The Past, Present and Future of Land Use and Land Cover Changes: A Case Study of Lower Liaohe River Plain, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Methods
2.3.1. Intensity Analysis
2.3.2. Geodetector
2.3.3. MCCA Model
- (1)
- Based on the dataset of land use and the driving factors from the initial and target years, the Random Forest Regression (RFR) algorithm is used to mine the land use conversion rules. The formula is as follows:
- (2)
- Based on the linear regression tool provided by the model, historical land use and future land use demand are obtained for model validation and future forecasting, respectively. Combining the input land use data, land use conversion probabilities, and domain boundaries, the proportion of coverage of each land use type in the mixed tuple cell is determined by the competitive roulette mechanism. The formula is as follows:
- (3)
- The overall accuracy, RE and mcFoM metrics are employed for assessing the model’s accuracy.
3. Results
3.1. Intensity Analysis of LUCC
3.1.1. Intensity Analysis of LUCC at Interval Level
3.1.2. Intensity Analysis of LUCC at Category Level
3.1.3. Intensity Analysis of LUCC at Transition Level
3.2. Driving Force Analysis of LUCC
3.2.1. Selection of Influencing Factors
3.2.2. Independent Effects of Factors
3.2.3. Interaction Effects between Factors
3.3. Prediction of Future LUCC
3.3.1. Model Validation
3.3.2. Time Variation Analysis of Simulation Results
3.3.3. Land Use Conversion Rules
3.3.4. Spatial Variation Analysis of Simulation Results
4. Discussion
4.1. LUCC and Transformation Intensity Analysis
4.2. Influences of Driving Factors on LUCC
4.3. Future Land Use Change Scenarios
4.4. Relevant Policy Recommendations
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, J.; Kuang, W.; Liu, J. Continuous land cover change monitoring in the remote sensing big data era. Sci. China Earth Sci. 2017, 60, 2223–2224. [Google Scholar] [CrossRef]
- Jia, S.; Yang, Y. Spatiotemporal and Driving Factors of Land-Cover Change in the Heilongjiang (Amur) River Basin. Remote Sens. 2023, 15, 3730. [Google Scholar] [CrossRef]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Nie, S. Impact of LUCC on landscape pattern in the Yangtze River Basin during 2001–2019. Ecol. Inf. 2022, 69, 101631. [Google Scholar] [CrossRef]
- Feng, H.; Wang, S.; Zou, B.; Nie, Y.; Ye, S.; Ding, Y.; Zhu, S. Land use and cover change (LUCC) impacts on Earth’s eco-environments: Research progress and prospects. Adv. Space Res. 2023, 71, 1418–1435. [Google Scholar] [CrossRef]
- Song, W.; Cao, S.; Du, M.; Lu, L. Distinctive roles of land-use efficiency in sustainable development goals: An investigation of trade-offs and synergies in China. J. Clean. Prod. 2023, 382, 134889. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Deo, R.; Gong, Y.; Feng, Q. Influence of stand type and stand age on soil carbon storage in China’s arid and semi-arid regions. Land Use Policy 2018, 78, 258–265. [Google Scholar] [CrossRef]
- Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; Shahtahmassebi, A. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2019, 646, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, J. Land use transformation and eco-environmental effects based on production-living-ecological spatial synergy: Evidence from Shaanxi Province, China. Environ. Sci. Pollut. Res. 2022, 29, 41492–41504. [Google Scholar] [CrossRef]
