Inhibitory Effects of Biochar on N2O Emissions through Soil Denitrification in Huanghuaihai Plain of China and Estimation of Influence Time
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Site
2.2. Experimental Design
2.3. Sample Collection and Determination
2.4. Construction of an Ecological Model to Predict Biochar’s Duration of Effectiveness
2.5. Statistical Analysis
3. Results
3.1. Effects of Biochar Doses and Application Frequency on Soil N2O Emissions
3.2. Effects of Biochar Dosage and Frequency on Soil Inorganic Nitrogen, Temperature, and Moisture
3.3. Effects of Biochar Dosage and Frequency on Functional Genes
3.4. SEM of Biochar’s Effects on Soil N2O Emissions
3.5. Prediction of the Inhibition Time of Biochar on Soil N2O Emissions Based on the Logistic Ecological Model
4. Discussion
4.1. Effects of Biochar on Soil Environment and Inorganic Nitrogen
4.2. Influence of Biochar on Soil N2O Emissions and Its Temporal Effects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
N2O | Nitrous oxide |
AOB | Ammonia-oxidizing bacteria |
AOA | Ammonia-oxidizing archaea |
nirK | Nitrite reductase K |
nirS | Nitrite reductase S |
nosZ | Nitric oxide reductase |
References
- Ma, R.Y.; Yu, K.; Xiao, S.Q.; Liu, S.W.; Ciais, P.; Zou, J.W. Data-driven estimates of fertilizer-induced soil NH3, NO and N2O emissions from croplands in China and their climate change impacts. Glob. Chang. Biol. 2022, 28, 1008–1022. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.F.; Liu, P.; Hu, J.M.; Zhang, F. Agriculture-Induced N2O Emissions and Reduction Strategies in China. Int. J. Environ. Res. Public Health 2022, 19, 12193. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.B.; Li, J.H.; Yao, Z.L.; Li, X.; Wang, W.J.; Wu, Z.C.; Zhou, Q. Characteristics and reduction assessment of GHG emissions from crop residue open burning in China under the targets of carbon peak and carbon neutrality. Sci. Total Environ. 2023, 905, 167235. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, D.Z.; Shi, W.; Deng, C.C.; Chen, C.B.; Feng, S.J. Global evaluation of carbon neutrality and peak carbon dioxide emissions: Current challenges and future outlook. Environ. Sci. Pollut. Res. 2023, 30, 81725–81744. [Google Scholar] [CrossRef]
- Qin, F.Z.; Li, J.L.; Zhang, C.; Zeng, G.M.; Huang, D.L.; Tan, X.F.; Qin, D.Y.; Tan, H. Biochar in the 21st century: A data-driven visualization of collaboration, frontier identification, and future trend. Sci. Total Environ. 2022, 818, 151774. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Kieffer, C.; Ren, W.; Hui, D.F. How much is soil nitrous oxide emission reduced with biochar application? An evaluation of meta-analyses. GCB Bioenergy 2023, 15, 24–37. [Google Scholar] [CrossRef]
- Wang, L.; Chen, D.J.; Zhu, L.Z. Biochar carbon sequestration potential rectification in soils: Synthesis effects of biochar on soil CO2, CH4 and N2O emissions. Sci. Total Environ. 2023, 904, 167047. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Dong, Y.B.; Zhang, X.; Xu, X.T.; Xiong, Z.Q. Biochar single application and reapplication decreased soil greenhouse gas and nitrogen oxide emissions from rice–wheat rotation: A three-year field observation. Geoderma 2023, 435, 116498. