Responses of Nutritional Status and Productivity of Timor Mango Trees to Foliar Spray of Conventional and/or Nano Zinc
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Materials
2.2. Measurements and Determinations
2.2.1. Nutritional Status
2.2.2. Productivity
2.3. Statistical Analysis
3. Results
3.1. Nutritional Status
3.2. Productivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bompard, J.M. Taxonomy and systematics. In The Mango: Botany, Production and Uses; Litz, R.E., Ed.; CAB International: Wallingford, UK, 2009; pp. 19–41. [Google Scholar]
- Kostermans, A.J.G.H.; Bompard, J.M. The Mango: Their Botany, Nomenclature: Horticulture and Utilization; International Board for Plant Genetic Resources: Rome, Italy; the Lincann Society of London: London, UK; Academic Press: Cambridge, MA, USA; Harcourt Brace and Company: San Diego, CA, USA, 1993; p. 232. [Google Scholar]
- Elsheery, N.I.; Helaly, M.N.; El-Hoseiny, H.M.; Alam-Eldein, S.M. Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 2020, 10, 558. [Google Scholar] [CrossRef]
- Saibyasachi, N.C. RAPD Characterization of Open Pollinate a Progeny of Mallika Mango (Mangifera indica L.). Master’s Thesis, Fac. of Agric., Bangalore University, Bengaluru, India, 2003. [Google Scholar]
- Masroor, H.M.; Anjum, M.A.; Hussain, S.; Ejaz, S.; Ahmad, S.; Ercisli, S.; Zia-Ul-Haq, M. Zinc ameliorates fruit yield and quality of mangoes cultivated in calcareous soils. Erwerbs-Obstbau 2016, 58, 49–55. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, Y.; Zi, J.; Yan, J.; Li, C.; Du, C.; Wan, J.; Wu, H.; Zheng, B.; Wang, S.; et al. Differential effects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes. Sci. Rep. 2023, 13, 611. [Google Scholar] [CrossRef]
- Sferrazzo, G.; Palmeri, R.; Restuccia, C.; Parafati, L.; Siracusa, L.; Spampinato, M.; Carota, G.; Distefano, A.; Di Rosa, M.; Tomasello, B.; et al. Mangifera indica L. Leaves as a Potential Food Source of Phenolic Compounds with Biological Activity. Antioxidants 2022, 11, 1313. [Google Scholar] [CrossRef]
- Abdel-Sattar, M.; Al-Obeed, R.S.; Makhasha, E.; Mostafa, L.Y.; Abdelzaher, R.A.E.; Rihan, H.Z. Improving mangoes’ productivity and crop water productivity by 24-epibrassinosteroids and hydrogen peroxide under deficit irrigation. Agric. Water Manag. 2024, 298, 108860. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, V. Physiological disorders in perennial woody tropical and subtropical fruit crops—A review. Indian J. Agric. Sci. 2016, 86, 703–717. [Google Scholar] [CrossRef]
- Ali, M.S.; Elhamahmy, M.A.; El-Shiekha, A.F. Mango trees productivity and quality as affected by Boron and Putrescine. Sci. Hortic. 2017, 216, 248–255. [Google Scholar] [CrossRef]
- Alebidi, A.; Abdel-Sattar, M.; Mostafa, L.Y.; Hamad, A.S.A.; Rihan, H.Z. Synergistic Effects of Applying Potassium Nitrate Spray with Putrescineon Productivity and Fruit Quality of Mango Trees cv. Ewais. Agronomy 2023, 13, 2717. [Google Scholar] [CrossRef]
- Reddy, Y.T.N.; Kurian, R.M.; Sujatha, N.T.; Srinivas, M. Leaf and soil nutrient status of mango (Mangiferaindica L.) grown in peninsular India and their relationship with yield. J. Appl. Hort. 2001, 3, 78–81. [Google Scholar]
- Khemira, H.; Tounekti, T.; Mahdhi, M.; Reddy, D.N.; Makhasha, E.; Jaafar, A. Remedying Zn deficiency in mango orchards with foliar sprays. Asian J. Crop Sci. 2018, 10, 86–92. [Google Scholar]
- Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Mohamed, A.A. Impact of foliar application of nanomicronutrient fertilizers on some quantitative and qualitative traits of “Thompson seedless” grapevine. Middle East J. Appl. Sci. 2020, 10, 435–441. [Google Scholar] [CrossRef]
