Predicting the Influence of Ammonium Toxicity Levels in Water Using Fuzzy Logic and ANN Models
Abstract
:1. Introduction
1.1. Sources and Regulation of Ammonia in Water Bodies
1.2. Advanced Techniques in Water Quality Assessment: Fuzzy Modelling and Artificial Neural Networks
2. Material and Methods
2.1. Study Area and Water Quality Analysis
2.2. Fuzzy Logic
- Formation of the rule base of fuzzy inference systems.
- Fuzzification of input variables.
- Aggregation of terms according to fuzzy rules. Paired fuzzy logical operations are used to find the degree of truth of the conditions in each of the fuzzy rules.
- Activation of sub-conclusions in fuzzy rules; at the same time, only active fuzzy rules are taken into account to reduce the output time.
- Accumulation of the conclusions of vague rules.
- Defuzzification of source variables.
2.3. Artificial Neural Networks
- Parameters related to the network architecture:
- -
- Number of hidden layers and their characteristics;
- -
- Initialization of network weights;
- -
- Selection of the activation function.
- Parameters related to the learning process:
- -
- Batch size—the number of data subsets used for the unit weight calibration process. Depending on the processing power, the batch size can be from a few data points to an entire dataset. A batch size that is too small may result in a longer learning process. On the other hand, an excessively large batch size may lead to the impossibility of achieving convergence.
- -
- Number of epochs—the number of times the entire training dataset is exposed to the network during training. The number of epochs can vary from a few to several thousand and depends on the size of the training set, the type of network, and the specifics of the problem.
- -
- Loss function—a function that compares target values and predicted output values. The main goal of training is to minimize the loss function between those values.
- -
- Optimization algorithm—a function or algorithm that adjusts the learning parameters of a neural network. To implement the learning process of the neural network, backpropagation algorithms are used for multiple iterative comparisons of the network’s output value with the expected value. The number of performed comparisons depends on the size of the training set, the expected number of iterations, and the training progress of the network. Without the use of backpropagation algorithms, a simple comparison of the output values would only update the weights on the last layer of the hidden network, since its inner layers act as a black box. To update them, the backpropagation algorithm calculates the derivative values of the activation function of each neuron in the network based on the input vector for each level [63].
3. Results and Discussion
- Justification of the effect of electrical conductivity and anions of weak acids on the level of ammonium toxicity
- WQIAM approach
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trach, R.; Trach, Y.; Kiersnowska, A.; Markiewicz, A.; Lendo-Siwicka, M.; Rusakov, K. A Study of Assessment and Prediction of Water Quality Index Using Fuzzy Logic and ANN Models. Sustainability 2022, 14, 5656. [Google Scholar] [CrossRef]
- Ola, I.; Drebenstedt, C.; Burgess, R.M.; Mensah, M.; Hoth, N.; Okoroafor, P.; Külls, C. Assessing Petroleum Contamination in Parts of the Niger Delta Based on a Sub-Catchment Delineated Field Assessment. Environ. Monit. Assess. 2024, 196, 585. [Google Scholar] [CrossRef] [PubMed]
- Kekes, T.; Tzia, C.; Kolliopoulos, G. Drinking and Natural Mineral Water: Treatment and Quality–Safety Assurance. Water 2023, 15, 2325. [Google Scholar] [CrossRef]
- Brettschneider, D.J.; Spring, T.; Blumer, M.; Welge, L.; Dombrowski, A.; Schulte-Oehlmann, U.; Sundermann, A.; Oetken, M.; Oehlmann, J. Much Effort, Little Success: Causes for the Low Ecological Efficacy of Restoration Measures in German Surface Waters. Environ. Sci. Eur. 2023, 35, 31. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, X.; Li, X.; Jiang, Y.; Li, Y.; Liang, Y. Review of Separation Methods for the Determination of Ammonium/Ammonia in Natural Water. Trends Environ. Anal. Chem. 2020, 27, e00098. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Namieśnik, J. Moving Your Laboratories to the Field—Advantages and Limitations of the Use of Field Portable Instruments in Environmental Sample Analysis. Environ. Res. 2015, 140, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, J.; Chen, J.; Cui, L.; Li, W.; Gao, X.; Liu, Z. Water Quality Criteria of Total Ammonia Nitrogen (TAN) and Un-Ionized Ammonia (NH3-N) and Their Ecological Risk in the Liao River, China. Chemosphere 2020, 243, 125328. [Google Scholar] [CrossRef] [PubMed]
- Camargo, J.A.; Alonso, Á. Ecological and Toxicological Effects of Inorganic Nitrogen Pollution in Aquatic Ecosystems: A Global Assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhang, M.; Tsang, D.C.W.; Geng, N.; Lu, D.; Zhu, L.; Igalavithana, A.D.; Dissanayake, P.D.; Rinklebe, J.; Yang, X.; et al. Recent Advances in Control Technologies for Non-Point Source Pollution with Nitrogen and Phosphorous from Agricultural Runoff: Current Practices and Future Prospects. Appl. Biol. Chem. 2020, 63, 8. [Google Scholar] [CrossRef]
- Smith, P.; House, J.I.; Bustamante, M.; Sobocká, J.; Harper, R.; Pan, G.; West, P.C.; Clark, J.M.; Adhya, T.; Rumpel, C.; et al. Global Change Pressures on Soils from Land Use and Management. Glob. Chang. Biol. 2016, 22, 1008–1028. [Google Scholar] [CrossRef]
- DSanPiN 2.2.4-171-10. Hygienic Requirements for Drinking Water Intended for Human Consumption. Approved by Order No. 400 of the Ministry of Health of Ukraine Dated 2010. 12 May 2010. Available online: https://zakon.rada.gov.ua/Laws/Show/Z0452-10#Text (accessed on 27 March 2024).