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gu, L.P.; Gui, D.Y.; Xu, B.; Li, R.; Chen, X.; Sha, Z.P.; Pan, X.J. Suitable biochar application practices simultaneously alleviate N2O and NH3 emissions from arable soils: A meta-analysis study. Environ. Res. 2024, 242, 117750. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.B.; Zhou, J.S.; Chen, J.; Ge, T.D.; Cai, Y.J.; Yu, B.; Wang, H.L.; White, J.; Li, Y.F. Changes in soil CO2 and N2O emissions in response to urea and biochar-based urea in a subtropical Moso bamboo forest. Soil Tillage Res. 2023, 228, 105625. [Google Scholar] [CrossRef]
- Wu, P.; Xie, M.; Clough, T.J.; Yuan, D.; Wu, S.; He, X.; Hu, C.; Zhou, S.; Qin, S. Biochar-derived persistent free radicals and reactive oxygen species reduce the potential of biochar to mitigate soil N2O emissions by inhibiting nosZ. Soil Biol. Biochem. 2023, 178, 108970. [Google Scholar] [CrossRef]
- Ji, C.; Li, S.Q.; Geng, Y.J.; Miao, Y.; Ding, Y.; Liu, S.W.; Zou, J.W. Differential responses of soil N2O to biochar depend on the predominant microbial pathway. Appl. Soil Ecol. 2020, 145, 103348. [Google Scholar] [CrossRef]
- Fan, C.H.; Duan, P.P.; Zhang, X.; Shen, H.J.; Chen, M.; Xiong, Z.Q. Mechanisms underlying the mitigation of both N2O and NO emissions with field-aged biochar in an Anthrosol. Geoderma 2020, 364, 114178. [Google Scholar] [CrossRef]
- Yanai, Y.; Toyota, K.; Okazaki, M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr. 2007, 53, 181–188. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Li, Y.; Wang, H.B.; Wang, Z.J.; Fu, X.Q.; Shen, J.L.; Wang, Y.; Liu, X.L.; Meng, L.; Wu, J.S. Response of N2O emissions to biochar amendment on a tea field soil in subtropical central China: A three-year field experiment. Agric. Ecosyst. Environ. 2021, 318, 107473. [Google Scholar] [CrossRef]
- Wang, L.; Yang, K.; Gao, C.C.; Zhu, L.Z. Effect and mechanism of biochar on CO2 and N2O emissions under different nitrogen fertilization gradient from an acidic soil. Sci. Total Environ. 2020, 747, 141265. [Google Scholar] [CrossRef] [PubMed]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Li, H.B.; Zhang, A.P.; Rahaman, M.A.; Yang, Z.L. Inhibited effect of biochar application on N2O emissions is amount and time-dependent by regulating denitrification in a wheat-maize rotation system in North China. Sci. Total Environ. 2020, 721, 137636. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, N.; Obaeed, G.L.O.; Sulkarnaev, F.; Buchkina, N.; Gubin, A.; Yurtaev, A. Effect of biochar aging in agricultural soil on its wetting properties and surface structure. Biochar 2023, 5, 75. [Google Scholar] [CrossRef]
- Liao, X.; Liu, D.Y.; Niu, Y.H.; Chen, Z.M.; He, T.H.; Ding, W.X. Effect of field-aged biochar on fertilizer N retention and N2O emissions: A field microplot experiment with 15N-labeled urea. Sci. Total Environ. 2021, 773, 145645. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.P.; Zhang, X.; Zhang, Q.Q.; Wu, Z.; Xiong, Z.Q. Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification. Sci. Total Environ. 2018, 642, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhou, W.; Yang, R.; Zhang, D.; Wang, H.; Li, Q.; Qi, Z.; Li, Y.; Lin, W. Microbial mechanism of biochar addition to reduce N2O emissions from soilless substrate systems. J. Environ. Manag. 2023, 348, 119326. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.D.; Pittelkow, C.M.; Kent, A.D.; Yang, W.H. Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biol. Biochem. 2018, 122, 81–90. [Google Scholar] [CrossRef]