- Sy, S.; Quesada, B. Anthropogenic land cover change impact on climate extremes during the 21st century. Environ. Res. Lett. 2020, 15, 034002. [Google Scholar] [CrossRef]
- De Koning, G.H.J.; Benítez, P.C.; Muñoz, F.; Olschewski, R. Modelling the impacts of payments for biodiversity conservation on regional land-use patterns. Landsc. Urban Plann. 2007, 83, 255–267. [Google Scholar] [CrossRef]
- Yan, D.; Scott, R.L.; Moore, D.J.P.; Biederman, J.A.; Smith, W.K. Understanding the relationship between vegetation greenness and productivity across dryland ecosystems through the integration of PhenoCam, satellite, and eddy covariance data. Remote Sens. Environ. 2019, 223, 50–62. [Google Scholar] [CrossRef]
- Meaza, H.; Tsegaye, D.; Nyssen, J. Allocation of degraded hillsides to landless farmers and improved livelihoods in Tigray, Ethiopia. Nor. Geogr. Tidsskr. 2016, 70, 1–12. [Google Scholar] [CrossRef]
- Hoyer, R.; Chang, H. Assessment of freshwater ecosystem services in the Tualatin and Yamhill basins under climate change and urbanization. Appl. Geogr. 2014, 53, 402–416. [Google Scholar] [CrossRef]
- Cui, J.; Zhu, M.; Liang, Y.; Qin, G.; Li, J.; Liu, Y. Land Use/Land Cover Change and Their Driving Factors in the Yellow River Basin of Shandong Province Based on Google Earth Engine from 2000 to 2020. ISPRS Int. J. Geo Inf. 2022, 11, 163. [Google Scholar] [CrossRef]
- Hishe, S.; Bewket, W.; Nyssen, J.; Lyimo, J. Analysing past land use land cover change and CA-Markov-based future modelling in the Middle Suluh Valley, Northern Ethiopia. Geocarto Int. 2019, 35, 225–255. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S.; et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef]
- Tian, Y.; Yin, K.; Lu, D.; Hua, L.; Zhao, Q.; Wen, M. Examining Land Use and Land Cover Spatiotemporal Change and Driving Forces in Beijing from 1978 to 2010. Remote Sens. 2014, 6, 10593–10611. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Liu, Z.; Zhu, J.; Qin, F. Evaluation of a deep-learning model for multispectral remote sensing of land use and crop classification. Crop J. 2022, 10, 1435–1451. [Google Scholar] [CrossRef]
- Liang, Y.; Zeng, J.; Li, S. Examining the Spatial Variations of Land Use Change and Its Impact Factors in a Coastal Area in Vietnam. Land 2022, 11, 1751. [Google Scholar] [CrossRef]
- Huang, B.; Huang, J.; Gilmore Pontius, R.; Tu, Z. Comparison of Intensity Analysis and the land use dynamic degrees to measure land changes outside versus inside the coastal zone of Longhai, China. Ecol. Indic. 2018, 89, 336–347. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Zhang, Y.; Wang, J. Ecological response of land use change in a large opencast coal mine area of China. Resour. Policy 2023, 82, 103551. [Google Scholar] [CrossRef]
- da Cunha, E.R.; Santos, C.A.G.; da Silva, R.M.; Bacani, V.M.; Pott, A. Future scenarios based on a CA-Markov land use and land cover simulation model for a tropical humid basin in the Cerrado/Atlantic forest ecotone of Brazil. Land Use Policy 2021, 101, 105141. [Google Scholar] [CrossRef]
- Deng, Z.; Quan, B. Intensity Analysis to Communicate Detailed Detection of Land Use and Land Cover Change in Chang-Zhu-Tan Metropolitan Region, China. Forests 2023, 14, 939. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Quan, B.; Pontius, R.G.; Song, H. Intensity Analysis to communicate land change during three time intervals in two regions of Quanzhou City, China. GISci. Remote Sens. 2019, 57, 21–36. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, K.; Cao, L.; Guan, X.; Zhang, H. Driving forces and prediction of urban land use change based on the geodetector and CA-Markov model: A case study of Zhengzhou, China. Int. J. Digital Earth 2022, 15, 2246–2267. [Google Scholar] [CrossRef]