- Suman, M.; Sangma, P.D.; Singh, D. Role of Micronutrients (Fe, Zn, B, Cu, Mg, Mn and Mo) in Fruit Crops. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3240–3250. [Google Scholar] [CrossRef]
- El-Gioushy, S.F.; Sami, R.; Al-Mushhin, A.A.M.; Abou El-Ghit, H.M.S.; Gawish, M.; Ismail, K.A.; Zewail, R.M.Y. Foliar Application of ZnSO4 and CuSO4 Affects the Growth, Productivity, and Fruit Quality of Washington Navel Orange Trees (Citrus sinensis L.) Osbeck. Horticulturae 2021, 7, 233. [Google Scholar] [CrossRef]
- Mehmood, H.; Ali, M.R.; Hussain, S. Growth and Yield of Rice under Variable Application Methods of Zinc with and Without Arbuscular mycorrhizae in Normal and Saline Soils. Pak. J. Bot. 2023, 55, 1534. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Barrios, D.L.; Perea-Portillo, E.; Hernández-Rodríguez, O.A.; Martínez-Téllez, J.; Abadía, J.; Lombardini, L. Foliar fertilization with zinc in pecan trees. HortScience 2014, 49, 562–566. [Google Scholar] [CrossRef]
- Küçükyumuk, Z.; Özgönen, H.; Erdal, I.; Eraslan, F. Effect of zinc and glomus intraradices on control of Pythium deliense, plant growth parameters and nutrient concentrations of cucumber. Not. Bot. Horti Agrobot. Cluj-Napoca 2014, 42, 138–142. [Google Scholar] [CrossRef]
- Singh, A.; Singh, N.Á.; Afzal, S.; Singh, T.; Hussain, I. Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J. Mater. Sci. 2018, 53, 185–201. [Google Scholar] [CrossRef]
- Mahil, E.I.T.; Kumar, B.N.A. Foliar application of nanofertilizers in agricultural crops—A review. J. Farm Sci. 2019, 32, 239–249. [Google Scholar]
- Nandal, V.; Solanki, M. The Zn as a vital micronutrient in plants. J. Microbiol. Biotechnol. Food Sci. 2021, 11, e4026. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2011. [Google Scholar]
- Hassan, H.S.A.; Sarrwy, S.M.A.; Mostafa, E.A.M. Effect of foliar spraying with liquid organic fertilizer, some micronutrients and gibberellins on leaf minerals content, fruit set, yield, and fruit quality of “Hollywood” plum trees. Agric. Biol. J. N. Am. 2010, 1, 638–643. [Google Scholar]
- Xing, F.; Fu, X.Z.; Wang, N.Q.; Xi, J.L.; Huang, Y.; Wei, Z.; Peng, L.Z. Physiological changes and expression characteristics of ZIP family genes under zinc deficiency in navel orange (Citrus sinensis). J. Integr. Agric. 2016, 15, 803–811. [Google Scholar] [CrossRef]
- Santis, S.M.; Cabrera, D.F.M.; Benavides-Mendoza, A.; Sandoval-Rangel, A.; Ortega-Ortiz, H.; Robledo-Olivo, A. Agronomic yield of tomato supplemented with Fe, Cu and Zn microelements. Rev. Mex. Cienc. Agrícolas 2019, 10, 1379–1391. [Google Scholar]
- Fernández, V.; Brown, P.H. From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Front. Plant Sci. 2013, 4, 289. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Barrios, D.L.; Oscar Cruz-Alvarez, O.; Sánchez-Chavez, E.; Ciscomani-Larios, J.P. Effect of foliar application of zinc on annual productivity, foliar nutrients, bioactive compounds and oxidative metabolism in pecan. Folia Hortic. 2023, 35, 179–192. [Google Scholar] [CrossRef]
- Nongbet, A.; Mishra, A.K.; Mohanta, Y.K.; Mahanta, S.; Ray, M.K.; Khan, M.; Baek, K.-H.; Chakrabartty, I. Nanofertilizers: A Smart and Sustainable Attribute to Modern Agriculture. Plants 2022, 11, 2587. [Google Scholar] [CrossRef] [PubMed]
- Ajirlao, A.R.; Shaaban, M.; Motlegh, Z.R. Effect of K nano fertilizer and N biofertilizer on yield and yield components of tomato. Int. J. Adv. Biol. Biomed. Res. 2014, 3, 135–173. [Google Scholar]