- Tang, Z.M.; Liu, X.R.; Li, G.C.; Liu, X.R. Mechanism of biochar on nitrification and denitrification to N2O emissions based on isotope characteristic values. Environ. Res. 2022, 212, 113219. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.L.; Liu, X.R.; Zhang, Q.W. Effects of combined biochar and organic fertilizer on nitrous oxide fluxes and the related nitrifier and denitrifier communities in a saline-alkali soil. Sci. Total Environ. 2019, 686, 199–211. [Google Scholar] [CrossRef]
- Kookana, R.S.; Sarmah, A.K.; Zwieten, L.V.; Krull, E.V.; Singh, B. Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Adv. Agron. 2011, 112, 103–143. [Google Scholar]
- Ji, C.; Li, S.Q.; Geng, Y.J.; Yuan, Y.M.; Zhi, J.Z.; Yu, K.; Han, Z.Q.; Wu, S.; Liu, S.W.; Zou, J.W. Decreased N2O and NO emissions associated with stimulated denitrification following biochar amendment in subtropical tea plantations. Geoderma 2020, 365, 114223. [Google Scholar] [CrossRef]
- Dai, Z.M.; Li, Y.; Zhang, X.J.; Wu, J.J.; Luo, Y.; Kuzyakov, Y.; Brookes, P.C.; Xu, J.M. Easily mineralizable carbon in manure-based biochar added to a soil influences N2O emissions and microbial-N cycling genes. Land Degrad. Dev. 2019, 30, 406–416. [Google Scholar] [CrossRef]
- Zheng, X.B.; Cong, P.; Singh, B.P.; Wang, H.L.; Ma, X.G.; Jiang, Y.J.; Lin, Y.X.; Dong, J.X.; Song, W.J.; Feng, Y.F.; et al. Fertilizer nitrogen substitution using biochar-loaded ammonium-nitrogen reduces nitrous oxide emissions by regulating nitrous oxide-reducing bacteria. Environ. Technol. Innov. 2024, 33, 103487. [Google Scholar] [CrossRef]
- Kuang, P.; Cui, Y.; Zhang, Z.; Ma, K.; Zhang, W.; Zhao, K.; Zhang, X. Increasing surface functionalities of FeCl3-modified reed waste biochar for enhanced nitrate adsorption property. Processes 2023, 11, 1740. [Google Scholar] [CrossRef]
- Wu, Z.; Song, Y.S.; Shen, H.J.; Jiang, X.Y.; Li, B.; Xiong, Z.Q. Biochar can mitigate methane emissions by improving methanotrophs for prolonged period in fertilized paddy soils. Environ. Pollut. 2019, 253, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Ning, L.; Xun, M.; Feng, F.; Li, P.; Yue, S.; Song, J.; Zhang, W.; Yang, H. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 2019, 135, 25–32. [Google Scholar] [CrossRef]
- Ma, B.B.; Zhou, X.L.; Zhang, Q.; Qin, M.S.; Hu, L.G.; Yang, K.N.; Xie, Z.; Ma, W.B.; Chen, B.B.; Feng, H.Y.; et al. How do soil micro-organisms respond to N, P and NP additions? Application of the ecological framework of (co-) limitation by multiple resources. J. Ecol. 2019, 107, 2329–2345. [Google Scholar] [CrossRef]
- Lau, J.A.; Lennon, J.T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl. Acad. Sci. USA 2012, 109, 14058–14062. [Google Scholar] [CrossRef] [PubMed]
- Wirsching, J.; Pagel, H.; Ditterich, F.; Uksa, M.; Werneburg, M.; Zwiener, C.; Zwiener, C.; Berner, D.; Kandeler, E.; Poll, C. Biodegradation of pesticides at the limit: Kinetics and microbial substrate use at low concentrations. Front. Microbiol. 2020, 11, 2107. [Google Scholar] [CrossRef] [PubMed]