- Zakonodavstvo Ukraini. Hygienic Water Quality Standards of Water Bodies to Meet Drinking, Household and Other Needs of the Population. Order of the Ministry of Health of Ukraine Dated May 2, 2022 No. 721. 2022. Available online: https://zakon.rada.gov.ua/Laws/Show/Z0524-22#Text (accessed on 27 March 2024).
- Zakonodavstvo Ukraini. Generalized List of Maximum Permissible Concentrations (MPC) and Tentatively Safe Levels of Exposure (VZUV) of Harmful Substances for the Water of Fishing Reservoirs. Ministry of Agriculture (Order of the State Emergency Service of Ukraine Dated 31.08.2017 No. 47 on Approval of the List of Industry Standards, Valid until 01.01.2025). 1990. Available online: http://online.budstandart.com/Ua/Catalog/ (accessed on 27 March 2024).
- Zakonodavstvo Ukraini. Methodology for Assigning a Body of Surface Water to One of the Classes of Ecological and Chemical State of the Body of Surface Water, As Well As Assigning an Artificial or Significantly Altered Body of Surface Water to One of the Classes of Ecological Potential of an Artificial or Significantly Altered Body of Surface Water. 2019. Available online: https://zakon.rada.gov.ua/Laws/Show/Z0127-19#Tex (accessed on 27 March 2024).
- Khilchevskyi, V.K.; Plichko, L.V.; Zabokrytska, M.R. The Centralized Water Supply of Kyiv Is 150 Years Old (1872–2022)—The Importance of the Dnipro and Desna Rivers. In Proceedings of the 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, Kyiv, Ukraine, 15–18 November 2022; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2022; pp. 1–5. [Google Scholar]
- Yu, D.; Chen, N.; Krom, M.D.; Lin, J.; Cheng, P.; Yu, F.; Guo, W.; Hong, H.; Gao, X. Understanding How Estuarine Hydrology Controls Ammonium and Other Inorganic Nitrogen Concentrations and Fluxes through the Subtropical Jiulong River Estuary, S.E. China under Baseflow and Flood-Affected Conditions. Biogeochemistry 2019, 142, 443–466. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Aquatic Life: Ambient Water Quality Criteria for Ammonia-Freshwater; US Environmental Protection Agency: Washington, DC, USA, 2013.
- Mooney, T.J.; Pease, C.J.; Hogan, A.C.; Trenfield, M.; Kleinhenz, L.S.; Humphrey, C.; van Dam, R.A.; Harford, A.J. Freshwater Chronic Ammonia Toxicity: A Tropical-to-temperate Comparison. Environ. Toxicol. Chem. 2019, 38, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Emerson, K.; Russo, R.C.; Lund, R.E.; Thurston, R.V. Aqueous Ammonia Equilibrium Calculations: Effect of PH and Temperature. J. Fish. Board. Can. 1975, 32, 2379–2383. [Google Scholar] [CrossRef]
- Ding, T.-T.; Du, S.-L.; Huang, Z.-Y.; Wang, Z.-J.; Zhang, J.; Zhang, Y.-H.; Liu, S.-S.; He, L.-S. Water Quality Criteria and Ecological Risk Assessment for Ammonia in the Shaying River Basin, China. Ecotoxicol. Environ. Saf. 2021, 215, 112141. [Google Scholar] [CrossRef] [PubMed]
- El-Greisy, Z.A.E.-B.; Elgamal, A.E.E.; Ahmed, N.A.M. Effect of Prolonged Ammonia Toxicity on Fertilized Eggs, Hatchability and Size of Newly Hatched Larvae of Nile Tilapia, Oreochromis Niloticus. Egypt. J. Aquat. Res. 2016, 42, 215–222. [Google Scholar] [CrossRef]
- Wang, X.; Fan, B.; Fan, M.; Belanger, S.; Li, J.; Chen, J.; Gao, X.; Liu, Z. Development and Use of Interspecies Correlation Estimation Models in China for Potential Application in Water Quality Criteria. Chemosphere 2020, 240, 124848. [Google Scholar] [CrossRef] [PubMed]