- Ekinci, M.; Dursun, A.; Yildrim, E.; Parlakova, F. Effects of nanotechnology liquid fertilizers on the plant growth and yield of cucumber (Cucumis sativus, L.). Acta Sci. Pol. 2014, 13, 135–141. [Google Scholar]
- Refaai, M.M. Response of Zaghloul date palms grown under Minia region conditions to spraying wheat seed sprout extract and nano boron. Stem Cell 2014, 5, 22–28. [Google Scholar]
- Sabir, A.; Yazar, K.; Sabir, F.; Kara, Z.; Yazsci, M.A.; Goksu, N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci. Hortic. 2014, 175, 1–8. [Google Scholar] [CrossRef]
- Roshdy, K.H.A.; Refaai, M.M. Effect of nanotechnology fertilization on growth and fruiting of Zaghloul date palms. J. Plant Prod. 2016, 7, 93–98. [Google Scholar] [CrossRef]
- Nagula, S.; Ramanjaneyulu, A.V. Nanofertilizers: The next generation fertilizer. Biot. Res. Today 2020, 2, 905–907. [Google Scholar]
- Bahadur, L.; Malhi, C.S.; Singh, Z. Effect of foliar and soil applications of zinc sulfate on zinc uptake, tree size, yield and fruit quality of mango. J. Plant Nutr. 1998, 21, 589–600. [Google Scholar] [CrossRef]
- Ahmad, I.; Bibi, F.; Ullah, H.; Munir, T.M. Mango Fruit Yield and Critical Quality Parameters Respond to Foliar and Soil Applications of Zinc and Boron. Plants 2018, 7, 97. [Google Scholar] [CrossRef] [PubMed]
- Maklad, T.N.; El-Sawwah, O.A.O.; Nassar, S.A. Effect of calcium, zinc and boron treatments on flowering, yield and fruit quality of mango Ewais cultivar. J. Plant Prod. 2020, 11, 463–1468. [Google Scholar] [CrossRef]
- Dhotra, B.; Bakshi, P.; Jeelani, M.I.; Kumar, V.; Rai, P.K.; SKhajuria, S.; Vikas, V. Effect of Foliar Application of Micronutrients on Fruit Growth, Yield and Quality of Mango (Mangifera indica L.) cv Dashehari. Environ. Ecol. 2021, 39, 873–881. [Google Scholar]
- Rossi, L.; Fedenia, L.N.; Sharifan, H.; Ma, X.; Lombardini, L. Effects of foliar application of zinc sulphate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol. Biochem. 2019, 135, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Bonomelli, C.; Alcalde, C.; Aguilera, C.; Videla, X.; Rojas-Silva, X.; Nario, A.; Fernández, V. Absorption and mobility of radio-labelled calcium in chili pepper plants and sweet cherry trees. Sci. Agric. 2021, 78, e20200092. [Google Scholar] [CrossRef]
- Chadha, K.L.; Samra, J.S.; Thakur, R.S. Standardization of leaf sampling for mineral composition of leave of mango cultivar ‘Chausa’. Sci. Hortic. 1980, 13, 323–329. [Google Scholar] [CrossRef]
- Li, H.S. The Principles and Technologies for Plant Physiology and Biochemistry Experiments; High Education Press: Beijing, China, 2006. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Helaly, M.N.; El-Sheery, N.I.; El-Hoseiny, H.; Rastogi, A.; Kalaji, H.M.; Zabochnicka-Świątek, M. Impact of treated wastewater and salicylic acid on physiological performance, malformation and yield of two mango cultivars. Sci. Hortic. 2018, 233, 59–177. [Google Scholar] [CrossRef]
- Wilde, S.A.; Corey, R.B.; Iyer, J.G.; Voight, G.K. Soil and Plant Analysis for Tree Culture, 5th ed.; Oxford & IBH Publishing Co.: New Delhi, India, 1979. [Google Scholar]
- Evenhuis, B.; DeWaard, P.W. Principles and practices in plant analysis. FAO Soils Bull. 1980, 38, 152–163. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils; Plants and Waters. Univ. California Div. Agric. Sci. Priced Publication: Oakland, CA, USA, 1978. [Google Scholar]