- Wachenheim, D.E.; Patterson, J.A.; Ladisch, M.R. Analysis of the logistic function model: Derivation and applications specific to batch cultured microorganisms. Bioresour. Technol. 2003, 86, 157–164. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Rahimian, H.; Pirdashti, H.; Nematzadeh, G.A. Phosphate solubilization potential and modeling of stress tolerance of rhizobacteria from rice paddy soil in northern Iran. World J. Microbiol. Biotechnol. 2014, 30, 2437–2447. [Google Scholar] [CrossRef] [PubMed]
- Schils, R.; Olesen, J.E.; Kersebaum, K.C.; Rijk, B.; Oberforster, M.; Kalyada, V.; Khitrykau, M.; Gobin, A.; Kirchev, H.; Manolova, V.; et al. Cereal yield gaps across Europe. Eur. J. Agron. 2018, 101, 109–120. [Google Scholar] [CrossRef]
- Li, S.Q.; Song, L.N.; Jin, Y.G.; Liu, S.W.; Shen, Q.R.; Zou, J.W. Linking N2O emission from biochar-amended composting process to the abundance of denitrify (nirK and nosZ) bacteria community. AMB Express 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Francis, C.A.; Roberts, K.J.; Beman, J.M.; Santoro, A.E.; Oakley, B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 2005, 102, 14683–14688. [Google Scholar] [CrossRef]
- Rotthauwe, J.H. The ammonia monooxygenase structural gene amoa as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63, 4704–4712. [Google Scholar] [CrossRef] [PubMed]
- Hallin, S.; Lindgren, P.E. Pcr detection of genes encoding nitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol. 1999, 65, 1652–1657. [Google Scholar] [CrossRef]
- Guo, G.X.; Deng, H.; Qiao, M.; Mu, Y.J.; Zhu, Y.G. Effect of pyrene on denitrification activity and abundance and composition of denitrifying community in an agricultural soil. Environ. Pollut. 2011, 159, 1886–1895. [Google Scholar] [CrossRef] [PubMed]
- Kloos, K.; Mergel, A.; Christopher, R.; Bothe, H. Denitrification within the genus azospirillum and other associative bacteria. Funct. Plant Biol. 2001, 28, 991–998. [Google Scholar] [CrossRef]
- Feng, W.Y.; Yang, F.; Cen, R.; Liu, J.; Qu, Z.Y.; Miao, Q.F.; Chen, H.Y. Effects of straw biochar application on soil temperature, available nitrogen and growth of corn. J. Environ. Manag. 2021, 277, 111331. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, T.X.; Fu, Q.; Li, H.; Liu, D.; Ji, Y.; Li, Q.L.; Cai, Y.P. Biochar application for the improvement of water-soil environments and carbon emissions under freeze-thaw conditions: An in-situ field trial. Sci. Total Environ. 2020, 723, 138007. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.L.; Peng, Y.C.; Lin, L.X.; Zhang, D.L.; Ma, L.; Jiang, L.G.; Li, Y.E.; He, T.G.; Wang, Z.T. Drivers of biochar-mediated improvement of soil water retention capacity based on soil texture: A meta-analysis. Geoderma 2023, 437, 116591. [Google Scholar] [CrossRef]
- Qian, Z.Z.; Tang, L.Z.; Zhuang, S.Y.; Zou, Y.; Fu, D.L.; Chen, X. Effects of biochar amendments on soil water retention characteristics of red soil at south China. Biochar 2020, 2, 479–488. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, Z.L.; Zhao, L.X.; Yu, F.Y.; Li, Z.H.; Yi, W.M.; Fu, P.; Jia, J.X.; Zhao, Y.N. Effects of various pyrolysis temperatures on the physicochemical characteristics of crop straw-derived biochars and their application in tar reforming. Catal. Today 2024, 114663. [Google Scholar] [CrossRef]