- Borgmann, U. Chronic Toxicity of Ammonia to the Amphipod Hyalella Azteca; Importance of Ammonium Ion and Water Hardness. Environ. Pollut. 1994, 86, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Kleinhenz, L.S.; Humphrey, C.L.; Mooney, T.J.; Trenfield, M.A.; van Dam, R.A.; Nugegoda, D.; Harford, A.J. Chronic Ammonia Toxicity to Juveniles of 2 Tropical Australian Freshwater Mussels (Velesunio Spp.): Toxicity Test Optimization and Implications for Water Quality Guideline Values. Environ. Toxicol. Chem. 2019, 38, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Johnson, I.; Sorokin, N.; Atkinson, C.; Rule, K.; Hope, S. Proposed EQS for Water Framework Directive Annex VIII Substances Ammonia (Un-Ionised); Science Report; Water Framework Directive: Edinburgh, UK, 2007. [Google Scholar]
- Eddy, F.B. Ammonia in Estuaries and Effects on Fish. J. Fish. Biol. 2005, 67, 1495–1513. [Google Scholar] [CrossRef]
- Kuznietsov, P.; Biedunkova, O.; Trach, Y. Monitoring of Phosphorus Compounds in the Influence Zone Affected by Nuclear Power Plant Water Discharge in the Styr River (Western Ukraine): Case Study. Sustainability 2023, 15, 16316. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, G.; Qu, X.; Yang, X.; Wang, J.; Wang, P. Influence of Cooling Water Parameters on the Thermal Performance of the Secondary Circuit System of a Modular High-Temperature Gas-Cooled Reactor Nuclear Power Plant. Energies 2023, 16, 6560. [Google Scholar] [CrossRef]
- Kuznietsov, P.; Tykhomyrov, A.; Biedunkova, O.; Zaitsev, S. Improvement of methods for controlling power oil of cooling tower recycling water supply units at Rivne nuclear power plant. Sci. Horiz. 2022, 25, 69–79. [Google Scholar] [CrossRef]
- Kuznietsov, P.N.; Biedunkova, O.O.; Yaroshchuk, O.V. Experimental study of transformation of carbonate system components cooling water of rivne nuclear power plant during water treatment by liming. Probl. At. Sci. Technol. 2023, 144, 69–73. [Google Scholar] [CrossRef]
- Kuznietsov, P. Evaluation of the Scaling and Corrosive Potential of the Cooling Water Supply System of a Nuclear Power Plant Based on the Physicochemical Control Dataset. Data Brief. 2024, 54, 110347. [Google Scholar] [CrossRef] [PubMed]
- Zakonodavstvo Ukraini. Rules for the Protection of Surface Water from Pollution by Return Water. Resolution of March 25, 1999 N 465, Kyiv. 1999. Available online: https://zakon.rada.gov.ua/Laws/Show/465-99-%D0%BF#Text (accessed on 27 March 2024).
- Permit for Special Water Use of VP RAEP No. 53/RV/49d-20. 2020. Available online: https://e-services.davr.gov.ua (accessed on 27 March 2024).
- Kuznietsov, P.; Biedunkova, O. Evaluating the Impact of Dispersed Particles in the Water of a Power Plant Recirculating Cooling System on the Discharge of Suspended Solids into a Natural Water Body. East. -Eur. J. Enterp. Technol. 2023, 6, 6–16. [Google Scholar] [CrossRef]
- Chen, W.; Hui, K.; Wang, B.; Zhao, Q.; Chong, D.; Yan, J. Review of the Tube External Condensation Heat Transfer Characteristic of the Passive Containment Cooling System in Nuclear Power Plant. Ann. Nucl. Energy 2021, 157, 108226. [Google Scholar] [CrossRef]
- Kuznietsov, P.M.; Biedunkova, O.O. Variations in Content of Total Organic and Inorganic Carbon and Their Seasonality in the Water of the River Styr. In Proceedings of the 17th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, Kyiv, Ukraine, 7–10 November 2023; European Association of Geoscientists & Engineers: Utrecht, The Netherlands, 2023; pp. 1–5. [Google Scholar]
- Peters, A.; Merrington, G.; Leverett, D.; Wilson, I.; Schlekat, C.; Garman, E. Comparison of the Chronic Toxicity of Nickel to Temperate and Tropical Freshwater Species. Environ. Toxicol. Chem. 2019, 38, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Liu, Z.; Yan, Z.; Zhang, Y.; Yi, X.; Zhang, J.; Zheng, X.; Zhou, J.; Zhu, Y. PH-Dependent Ecological Risk Assessment of Pentachlorophenol in Taihu Lake and Liaohe River. Ecotoxicol. Environ. Saf. 2017, 135, 216–224. [Google Scholar] [CrossRef]
- Krishnan, S.T.; Devadhasan, J.P.; Kim, S. Recent Analytical Approaches to Detect Exhaled Breath Ammonia with Special Reference to Renal Patients. Anal. Bioanal. Chem. 2017, 409, 21–31. [Google Scholar] [CrossRef]