- Evenhuis, B. Nitrogen Determination; Department of Agricultural Research Royal Tropical Inst.: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Murphy, J.A.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Jackson, N.L. Soil Chemical Analysis; Prentice-Hall Inc.: Englewood Cliffs, NS, USA, 1967. [Google Scholar]
- Donohue, S.J.; Aho, D.W. Determination of P, K, Ca, Mg, Fe, Al, B, Cu and Zn in Plant Tissue by Inductively Coupled Plasma (ICP) Emission Spectroscopy. In Plant Analysis Procedures for the Southern Region of the United States; Plank, C.O., Ed.; Southern Cooperative Series Bulletin 368; Georgia Cooperative Extension Service: Athens, GA, USA, 1992; pp. 34–37. [Google Scholar]
- Herbert, D.; Phipps, P.J.; Strange, R.E. Chemical analysis of microbial cells. J. Microbiol. Methods 1971, 5, 209–344. [Google Scholar]
- Smith, G.S.; Johnston, C.M.; Cornforth, I.S. Comparison of nutrient solutions for growth of plants in sand culture. New Phytol. 1983, 94, 537–548. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1984; 680p. [Google Scholar]
- SAS Institute Inc. The SAS System for Windows, Version 9.13; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; The Iowa. State Univ. Press: Ames, IA, USA, 1990; p. 593. [Google Scholar]
- Huang, C.; Xu, C.; Ma, Y.; Song, T.; Xu, Z.; Li, S.; Liang, J.; Zhang, L. Nutritional Diagnosis of the Mineral Elements in Tainong Mango Leaves during Flowering in Karst Areas. Land 2022, 11, 1311. [Google Scholar] [CrossRef]
- Ram, R.; Rahim, M.; Alam, M. Diagnosis and Management of Nutrient Constraints in Mango. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 629–650. [Google Scholar]
- Alloway, B.J. Zinc in Soils and Crop Nutrition; International Zinc Association: Brussel, Belgium, 2008. [Google Scholar]
- Swietlik, D. Zinc Nutrition in Horticultural Crops; Wiley: Hoboken, NJ, USA, 2010; pp. 109–178. [Google Scholar]
- Raliya, R.; Tarafdar, J.C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric. Res. 2013, 2, 48–57. [Google Scholar] [CrossRef]
- Patil, H.; Tank, R.V.; Bennurmath, P.; Doni, S. Role of zinc, copper and boron in fruit crops: A review. Int. J. Chem. Stud. 2018, 6, 1040–1045. [Google Scholar]
- Kosesakal, T.; Ünal, M. Role of zinc deficiency in photosynthetic pigments and peroxidase activity of tomato seedlings. IUFS J. Biol. 2009, 68, 113–120. [Google Scholar]
- Aslam, W.; Arfan, M.; Shahid, S.A.; Anwar, F.; Mahmood, Z.; Rashid, U. Effects of exogenously applied Zn on thegrowth, yield, chlorophyllcontentsandnutrientaccumulationinwheatlineL-5066. Int. J. Chem. Biochem. Sci. 2014, 5, 11–15. [Google Scholar]
- Jalal, A.; Júnior, E.F.; Teixeira Filho, M.C.M. Interaction of Zinc Mineral Nutrition and Plant Growth-Promoting Bacteria in Tropical Agricultural Systems: A Review. Plants 2024, 13, 571. [Google Scholar] [CrossRef]
- Merwad, M.A.; Eisa, R.A.; Saleh, M.M.S. The beneficial effect of NAA, Zn, Ca and B on fruiting, yield and fruit quality of Alphonso mango trees. Int. J. ChemTech Res. 2016, 9, 147–157. [Google Scholar]
- Pullagurala, R.V.L.; Adisa, I.O.; Rawat, S.; Kim, B.; Barrios, A.C.; Medina-Velo, I.A.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Finding the conditions for the beneficial use of ZnO nanoparticles towards plants—A review. Environ. Pollut. 2018, 241, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Tsonev, T.; Lidon, F.J.C. Zinc in plants—An overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Ebeed, S.; Abd El-Migeed, M.M.M. Effect of spraying sucrose and some nutrient elements on Fagri Kalan mango trees. J. Appl. Sci. Res. 2005, 1, 341–346. [Google Scholar]