- Wu, F.; Mo, C.; Dai, X. Analysis of the Driving Force of Land Use Change Based on Geographic Detection and Simulation of Future Land Use Scenarios. Sustainability 2022, 14, 5254. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Y. Land Cover Changes and Their Driving Mechanisms in Central Asia from 2001 to 2017 Supported by Google Earth Engine. Remote Sens. 2019, 11, 554. [Google Scholar] [CrossRef]
- Li, K.; Feng, M.; Biswas, A.; Su, H.; Niu, Y.; Cao, J. Driving Factors and Future Prediction of Land Use and Cover Change Based on Satellite Remote Sensing Data by the LCM Model: A Case Study from Gansu Province, China. Sensors 2020, 20, 2757. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Gao, H.; Xu, S.; Feng, J.; Qin, T. Land Cover Changes and Driving Factors in the Source Regions of the Yangtze and Yellow Rivers over the Past 40 Years. Land 2024, 13, 259. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Land use change and driving factors in rural China during the period 1995-2015. Land Use Policy 2020, 99, 105048. [Google Scholar] [CrossRef]
- Ning, C.; Subedi, R.; Hao, L. Land Use/Cover Change, Fragmentation, and Driving Factors in Nepal in the Last 25 Years. Sustainability 2023, 15, 6957. [Google Scholar] [CrossRef]
- Wei, Z.; Du, N.; Yu, W. Land use change and its driving factors in the ecological function area: A case study in the Hedong Region of the Gansu Province, China. J. Arid. Land 2024, 16, 71–90. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Zhu, G.; Zhou, H.; Yan, H.; Xue, P. Land Use/Land Cover Changes and Their Driving Factors in the Northeastern Tibetan Plateau Based on Geographical Detectors and Google Earth Engine: A Case Study in Gannan Prefecture. Remote Sens. 2020, 12, 3139. [Google Scholar] [CrossRef]
- Ronizi, S.R.A.; Negahban, S.; Mokarram, M. Investigation of land use changes in rural areas using MCDM and CA-Markov chain and their effects on water quality and soil fertility in south of Iran. Environ. Sci. Pollut. Res. 2022, 29, 88644–88662. [Google Scholar] [CrossRef]
- Sun, C.; Bao, Y.; Vandansambuu, B.; Bao, Y. Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia. Sustainability 2022, 14, 15707. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use Changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Li, H.; Fang, C.; Xia, Y.; Liu, Z.; Wang, W. Multi-Scenario Simulation of Production-Living-Ecological Space in the Poyang Lake Area Based on Remote Sensing and RF-Markov-FLUS Model. Remote Sens. 2022, 14, 2830. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- He, C.; Zhang, J.; Liu, Z.; Huang, Q. Characteristics and progress of land use/cover change research during 1990-2018. Acta Geogr. Sin. 2021, 76, 2730–2748. [Google Scholar] [CrossRef]
- Cao, K.; Zhang, W.; Wang, T. Spatio-temporal land use multi–objective optimization: A case study in Central China. Trans. GIS 2019, 23, 726–744. [Google Scholar] [CrossRef]
- Qiao, Z.; Jiang, Y.; He, T.; Lu, Y.; Xu, X.; Yang, J. Land use change simulation:progress, challenges, and prospects. Acta Ecol. Sin. 2022, 42, 5165–5176. [Google Scholar]
- Liang, X.; Guan, Q.; Clarke, K.C.; Chen, G.; Guo, S.; Yao, Y. Mixed-cell cellular automata: A new approach for simulating the spatio-temporal dynamics of mixed land use structures. Landsc. Urban Plan. 2021, 205, 103960. [Google Scholar] [CrossRef]