- Azzirgue, E.M.; Cherif, E.K.; Tchakoucht, T.A.; Azhari, H.E.; Salmoun, F. Testing Groundwater Quality in Jouamaa Hakama Region (North of Morocco) Using Water Quality Indices (WQIs) and Fuzzy Logic Method: An Exploratory Study. Water 2022, 14, 3028. [Google Scholar] [CrossRef]
- Horton, R.K. An Index Number System for Rating Water Quality. J. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Chaudhary, J.K. A Comparative Study of Fuzzy Logic and WQI for Groundwater Quality Assessment. Procedia Comput. Sci. 2020, 171, 1194–1203. [Google Scholar]
- Sudarno, S.; Agung Wibowo, M.; Andarini, P.; Veda Priya Kurniatama, D.; Ghinna Humaira, N. Methods for Determining the Water Quality Index in Developing Asian Countries: A Review. Ecol. Eng. Environ. Technol. 2024, 25, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Bassi, N.; Kumar, M.D. Water Quality Index as a Tool for Wetland Restoration. Water Policy 2017, 19, 390–403. [Google Scholar] [CrossRef]
- Larroca, F.P.; Olschewski, E.S.; Quino-Favero, J.; Huamaní, J.R.; Castillo Sequera, J.L. Water Treatment Plant Prototype with PH Control Modeled on Fuzzy Logic for Removing Arsenic Using Fe(VI) and Fe(III). Water 2020, 12, 2834. [Google Scholar] [CrossRef]
- Von Altrock, C.; Krause, B.; Zimmermann, H.-J. Advanced Fuzzy Logic Control Technologies in Automotive Applications. In Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego, CA, USA, 8–12 March 1992; pp. 835–842. [Google Scholar]
- Chen, C.-H.; Jeng, S.-Y.; Lin, C.-J. Fuzzy Logic Controller for Automating Electrical Conductivity and PH in Hydroponic Cultivation. Appl. Sci. 2021, 12, 405. [Google Scholar] [CrossRef]
- McKone, T.E.; Deshpande, A.W. Can Fuzzy Logic Bring Complex Environmental Problems into Focus? Environ. Sci. Technol. 2005, 39, 42A–47A. [Google Scholar] [CrossRef]
- won Seo, I.; Yun, S.H.; Choi, S.Y. Forecasting Water Quality Parameters by ANN Model Using Pre-Processing Technique at the Downstream of Cheongpyeong Dam. Procedia Eng. 2016, 154, 1110–1115. [Google Scholar]
- Trach, Y.; Trach, R.; Kalenik, M.; Koda, E.; Podlasek, A. A Study of Dispersed, Thermally Activated Limestone from Ukraine for the Safe Liming of Water Using ANN Models. Energies 2021, 14, 8377. [Google Scholar] [CrossRef]
- Trach, R.; Khomenko, O.; Trach, Y.; Kulikov, O.; Druzhynin, M.; Kishchak, N.; Ryzhakova, G.; Petrenko, H.; Prykhodko, D.; Obodianska, O. Application of Fuzzy Logic and SNA Tools to Assessment of Communication Quality between Construction Project Participants. Sustainability 2023, 15, 5653. [Google Scholar] [CrossRef]
- Grinberga, L.; Grabuža, D.; Grīnfelde, I.; Lauva, D.; Celms, A.; Sas, W.; Głuchowski, A.; Dzięcioł, J. Analysis of the Removal of BOD, COD and Suspended Solids in Subsurface Flow Constructed Wetland in Latvia. Acta Sci. Pol. Archit. 2021, 20, 21–28. [Google Scholar] [CrossRef]
- DSTU 4077-2001; Water Quality. Determination of PH. State Standard of Ukraine: Kyiv, Ukraine, 2002.
- MWV 081/12-0106-03; Surface, Groundwater and Return Water. Procedure for Measuring the Mass Concentration of Ammonium Ions by the Photocolorimetric Method with Nessler’s Reagent. State Environmental Inspectorate of the Ministry of Environmental Protection of Ukraine: Kyiv, Ukraine, 2003.
- DSTU ISO 9963-1:2007; Water Quality—Determination of Alkalinity—Part 1: Determination of Total and Composite Alkalinity. State Consumer Standard of Ukraine: Kyiv, Ukraine, 2007.
- MWV 081/12-0005-01; Surface and Treated Wastewater. Methodology for Measuring the Mass Concentration of Dissolved Orthophosphates by the Photometric Method. State Environmental Inspectorate of the Ministry of Environmental Protection of Ukraine: Kyiv, Ukraine, 2001.