- Abd El-Razek, E.; Abd-Allah, A.S.E.; Saleh, M.M.S. Foliar spray of some nutrient elements and antioxidants for improving yield and fruit quality of Hindi mango trees. Middle East J. Sci. Res. 2013, 14, 1257–1262. [Google Scholar]
- Tavallali, V.; Rahemi, M.; Maftoun, M.; Panahi, B.; Karimi, S.; Ramezanian, A.; Vaezpour, M. Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Sci. Hortic. 2009, 123, 272–279. [Google Scholar] [CrossRef]
- Nguyen-Deroche, T.L.N.; Caruso, A.; Le, T.T.; Bui, T.V.; Schoefs, B.; Tremblin, G.; Morant-Manceau, A. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms. Sci. World J. 2012, 2012, 982957. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, S.A.; Krämer, U. The zinc homeostasis network of land plants. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Res. 2012, 1823, 1553–1567. [Google Scholar] [CrossRef] [PubMed]
- Boutchuen, A.; Zimmerman, D.; Aich, N.; Masud, A.M.; Arabshahi, A.; Palchoudhury, S. Increased Plant Growth with Hematite Nanoparticle Fertilizer Drop and Determining Nanoparticle Uptake in Plants Using Multimodal Approach. J. Nanomater. 2019, 2019, 6890572. [Google Scholar] [CrossRef]
- Usenik, V.; Stampar, F. Effect of foliar application of zinc plus boron on sweet cherry fruit set and yield. Acta Hortic. 2002, 594, 245–249. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Ahmad, A.; Battaglia, M.L.; Bilal, H.M.; Alhammad, B.A.; Khan, N. Zinc oxide nanoparticles: A unique saline stress mitigator with the potential to increase future crop production. S. Afr. J. Bot. 2023, 159, 208–218. [Google Scholar] [CrossRef]
- Luna-Esquivel, E.N.; Ojeda-Barrios, D.L.; Guerrero-Prieto, V.M.; Ruíz-Anchondo, T.; Martínez-T´ellez, J.J. Polyamines as indicators of stress in plants. Rev. Chapingo Ser. Hortic. 2014, 20, 283–295. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Bally, I.S.E.; Hofman, P.J.; Irving, D.E.; Coates, L.M.; Dann, E.K. The Effects of Nitrogen on Postharvest Disease in Mango (Mangifera Indica L. ‘Keitt’). Acta Hortic. 2009, 820, 365–370. [Google Scholar] [CrossRef]
- Singh, G.; Maurya, A.N. Effect of micronutrients on bearing of mango (Mangiferaindica) C.V. Mallika. Progress. Agric. 2004, 4, 47–50. [Google Scholar]
- Ranjit, K.; Pawan, K.; Singh, U.P. Effect of foliar application of nitrogen, zinc and boron on flowering and fruiting of mango (Mangifera indica L.) cv Amrapali. Environ. Ecol. 2008, 26, 1965–1967. [Google Scholar]
- Tripathi, V.K.; Kumar, Y. Effect of pre-harvest application of GA3 and ZnSO4 alone and in combination on fruit drop, yield and quality attributes of mango. Progress. Hortic. 2022, 54, 62–67. [Google Scholar] [CrossRef]
- Zagzog, O.A.; Gad, M.M.; Hafez, N.K. Effect of nano-chitosan on vegetative growth, fruiting and resistance of malformation of mango. Trends Hortic. Res. 2017, 6, 673–681. [Google Scholar]
- Gianquinto, G.; Munoz, P.; Pardossi, A.; Ramazzotti, S.; Savvas, D. Soil Fertility and Plant Nutrition. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas; Plant Production and Protection Paper 217; FAO: Rome, Italy, 2013; pp. 215–270. [Google Scholar]
- Zhang, J.; Ye, Z. Pentapeptide-Zinc Chelate from Sweet Almond Expeller Amandin Hydrolysates: Structural and Physicochemical Characteristics, Stability and Zinc Transport Ability In Vitro. Molecules 2022, 27, 7936. [Google Scholar] [CrossRef]
- Wood, B.W. Correction of Zinc Deficiency in Pecan by Soil Banding. HortScience 2007, 42, 1554–1558. [Google Scholar] [CrossRef]
- Brennan, R.F. Effectiveness of zinc sulfate and zinc chelate as foliar sprays in alleviating zinc deficiency of wheat grown on zinc-deficient soils in Western Australia. Aust. J. Exp. Agric. 1991, 31, 831–834. [Google Scholar] [CrossRef]