- Sun, C.; Yan, X. Driving mechanism analysis of landscape pattern change in the Lower Liaohe Plain based on GIS-Logistic coupling model. Acta Ecol. Sin. 2014, 34, 7280–7292. [Google Scholar]
- Liu, X.; Bian, Z.; Sun, Z.; Wang, C.; Sun, Z.; Wang, S.; Wang, G. Integrating Landscape Pattern Metrics to Map Spatial Distribution of Farmland Soil Organic Carbon on Lower Liaohe Plain of Northeast China. Land 2023, 12, 1344. [Google Scholar] [CrossRef]
- Abdullahi, S.; Pradhan, B. Land use change modeling and the effect of compact city paradigms: Integration of GIS-based cellular automata and weights-of-evidence techniques. Environ. Earth Sci. 2018, 77, 251. [Google Scholar] [CrossRef]
- Yang, J.; Gong, J.; Gao, J.; Ye, Q. Stationary and systematic characteristics of land use and land cover change in the national central cities of China using intensity analysis: A case study of Wuhan City. Resour. Sci. 2019, 41, 701–716. [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geog. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Q.; Dong, X.; Bian, Z.; Sun, F. Cultivated Land Use Change and Protecting Exploitation Ways in Typical Region of Lower Reaches of Liaohe River Plain. Res. Agric. Modern. 2010, 31, 608–611. [Google Scholar]
- Wang, Q.; Song, G. Changes of cultivated land pattern and its spatial driving factors in the typical regions of Lower Liaohe Plain. Trans. Chin. Soc. Agric. Eng. 2021, 37, 275–283. [Google Scholar]
- Wang, X.; Liu, W.; Zhang, L.; Zheng, J.; Wang, D.; Wang, L. Dynamic Analysis of Landscape Pattern in Liaohe Watershed in the past Ten Years. J. Fujian For. Sci. Technol. 2015, 42, 9–15. [Google Scholar]
- Li, H.Y.; Man, W.D.; Li, X.Y.; Ren, C.Y.; Wang, Z.M.; Li, L.; Jia, M.M.; Mao, D.H. Remote sensing investigation of anthropogenic land cover expansion in the low-elevation coastal zone of Liaoning Province, China. Ocean Coast. Manag. 2017, 148, 245–259. [Google Scholar] [CrossRef]
- Varamesh, S.; Mohtaram Anbaran, S.; Shirmohammadi, B.; Al-Ansari, N.; Shabani, S.; Jaafari, A. How Do Different Land Uses/Covers Contribute to Land Surface Temperature and Albedo? Sustainability 2022, 14, 16963. [Google Scholar] [CrossRef]
- Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Space Sci. 2017, 20, 125–145. [Google Scholar] [CrossRef]
- Ali, S.; Basit, A.; Umair, M.; Makanda, T.A.; Shaik, M.R.; Ibrahim, M.; Ni, J. The Role of Climate Change and Its Sensitivity on Long-Term Standardized Precipitation Evapotranspiration Index, Vegetation and Drought Changing Trends over East Asia. Plants 2024, 13, 399. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, X.; Zhang, D.; Zhang, J.; He, J.; Xu, X. Simulating mixed land-use change under multi-label concept by integrating a convolutional neural network and cellular automata: A case study of Huizhou, China. GISci. Remote Sens. 2022, 59, 609–632. [Google Scholar] [CrossRef]
- Zhou, S.; Peng, L. Integrating a mixed-cell cellular automata model and Bayesian belief network for ecosystem services optimization to guide ecological restoration and conservation. Land Degrad. Dev. 2022, 33, 1579–1595. [Google Scholar] [CrossRef]
- Lv, L.; Yang, Y.; Jiang, J.; Qiao, H.; Bai, S. Evolution and Prediction of Landscape Pattern in the Xialiaohe Plain. Geomat. World 2021, 28, 73–78. [Google Scholar]
Year | Data | Row | Path | Resolution (m) |
---|---|---|---|---|
1980 | Landsat 4–5 TM | 31 | 119 | 30 |
1990 | Landsat 4–5 TM | 32 | 119 | 30 |