- MWV 081/12-0311-06; Surface, Groundwater and Return Water. Methods of Temperature Measure-Ments. State Environmental Inspectorate of the Ministry of Environmental Protection of Ukraine: Kyiv, Ukraine, 2006.
- MWV 081/12-0653-09; Surface, Groundwater and Return Water. Method for Measuring the Mass Concentration of Chlorides by the Titrimetric Method. State Environmental Inspectorate of the Ministry of Environmental Protection of Ukraine: Kyiv, Ukraine, 2009.
- MWV 081/12-0177-05; Surface, Groundwater and Return Water. Method for Measuring the Mass Concentration of Sulphates by the Titrimetric Method. State Environmental Inspectorate of the Ministry of Environmental Protection of Ukraine: Kyiv, Ukraine, 2005.
- MWV 081/12-0008-01; Surface and Treated Wastewater. Method for Measuring the Mass Con-Centration of Dissolved Oxygen by the Winkler Iodometric Titration Method. State Environmental Inspectorate of the Ministry of Environmental Protection of Ukraine: Kyiv, Ukraine, 2001.
- KND 211.1.4.023-95; Method for Photometric Determination of Nitrite Ions with Gries Reagent in Surface and Treated Wastewater. Ukrainian Scientific Center for Water Protection: Khmelnytskyi, Ukraine, 1995.
- Nikolaev, A.B.; Sapego, Y.S. Developing Incident Detection Algorithm Based on the Mamdani Fuzzy Inference Algorithm. Int. J. Adv. Stud. 2017, 7, 18. [Google Scholar] [CrossRef]
- Trach, R.; Ryzhakova, G.; Trach, Y.; Shpakov, A.; Tyvoniuk, V. Modeling the Cause-and-Effect Relationships between the Causes of Damage and External Indicators of RC Elements Using ML Tools. Sustainability 2023, 15, 5250. [Google Scholar] [CrossRef]
- Li, T.; Lu, J.; Wu, J.; Zhang, Z.; Chen, L. Predicting Aquaculture Water Quality Using Machine Learning Approaches. Water 2022, 14, 2836. [Google Scholar] [CrossRef]
- Trach, R.; Lendo-Siwicka, M.; Pawluk, K.; Bilous, N. Assessment of the Effect of Integration Realisation in Construction Projects. Teh. Glas. 2019, 13, 254–259. [Google Scholar] [CrossRef]
- Madhu, G.; Kautish, S.; Alnowibet, K.A.; Zawbaa, H.M.; Mohamed, A.W. NIPUNA: A Novel Optimizer Activation Function for Deep Neural Networks. Axioms 2023, 12, 246. [Google Scholar] [CrossRef]
- Weldes, H.H.; Lange, K.R. Properties of Soluble Silicates. Ind. Eng. Chem. 1969, 61, 29–44. [Google Scholar] [CrossRef]
- Trach, Y.; Bujakowski, F.; Koda, E.; Mazur, Ł.; Nejbert, K.; Podlasek, A.; Vaverková, M.D. Characterization of Adsorbents from Ukrainian Kaolinite Clay for the Sorption of Nickel: Insight and Practical Application for Water Treatment in Conditions of Economic Constraints. Desalination Water Treat. 2022, 278, 1–12. [Google Scholar] [CrossRef]
- Trach, Y.; Melnychuk, V.; Trach, R. The Removal of Cationic and Anionic Pollutions from Water Solutions Using Ukrainian Limestones: Comparative Analysis. Desalination Water Treat. 2022, 275, 24–34. [Google Scholar] [CrossRef]
- Mourhir, A.; Rachidi, T.; Karim, M. River Water Quality Index for Morocco Using a Fuzzy Inference System. Environ. Syst. Res. 2014, 3, 21. [Google Scholar] [CrossRef]