- Masebinu, S.O.; Akinlabi, E.T.; Muzenda, E.; Aboyade, A.O. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renew. Sustain. Energy Rev. 2019, 103, 291–307. [Google Scholar] [CrossRef]
- Huang, H.; Reddy, N.G.; Huang, X.; Chen, P.; Wang, P.; Zhang, Y.; Huang, Y.; Lin, P.; Garg, A. Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Sci. Rep. 2021, 11, 7419. [Google Scholar] [CrossRef] [PubMed]
- Kameyama, K.; Miyamoto, T.; Iwata, Y. The preliminary study of water-retention related properties of biochar produced from various feedstock at different pyrolysis temperatures. Materials 2019, 12, 1732. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Hu, X.J.; Liu, J.J.; Yu, Z.H.; Jin, J.; Liu, X.B.; Wang, G.H. Canonical ammonia oxidizers and comammox Clade A play active roles in nitrification in a black soil at different pH and ammonium concentrations. Biol. Fertil. Soils 2024, 60, 471–481. [Google Scholar] [CrossRef]
- Wang, Y.S.; Liu, Y.S.; Liu, R.L.; Zhang, A.P.; Yang, S.Q.; Liu, H.Y.; Zhou, Y.; Yang, Z.L. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China. Sci. Rep. 2017, 7, 1592. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.B.; Kang, Y.; Han, C.; Zhu, T.B.; Deng, H.; Xie, Z.B.; Zhong, W.H. Biochar amendment in reductive soil disinfestation process improved remediation effect and reduced N2O emission in a nitrate-riched degraded soil. Arch. Agron. Soil Sci. 2020, 66, 983–991. [Google Scholar] [CrossRef]
- Sun, H.J.; Lu, H.Y.; Chu, L.; Shao, H.B.; Shi, W.M. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 2017, 575, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.L.; Anderson, T.R.; Ballantine, K.A. Biochar simultaneously reduces nutrient leaching and greenhouse gas emissions in restored wetland soils. Wetlands 2020, 40, 1981–1991. [Google Scholar] [CrossRef]
- Nair, D.; Abalos, D.; Philippot, L.; Bru, D.; Mateo-Marín, N.; Petersen, S.O. Soil and temperature effects on nitrification and denitrification modified N2O mitigation by 3, 4-dimethylpyrazole phosphate. Soil Biol. Biochem. 2021, 157, 108224. [Google Scholar] [CrossRef]
- Wu, B.; Liu, F.F.; Weiser, M.D.; Ning, D.L.; Okie, J.G.; Shen, L.N.; Chai, B.L.; Deng, Y.; Feng, K.; Wu, L.Y.; et al. Temperature determines the diversity and structure of N2O-reducing microbial assemblages. Funct. Ecol. 2018, 32, 1867–1878. [Google Scholar] [CrossRef]
- Stres, B.; Danev, I.T.; Pal, L.; Fuka, M.M.; Resman, L.; Leskovec, S. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 2008, 66, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Ligi, T.; Truu, M.; Truu, J.; Nõlvak, H.; Kaasik, A.; Mitsch, W.J.; Mander, Ü. Effects of soil chemical characteristics and water regime on denitrification genes (nirS, nirK, and nosZ) abundances in a created riverine wetland complex. Ecol. Eng. 2014, 72, 47–55. [Google Scholar] [CrossRef]
