC30 | 12.62 ± 0.15 | 23.60 ± 0.78 | 1.0 ± 0.21 | 6951 ± 434 |
PM5 | 12.94 ± 0.26 | 27.10 ± 0.47 | 3.9 ± 0.37 | 8455 ± 259 |
PM5 + AFC30 | 12.78 ± 0.32 | 24.20 ± 0.47 | 1.1 ± 0.11 | 7369 ± 654 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, I. Recovery of Cleaning Solutions from Dairy Manufacturing Effluents Using Membrane Technology. Sustainability 2024, 16, 5793. https://doi.org/10.3390/su16135793
Kowalska I. Recovery of Cleaning Solutions from Dairy Manufacturing Effluents Using Membrane Technology. Sustainability. 2024; 16(13):5793. https://doi.org/10.3390/su16135793
Chicago/Turabian StyleKowalska, Izabela. 2024. "Recovery of Cleaning Solutions from Dairy Manufacturing Effluents Using Membrane Technology" Sustainability 16, no. 13: 5793. https://doi.org/10.3390/su16135793
APA StyleKowalska, I. (2024). Recovery of Cleaning Solutions from Dairy Manufacturing Effluents Using Membrane Technology. Sustainability, 16(13), 5793. https://doi.org/10.3390/su16135793