- Icaga, Y. Fuzzy Evaluation of Water Quality Classification. Ecol. Indic. 2007, 7, 710–718. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Zhao, H.; Wu, R.; Sun, X.; Cen, Y.; Zhang, L. Feature Multi-Level Attention Spatio-Temporal Graph Residual Network: A Novel Approach to Ammonia Nitrogen Concentration Prediction in Water Bodies by Integrating External Influences and Spatio-Temporal Correlations. Sci. Total Environ. 2024, 906, 167591. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.M.; Tytkowska, M.; Reczek, L.; Trach, Y.; Siwiec, T. Technological Conditions for the Coagulation of Wastewater from Cosmetic Industry. J. Ecol. Eng. 2019, 20, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Wichowski, P.; Rutkowska, G.; Kamiński, N.; Trach, Y. Analysis of Water Consumption in the Campus of Warsaw University of Life Sciences in Years 2012–2016. J. Ecol. Eng. 2019, 20, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Harford, A.J.; Mooney, T.J.; Trenfield, M.A.; van Dam, R.A. Manganese Toxicity to Tropical Freshwater Species in Low Hardness Water. Environ. Toxicol. Chem. 2015, 34, 2856–2863. [Google Scholar] [CrossRef]
- Netten, J.J.; van der Heide, T.; Smolders, A.J. Interactive Effects of PH, Temperature and Light during Ammonia Toxicity Events in Elodea Canadensis. Chem. Ecol. 2013, 29, 448–458. [Google Scholar] [CrossRef]
- Gao, J.; Li, L.; Hu, Z.; Zhu, S.; Zhang, R.; Xiong, Z. Ammonia Stress on the Carbon Metabolism of Ceratophyllum Demersum. Environ. Toxicol. Chem. 2015, 34, 843–849. [Google Scholar] [CrossRef]
- Wang, Z.; Leung, K.M.Y. Effects of Unionised Ammonia on Tropical Freshwater Organisms: Implications on Temperate-to-Tropic Extrapolation and Water Quality Guidelines. Environ. Pollut. 2015, 205, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Trach, Y.; Melnychuk, V.; Melnychuk, G.; Mazur, Ł.; Podlasek, A.; Vaverková, M.; Koda, E. Using Local Mineral Materials for the Rehabilitation of the Ustya River—A Case Study. Desalination Water Treat. 2021, 232, 346–356. [Google Scholar] [CrossRef]
- Arillo, A.; Margiocco, C.; Melodia, F.; Mensi, P.; Schenone, G. Ammonia Toxicity Mechanism in Fish: Studies on Rainbow Trout (Salmo Gairdneri Rich.). Ecotoxicol. Environ. Saf. 1981, 5, 316–328. [Google Scholar] [CrossRef]
Indicator | CI | δ (∆) | Measurement Method (Standard in Ukraine) |
---|---|---|---|
pH25 | 1–12 | (± 0.2) | [53] |
TAN, mg/dm3 | 0.1–50 | ±5% | [54] |
CO32−, mg/dm3 | - | - | [55] |
PO43−, mg/dm3 | 0.05–0.5 | ±15% | [56] |
Temperate, °C | 1.5–70 | (0.1 °C) | [57] |
Cl−, mg/dm3 | 7–1500 | ±20% | [58] |
SO42−, mg/dm3 | 5–500 | ±9% | [59] |
DO, mg/dm3 | 0.5–50 | 0.5 to 5: δ = ±25; 5 to 20: δ = ±20; 20 to 50: δ = ±10 | [60] |
NO2−, mg/dm3 | 0.03–10 | 0.05 to 1.0: ±δ = 50%, more than 1.0: 25% | [61] |
T, °C | Q, m3/s | pH | DO, mg/dm3 | TAN, mg/dm3 | NO2−, mg/dm3 | SO42−, mg/dm3 | Cl−, mg/dm3 | CO32−, mg/dm3 | PO43−, mg/dm3 | |
---|---|---|---|---|---|---|---|---|---|---|
S1 | ||||||||||
January | 1.2 ± 2.7 | 34.8 ±14.1 | 792 ± 0.08 | 12.29 ± 0.42 | 0.62 ± 0.11 | 0.07 ± 0.03 | 51.7 ± 8.9 | 13.7 ± 2.2 | 241 ± 10 | 0.22 ± 0.06 |