- Liu, X.R.; Shi, Y.L.; Zhang, Q.W.; Li, G.C. Effects of biochar on nitrification and denitrification-mediated N2O emissions and the associated microbial community in an agricultural soil. Environ. Sci. Pollut. Res. 2021, 28, 6649–6663. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.X.; Walkiewicz, A.; Bieganowski, A.; Oenema, O.; Nosalewicz, M.; He, C.H.; Zhang, Y.M.; Hu, C.S. Biochar promotes the reduction of N2O to N2 and concurrently suppresses the production of N2O in calcareous soil. Geoderma 2020, 362, 114091. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Zhang, X.; Duan, P.P.; Jiang, X.Y.; Shen, H.J.; Yan, X.Y.; Xiong, Z.Q. The effect of long-term biochar amendment on N2O emissions: Experiments with N15-O18 isotopes combined with specific inhibition approaches. Sci. Total Environ. 2021, 769, 144533. [Google Scholar] [CrossRef] [PubMed]
- Fudjoe, S.K.; Li, L.L.; Anwar, S.; Shi, S.L.; Xie, J.H.; Wang, L.L.; Xie, L.H.; Zhou, Y.J. Nitrogen fertilization promoted microbial growth and N2O emissions by increasing the abundance of nirS and nosZ denitrifiers in semiarid maize field. Front. Microbiol. 2023, 14, 1265562. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.X.; Li, Y.; Jia, P.Y.; Wang, X.; Kong, F.L.; Jiang, Z.X. The co-addition of biochar and manganese ore promotes nitrous oxide reduction but favors methane emission in sewage sludge composting. J. Clean. Prod. 2022, 339, 130759. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, Z.; EI-Naggar, A.; Tian, L.L.; Huang, C.P.; Zhang, Z.; Palansooriya, K.N.; Li, Y.F.; Yu, B.; Chang, S.X.; et al. Contrasting effects of rice husk and its biochar on N2O emissions and nitrogen leaching from Lei bamboo soils under subtropical conditions. Biol. Fertil. Soils 2023, 59, 803–817. [Google Scholar] [CrossRef]
- Teutscherova, N.; Houska, J.; Navas, M.; Masaguer, A.; Benito, M.; Vazquez, E. Leaching of ammonium and nitrate from acrisol and calcisol amended with holm oak biochar: A column study. Geoderma 2018, 323, 136–145. [Google Scholar] [CrossRef]
- Ma, H.Z.; Jia, X.J.; Yang, J.Y.; Liu, J.; Shangguan, Z.P.; Yan, W.M. Inhibitors mitigate N2O emissions more effectively than biochar: A global perspective. Sci. Total Environ. 2023, 859, 160416. [Google Scholar] [CrossRef] [PubMed]
- Kotuš, T.; Šimanský, V.; Drgoňová, K.; Illéš, M.; Wójcik-Gront, E.; Balashov, E.; Buchkina, N.; Aydın, E.; Horák, J. Combination of Biochar with N–Fertilizer Affects Properties of Soil and N2O emissions in Maize Crop. Agronomy 2022, 12, 1314. [Google Scholar] [CrossRef]
- Tan, G.; Wang, H.; Xu, N.; Liu, H.; Zhai, L. Biochar amendment with fertilizers increases peanut N uptake, alleviates soil N2O emissions without affecting NH3 volatilization in field experiments. Environ. Sci. Pollut. Res. 2018, 25, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.G.; Xing, D.; Twagirayezu, G.; Lin, S.; Gu, S.Y.; Tu, C.L.; Hill, P.W.; Chadwick, D.R.; Jones, D.L. Effects of field-aging on the impact of biochar on herbicide fate and microbial community structure in the soil environment. Chemosphere 2024, 348, 140682. [Google Scholar] [CrossRef] [PubMed]
- Michel, K.; Tatzber, M.; Kitzler, B. Increased N2 emissions from an arable soil four years after biochar application. J. Plant Nutr. Soil Sci. 2022, 185, 202–208. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.Q.; Song, M.X.; Dong, Y.B.; Xiong, Z.Q. N2O and NO production and functional microbes responding to biochar aging process in an intensified vegetable soil. Environ. Pollut. 2022, 307, 119491. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Long, F.; Chen, J.N.; Jiang, L.G.; Zou, Y.B. Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization. Sci. Rep. 2018, 8, 11461. [Google Scholar]