2000 | Landsat 7 ETM+ | 31 | 120 | 30 |
2010 | Landsat 7 ETM+ | 32 | 120 | 30 |
2018 | Landsat 8 OLI–TIRS | 32 | 120 | 30 |
Data Type | Variables | Code | Unit |
---|---|---|---|
Natural factors | Elevation | x1 | m |
Natural factors | Slope | x2 | ° |
Natural factors | Aspect | x3 | - |
Natural factors | Average annual temperature | x4 | °C |
Natural factors | Average annual precipitation | x5 | mm |
Social factors | Population density | x6 | per sq km |
Social factors | Total population | x7 | 104 |
Economic factors | GDP | x8 | 100 million |
Economic factors | Per capital GDP | x9 | yuan/yr |
Economic factors | The total value in primary industry | x10 | 100 million |
Economic factors | The total value in secondary industry | x11 | 100 million |
Natural factors | SPEI-12 | x12 | - |
Social factors | Distance to water source | x13 | km |
Natural factors | ET0 | x14 | mm/d |
N–Cropland | Area | Cropland–M | Area |
---|---|---|---|
Built-up Land-Cropland | 76.09 | Cropland–Built-up Land | 135.65 |
Forest Land–Cropland | 31.77 | Cropland–Water bodies | 50.16 |
Water bodies–Cropland | 33.05 | Cropland–Forest Land | 37.03 |
Swamp–Cropland | 20.93 | Cropland–swamp | 10.07 |
Grass Land–Cropland | 3.02 | Cropland–Grass Land | 4.48 |
Unused Land–Cropland | 0.38 | Cropland–Unused Land | 0.52 |
Factors | Cropland–Built-Up Land | Cropland–Water Bodies | Forest Land–Cropland | Swamp–Cropland | ||||
---|---|---|---|---|---|---|---|---|
q Statistic | p Value | q Statistic | p Value | q Statistic | p Value | q Statistic | p Value | |
x1 | 0.121 | 0.000 | 0.126 | 0.000 | 0.078 | 0.000 | 0.038 | 0.000 |
x2 | 0.023 | 0.000 | 0.009 | 0.567 | 0.014 | 0.687 | 0.004 | 0.000 |
x3 | 0.006 | 0.173 | 0.049 | 0.005 | 0.017 | 0.387 | 0.001 | 0.004 |
x4 | 0.218 | 0.000 | 0.155 | 0.000 | 0.077 | 0.000 | 0.374 | 0.000 |
x5 | 0.188 | 0.000 | 0.110 | 0.000 | 0.069 | 0.000 | 0.425 | 0.000 |
x6 | 0.221 | 0.000 | 0.148 | 0.000 | 0.084 | 0.000 | 0.471 | 0.000 |
x7 | 0.221 | 0.000 | 0.058 | 0.000 | 0.086 | 0.000 | 0.293 | 0.000 |
x8 | 0.221 | 0.000 | 0.158 | 0.000 | 0.085 | 0.000 | 0.457 | 0.000 |
x9 | 0.167 | 0.000 | 0.114 | 0.000 | 0.084 | 0.000 | 0.460 | 0.000 |
x10 | 0.222 | 0.000 | 0.072 | 0.000 | 0.085 | 0.000 | 0.415 | 0.000 |
x11 | 0.220 | 0.000 | 0.143 | 0.000 | 0.081 | 0.000 | 0.411 | 0.000 |
x12 | 0.103 | 0.000 | 0.169 | 0.000 | 0.028 | 0.126 | 0.229 | 0.000 |
x13 | 0.026 | 0.000 | 0.033 | 0.009 | 0.068 | 0.002 | 0.001 | 0.004 |
x14 | 0.269 | 0.000 | 0.097 | 0.000 | 0.217 | 0.000 | 0.159 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Wang, R.; Lv, L.; Jiang, J. The Past, Present and Future of Land Use and Land Cover Changes: A Case Study of Lower Liaohe River Plain, China. Sustainability 2024, 16, 5976. https://doi.org/10.3390/su16145976
Wu R, Wang R, Lv L, Jiang J. The Past, Present and Future of Land Use and Land Cover Changes: A Case Study of Lower Liaohe River Plain, China. Sustainability. 2024; 16(14):5976. https://doi.org/10.3390/su16145976
Chicago/Turabian StyleWu, Rina, Ruinan Wang, Leting Lv, and Junchao Jiang. 2024. "The Past, Present and Future of Land Use and Land Cover Changes: A Case Study of Lower Liaohe River Plain, China" Sustainability 16, no. 14: 5976. https://doi.org/10.3390/su16145976
APA StyleWu, R., Wang, R., Lv, L., & Jiang, J. (2024). The Past, Present and Future of Land Use and Land Cover Changes: A Case Study of Lower Liaohe River Plain, China. Sustainability, 16(14), 5976. https://doi.org/10.3390/su16145976