February | 2.6 ± 4.5 | 36.4 ± 18.2 | 8.03 ± 0.06 | 12.22 ± 1.15 | 0.57 ± 0.12 | 0.06 ± 0.02 | 52.9 ± 13.3 | 15.7 ± 1.5 | 237 ± 15 | 0.15 ± 0.05 |
March | 5.5 ± 5.1 | 44.2 ± 22.3 | 8.16 ± 0.07 | 12.24 ± 1.49 | 0.43 ± 0.09 | 0.07 ± 0.04 | 45.2 ± 9.5 | 14.9 ± 2.8 | 229 ± 16 | 0.16 ± 0.13 |
April | 12.0 ± 4.6 | 43.2 ± 9.8 | 8.15 ± 0.10 | 11.63 ± 1.07 | 0.47 ± 0.08 | 0.09 ± 0.07 | 39.8 ± 11.1 | 13.7 ± 3.1 | 253 ± 18 | 0.19 ± 0.09 |
May | 17.3 ± 1.9 | 39.2 ± 9.3 | 8.29 ± 0.06 | 8.99 ± 1.41 | 0.36 ± 0.10 | 0.17 ± 0.06 | 42.4 ± 8.8 | 13.6 ± 1.5 | 228 ± 10 | 0.28 ± 0.14 |
June | 21.8 ± 0.3 | 29.6 ± 7.4 | 8.42 ± 0.07 | 9.24 ± 0.7 | 0.29 ± 0.08 | 0.14 ± 0.09 | 37.4 ± 11.0 | 14.0 ± 1.6 | 243 ± 12 | 0.39 ± 0.15 |
July | 21.7 ± 2.4 | 25.0 ± 4.9 | 8.41 ± 0.08 | 8.79 ± 1.52 | 0.22 ± 0.07 | 0.08 ± 0.03 | 39.6 ± 12.2 | 13.0 ± 2.5 | 227 ± 22 | 0.42 ± 0.05 |
August | 22.7 ± 5.2 | 14.6 ± 9.3 | 8.32 ± 0.10 | 9.43 ± 0.62 | 0.23 ± 0.09 | 0.08 ± 0.02 | 36.7 ± 7.2 | 14.1 ± 2.4 | 218 ± 26 | 0.41 ± 0.08 |
September | 16.9 ± 5.5 | 17.4 ± 7.6 | 8.18 ± 0.10 | 10.33 ± 0.91 | 0.21 ± 0.09 | 0.06 ± 0.02 | 35.2 ± 6.2 | 15.6 ± 2.3 | 226 ± 28 | 0.34 ± 0.08 |
October | 9.6 ± 3.6 | 24.0 ± 6.6 | 8.18 ± 0.09 | 10.67 ± 1.44 | 0.26 ± 0.09 | 0.05 ± 0.01 | 36.3 ± 13.7 | 14.8 ± 2.3 | 218 ± 30 | 0.32 ± 0.03 |
November | 4.9 ± 1.9 | 24.4 ± 17.3 | 7.97 ± 0.09 | 11.38 ± 0.87 | 0.30 ± 0.08 | 0.08 ± 0.02 | 44.8 ± 12.9 | 15.5 ± 1.8 | 235 ± 15 | 0.22 ± 0.07 |
December | 1.8 ± 1.7 | 26.6 ± 16.9 | 7.94 ± 0.03 | 12.49 ± 0.93 | 0.48 ± 0.11 | 0.05 ± 0.02 | 35.5 ± 9.4 | 15.8 ± 5.4 | 223 ± 20 | 0.20 ± 0.07 |
S2 | ||||||||||
January | 2.1 ± 2.4 | 34.8 ± 14.1 | 8.06 ± 0.16 | 11.72 ± 0.55 | 0.57 ± 0.12 | 0.06 ± 0.03 | 52.6 ± 9.1 | 14.5 ± 1.7 | 245 ± 11 | 0.25 ± 0.07 |
February | 3.6 ± 4.9 | 36.4 ± 18.2 | 8.12 ± 0.18 | 11.42 ± 0.90 | 0.59 ± 0.14 | 0.04 ± 0.03 | 54.4 ± 13.2 | 14.4 ± 0.6 | 246 ± 18 | 0.18 ± 0.04 |
March | 6.1 ± 5.5 | 44.2 ± 22.3 | 8.28 ± 0.11 | 11.79 ± 1.31 | 0.51 ± 0.11 | 0.07 ± 0.04 | 45.2 ± 9.1 | 14.8 ± 2.9 | 246 ± 17 | 0.17 ± 0.14 |
April | 13.0 ± 4.5 | 43.2 ± 9.8 | 8.23 ± 0.08 | 11.00 ± 1.06 | 0.53 ± 008 | 0.09 ± 0.06 | 41.9 ± 11.4 | 13.1 ± 2.9 | 250 ± 15 | 0.19 ± 0.12 |
May | 18.4 ± 1.9 | 39.2 ± 9.3 | 8.37 ± 0.09 | 8.88 ± 1.56 | 0.41 ± 0.09 | 0.14 ± 0.08 | 42.3 ± 8.9 | 14.8 ± 1.2 | 232 ± 16 | 0.29 ± 0.12 |
June | 22.5 ± 0.9 | 29.6 ± 7.4 | 8.44 ± 0.09 | 8.86 ± 0.87 | 0.31 ± 0.11 | 0.13 ± 0.03 | 39.6 ± 12.33 | 16.9 ± 1.6 | 248 ± 15 | 0.38 ± 0.12 |
July | 22.4 ± 2.6 | 25.0 ± 4.9 | 8.47 ± 0.07 | 8.65 ± 0.82 | 0.24 ± 0.12 | 0.09 ± 0.03 | 40.7 ± 7.9 | 15.1 ± 1.6 | 237 ± 12 | 0.44 ± 0.14 |
August | 23.0 ± 5.8 | 14.6 ± 9.3 | 8.35 ± 0.13 | 8.80 ± 0.95 | 0.25 ± 0.14 | 0.07 ± 0.03 | 37.3 ± 6.18 | 14.0 ± 2.2 | 239 ± 10 | 0.42 ± 0.06 |
September | 17.4 ± 5.2 | 17.4 ± 7.6 | 8.26 ± 0.11 | 9.68 ± 1.20 | 0.23 ± 0.08 | 0.05 ± 0.02 | 36.3 ± 14.2 | 16.2 ± 2.3 | 232 ± 11 | 0.37 ± 0.08 |
October | 10.3 ± 3.6 | 24.0 ± 6.6 | 8.26 ± 0.09 | 10.26 ± 1.26 | 0.28 ± 0.07 | 0.05 ± 0.01 | 37.8 ± 14.1 | 14.6 ± 2.5 | 221 ± 28 | 0.33 ± 0.07 |