- Duan, W.; Oleszczuk, P.; Pan, B.; Xing, B.S. Environmental behavior of engineered biochars and their aging processes in soil. Biochar 2019, 1, 339–351. [Google Scholar] [CrossRef]
- Shi, Y.L.; Liu, X.R.; Zhang, Q.W.; Li, Y. Contrasting effects of biochar-and organic fertilizer-amendment on community compositions of nitrifiers and denitrifiers in a wheat-maize rotation system. Appl. Soil Ecol. 2022, 171, 104320. [Google Scholar] [CrossRef]
- González-Cencerrado, A.; Ranz, J.P.; Jiménez, M.T.L.F.; Rebolledo, G.B. Assessing the environmental benefit of a new fertilizer based on activated biochar applied to cereal crops. Sci. Total Environ. 2020, 711, 134668. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.J.; Yue, Y.J.; Wang, F.X. The spatial-temporal coupling pattern of grain yield and fertilization in the North China plain. Agric. Syst. 2022, 196, 103330. [Google Scholar] [CrossRef]
- Guo, C.; Liu, X.F.; He, X.F. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Sci. Total Environ. 2022, 831, 154982. [Google Scholar] [CrossRef]
Gene | Name | Sequence (5′–3′) | Response Procedures | Reference | Remark |
---|---|---|---|---|---|
AOB | amoA-1F | GGG GTT TCT ACT GGT GGT | 5 min-94 °C, 30 s-94 °C, 30 s-55 °C annealing, 60 s-72 °C, 30 cycles | [40] | |
amoA-2R | CCC CTC KGS AAA GCC TTC TTC | S = C or G | |||
AOA | Arch-amoAF | STA ATG GTC TGG CTT AGA CG | [41] | S = C or G | |
Arch-amoAR | GCG GCC ATC CAT CTG TAT GT | ||||
nirK | nirKF1aCu | ATC ATG GTS CTG CCG CG | 5 min-72 °C; Program 2: 5 min-94 °C, 30 s-94 °C, 5 s-55 °C annealing, 30 s-72 °C, 35 cycles; 1 min-72 °C | [42] | S = C or G |
nirKR3Cu | GCC TCG ATC AGR TTG TGG TT | R = A or G | |||
nirS | nirSCd3Af | GTS AAC GTS AAG GAS ACS GC | [43] | S = C or G | |
nirSR3cd | GAS TTC GGR TGS GTC TTG A | R = A or G; S = C or G | |||
nosZ | nosZ-F | AGA ACG ACC AGC TGA TCG ACA | [44] | ||
nosZ-R | TCC ATG GTG ACG CCG TGG TTC |
Growing Season | Treatment | AOB | AOA | nirK | nirS | nosZ |
---|---|---|---|---|---|---|
2020–2021 Winter wheat | C0 | (6.89 ± 2.60) × 106 d | (3.23 ± 0.14) × 107 e | (3.52 ± 0.17) × 108 a | (4.25 ± 0.18) × 108 a | (6.60 ± 0.21) × 107 b |
C1 | (1.56 ± 0.15) × 107 b | (3.75 ± 0.18) × 107 d | (2.77 ± 0.17) × 108 cd | (4.16 ± 0.23) × 108 a | (6.66 ± 0.22) × 107 b | |
C2 | (1.87 ± 0.14) × 107 a | (5.61 ± 0.17) × 107 b | (2.89 ± 0.15) × 108 c | (4.17 ± 0.15) × 108 a | (7.02 ± 0.16) × 107 a | |
C3 | (2.05 ± 0.16) × 107 a | (6.34 ± 0.17) × 107 a | (2.55 ± 0.15) × 108 de | (4.00 ± 0.20) × 108 a | (7.20 ± 0.21) × 107 a | |
C4 | (1.82 ± 0.11) × 107 ab | (4.81 ± 0.12) × 107 c | (2.48 ± 0.15) × 108 e | (4.03 ± 0.17) × 108 a | (7.18 ± 0.15) × 107 a | |
CS | (1.08 ± 0.12) × 107 c | (3.87 ± 0.14) × 107 d | (3.22 ± 0.11) × 108 b | (4.06 ± 0.11) × 108 a | (6.89 ± 0.10) × 107 ab | |
2021 Summer maize | C0 | (1.08 ± 0.09) × 107 d | (3.46 ± 0.22) × 107 f | (5.14 ± 0.09) × 108 a | (4.69 ± 0.15) × 108 a | (7.35 ± 0.10) × 107 d |
C1 | (1.47 ± 0.12) × 107 c | (4.54 ± 0.19) × 107 d | (4.59 ± 0.24) × 108 b | (4.53 ± 0.14) × 108 a | (7.57 ± 0.11) × 107 c | |
C2 | (1.54 ± 0.17) × 107 bc | (5.52 ± 0.16) × 107 c | (4.46 ± 0.25) × 108 b | (4.57 ± 0.16) × 108 a | (7.74 ± 0.11) × 107 bc | |
C3 | (1.99 ± 0.16) × 107 a | (7.75 ± 0.19) × 107 a | (4.28 ± 0.13) × 108 b | (4.60 ± 0.11) × 108 a | (7.90 ± 0.09) × 107 ab | |
C4 | (1.76 ± 0.16) × 107 ab | (6.31 ± 0.21) × 107 b | (3.90 ± 0.24) × 108 c | (4.58 ± 0.23) × 108 a | (8.01 ± 0.16) × 107 a | |
CS | (1.39 ± 0.17) × 107 c | (4.00 ± 0.18) × 107 e | (4.97 ± 0.18) × 108 a | (4.72 ± 0.19) × 108 a | (7.17 ± 0.09) × 107 d | |
2021–2022 Winter wheat | C0 | (5.09 ± 0.22) × 106 d | (3.20 ± 0.12) × 107 e | (2.76 ± 0.13) × 108 a | (4.55 ± 0.21) × 108 a | (6.41 ± 0.13) × 107 c |
C1 | (1.70 ± 0.15) × 107 ab | (4.65 ± 0.18) × 107 d | (2.31 ± 0.15) × 108 b | (4.14 ± 0.19) × 108 bc | (6.52 ± 0.12) × 107 bc | |
C2 | (1.43 ± 0.08) × 107 b | (7.33 ± 0.21) × 107 b | (2.20 ± 0.15) × 108 b | (4.19 ± 0.21) × 108 bc | (6.62 ± 0.20) × 107 abc | |
C3 | (1.96 ± 0.24) × 107 a | (8.86 ± 0.39) × 107 a | (2.11 ± 0.08) × 108 b | (3.97 ± 0.17) × 108 c | (6.81 ± 0.15) × 107 a | |
C4 | (1.94 ± 0.21) × 107 a | (6.39 ± 0.21) × 107 c | (2.23 ± 0.14) × 108 b | (4.03 ± 0.17) × 108 bc | (6.77 ± 0.12) × 107 ab | |
CS | (8.60 ± 0.39) × 106 c | (3.32 ± 0.11) × 107 e | (2.75 ± 0.16) × 108 a | (4.34 ± 0.13) × 108 ab | (6.51 ± 0.19) × 107 bc | |
2022 Summer maize | C0 | (9.26 ± 1.04) × 106 c | (3.75 ± 0.17) × 107 c | (4.46 ± 0.13) × 108 a | (5.15 ± 0.22) × 108 a | (6.98 ± 0.15) × 107 e |
C1 | (1.59 ± 0.16) × 107 b | (5.00 ± 0.10) × 107 b | (3.94 ± 0.17) × 108 b | (4.65 ± 0.27) × 108 b | (7.27 ± 0.13) × 107 cd | |
C2 | (1.87 ± 0.12) × 107 b | (6.05 ± 0.14) × 107 a | (3.85 ± 0.11) × 108 b | (4.64 ± 0.23) × 108 b | (7.52 ± 0.20) × 107 bc | |
C3 | (2.21 ± 0.23) × 107 a | (6.29 ± 0.15) × 107 a | (3.97 ± 0.15) × 108 b | (4.59 ± 0.35) × 108 b | (7.61 ± 0.18) × 107 b | |
C4 | (2.33 ± 0.21) × 107 a | (6.18 ± 0.21) × 107 a | (3.48 ± 0.18) × 108 c | (4.48 ± 0.24) × 108 b | (7.95 ± 0.13) × 107 a | |
CS | (1.58 ± 0.15) × 107 b | (3.86 ± 0.18) × 107 c | (4.31 ± 0.17) × 108 a | (5.29 ± 0.09) × 108 a | (7.11 ± 0.14) × 107 de |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, N.; Wang, Y.; Li, Y.; Zhang, Y.; Qi, G.; Dong, H.; Wang, H.; Zhang, X.; Li, X. Inhibitory Effects of Biochar on N2O Emissions through Soil Denitrification in Huanghuaihai Plain of China and Estimation of Influence Time. Sustainability 2024, 16, 5813. https://doi.org/10.3390/su16135813
Liu H, Wang N, Wang Y, Li Y, Zhang Y, Qi G, Dong H, Wang H, Zhang X, Li X. Inhibitory Effects of Biochar on N2O Emissions through Soil Denitrification in Huanghuaihai Plain of China and Estimation of Influence Time. Sustainability. 2024; 16(13):5813. https://doi.org/10.3390/su16135813
Chicago/Turabian StyleLiu, Hongyuan, Nana Wang, Yanjun Wang, Ying Li, Yan Zhang, Gaoxiang Qi, Hongyun Dong, Hongcheng Wang, Xijin Zhang, and Xinhua Li. 2024. "Inhibitory Effects of Biochar on N2O Emissions through Soil Denitrification in Huanghuaihai Plain of China and Estimation of Influence Time" Sustainability 16, no. 13: 5813. https://doi.org/10.3390/su16135813
APA StyleLiu, H., Wang, N., Wang, Y., Li, Y., Zhang, Y., Qi, G., Dong, H., Wang, H., Zhang, X., & Li, X. (2024). Inhibitory Effects of Biochar on N2O Emissions through Soil Denitrification in Huanghuaihai Plain of China and Estimation of Influence Time. Sustainability, 16(13), 5813. https://doi.org/10.3390/su16135813