November | 5.8 ± 2.3 | 24.4 ± 17.3 | 8.04 ± 0.07 | 11.03 ± 1.25 | 0.36 ± 0.06 | 0.08 ± 0.03 | 46.2 ± 11.0 | 16.9 ± 3.4 | 240 ± 18 | 0.23 ± 0.06 |
December | 2.3 ± 1.6 | 26.6 ± 16.9 | 8.10 ± 0.07 | 12.02 ± 1.12 | 0.51 ± 0.11 | 0.05 ± 0.02 | 35.0 ± 8.6 | 16.6 ± 2.9 | 233 ± 18 | 0.21 ± 0.05 |
T 5–15 | T 15–25 | T 5–15 | T 15–25 | T 15–25 |
pH 6–7.5 | pH 6–7.5 | pH 8–9.5 | pH 8–9.5 | pH 8–9.5 |
EC 500 mS/cm or TDS 200–300 mg/dm3 | EC 500 mS/cm or TDS 200–300 mg/dm3 | EC 500 mS/cm or TDS 200–300 mg/dm3 | EC 500 mS/cm or TDS 200–300 mg/dm3 | EC 500 mS/cm or TDS 200–300 mg/dm3 |
Anions of weak inorganic acids ≥50% | Anions of weak inorganic acids ≥50% | Anions of weak inorganic acids ≥50% | Anions of weak inorganic acids ≥50% | Anions of weak inorganic acids ≥50% |
Water quality is good | Water quality is satisfactory | Water quality is satisfactory | Water quality is satisfactory | Water quality is poor |
Factors | T | pH | EC | AWIA |
---|---|---|---|---|
low | [1, 5, 9] | [5.4, 6, 6.6] | [−100, 500, 1100] | [−4, 0, 4] |
middle | [6, 10, 14] | [6.15, 6.75, 7.35] | [650, 1250, 1850] | [1, 5, 9] |
high | [11, 15, 19] | [6.9, 7.5, 8.1] | [1400, 2000, 2600] | [6, 10, 14] |
very good | [−1.5, 0, 1.5] |
good | [1, 2.5, 4] |
satisfactory | [3.5, 5, 6.5] |
poor | [6, 7.5, 9] |
very poor | [8.5, 10, 11.5] |
ANN Models | ANN#1 | ANN#2 | ANN#3 | ANN#4 | ANN#5 | ANN#6 |
---|---|---|---|---|---|---|
activation function | ReLU | ReLU | softmax | softmax | tanh | tanh |
optimization algorithm | ADAM | RMSprop | ADAM | RMSprop | ADAM | RMSprop |
R2 | 0.9686 | 0.9754 | 0.7436 | 0.7229 | 0.5228 | 0.5641 |
MAPE, % | 5.8 | 5.2 | 14.9 | 13.3 | 16.6 | 15.9 |
Target Value (y) | Predicted Value (y′) | Deviation ∆y, % |
---|---|---|
2 | 2.004 | 0.18 |
3 | 2.994 | 0.19 |
4 | 3.974 | 0.65 |
5 | 5.004 | 0.07 |
6 | 5.993 | 0.12 |
7 | 7.32 | 4.57 |
8 | 8.086 | 1.07 |
9 | 8.548 | 5.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trach, Y.; Trach, R.; Kuznietsov, P.; Pryshchepa, A.; Biedunkova, O.; Kiersnowska, A.; Statnyk, I. Predicting the Influence of Ammonium Toxicity Levels in Water Using Fuzzy Logic and ANN Models. Sustainability 2024, 16, 5835. https://doi.org/10.3390/su16145835
Trach Y, Trach R, Kuznietsov P, Pryshchepa A, Biedunkova O, Kiersnowska A, Statnyk I. Predicting the Influence of Ammonium Toxicity Levels in Water Using Fuzzy Logic and ANN Models. Sustainability. 2024; 16(14):5835. https://doi.org/10.3390/su16145835
Chicago/Turabian StyleTrach, Yuliia, Roman Trach, Pavlo Kuznietsov, Alla Pryshchepa, Olha Biedunkova, Agnieszka Kiersnowska, and Ihor Statnyk. 2024. "Predicting the Influence of Ammonium Toxicity Levels in Water Using Fuzzy Logic and ANN Models" Sustainability 16, no. 14: 5835. https://doi.org/10.3390/su16145835
APA StyleTrach, Y., Trach, R., Kuznietsov, P., Pryshchepa, A., Biedunkova, O., Kiersnowska, A., & Statnyk, I. (2024). Predicting the Influence of Ammonium Toxicity Levels in Water Using Fuzzy Logic and ANN Models. Sustainability, 16(14), 5835. https://doi.org/10.3390/su16145835