- Ghasemi, S.; Khoshgoftarmanesh, A.H.; Afyuni, M.; Hadadzadeh, H. The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. Eur. J. Agron. 2013, 45, 68–74. [Google Scholar] [CrossRef]
- Slaton, N.A.; Norman, R.J.; Wilson, C.E., Jr. Effect of Zinc Source and Application Time on Zinc Uptake and Grain Yield of Flood-Irrigated Rice. Agron. J. 2005, 97, 272–278. [Google Scholar] [CrossRef]
- Crowley, D.E.; Smith, W.; Faber, B.; Manthey, J.A. Zinc Fertilization of Avocado Trees. HortScience 1996, 31, 224–229. [Google Scholar] [CrossRef]
- Karim, M.; Zhang, Y.Q.; Zhao, R.R.; Chen, X.P.; Zhang, F.S.; Zou, C.Q. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci. 2012, 75, 142–151. [Google Scholar] [CrossRef]
- Ma, D.; Sun, D.; Wang, C.; Ding, H.; Qin, H.; Hou, J.; Huang, X.; Xie, Y.; Guo, T. Physiologicalresponses and yield of wheat plants in zinc-mediated alleviation of drought stress. Front. Plant Sci. 2017, 8, 860. [Google Scholar] [CrossRef] [PubMed]
- Sattar, A.; Wang, X.; Ul-Allah, S.; Sher, A.; Ijaz, M.; Irfan, M.; Abbas, T.; Hussain, S.; Nawaz, F.; Al-Hashimi, A.; et al. Foliar application of zinc improves morpho-physiological and antioxidant defense mechanisms, and agronomic grain biofortification of wheat (Triticum aestivum L.) under water stress. Saudi J. Biol. Sci. 2022, 29, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.K.; Baligar, V.C.; Clark, R.B. Micronutrients in crop production. Adv. Agron. 2002, 77, 185–268. [Google Scholar]
- El-Said, R.E.A.; El-Shazly, S.A.; El-Gazzar, A.A.M.; Shaaban, E.A.; Saleh, M.M.S. Efficiency of nano-zinc foliar spray on growth, yield and fruit quality of flame seedless grape. J. Appl. Sci. 2019, 19, 612–617. [Google Scholar]
- Prasad, T.; Sudhakar, P.; Sreenivasulu, Y.; Latha, P.; Munaswamy, V.; Reddy, K.R.; Pradeep, T.S.; Sajanlal, P.R.; Pradeep, T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 2012, 35, 905–927. [Google Scholar] [CrossRef]
- Davarpanah, S.; Tehranifar, A.; Davarynejad, G.; Abadía, J.; Khorasani, R. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punicagranatum cv. Ardestani) fruit yield and quality. Sci. Hortic. 2016, 210, 57–64. [Google Scholar] [CrossRef]
- Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2018, 13, 677–684. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Karimi, M.; Teixeira da Silva, J.A. The Use of Nanotechnology to Increase Quality and Yield of Fruit Crops. J. Sci. Food Agric. 2020, 100, 25–31. [Google Scholar] [CrossRef]
- Qureshi, A.; Singh, D.K.; Dwivedi, S. Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3325–3335. [Google Scholar] [CrossRef]
- Hussein, A.S.; Abeed, A.H.A.; Usman, A.R.A.; Abou-Zaid, E.A.A. Conventional vs. nano-micronutrients as foliar fertilization for enhancing the quality and nutritional status of pomegranate fruits. Saudi J. Biol. Sci. 2023. in Press. [Google Scholar] [CrossRef]
- Amarsinh, V.; Balasaheb, R.; Konkan, S.; Vidypeeth, K.; Parshuram, A.; Balasaheb, C. Nanotechnology: Innovative Approach in Crop Nutrition Management. Int. J. Agric. Sci. 2018, 10, 5826–5829. [Google Scholar]
- Kopittke, P.M.; Lombi, E.; Wang, P.; Schjoerring, J.K.; Husted, S. Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ. Sci. Nano 2019, 6, 3513–3524. [Google Scholar] [CrossRef]
- Shebl, A.; Hassan, A.A.; Salama, D.M.; Abd El-Aziz, M.E.; Abd Elwahed, M.S.A. Green synthesis of nanofertilizers and Their Application as a Foliar for Cucurbita pepo L. J. Nanomater. 2019, 4, 3476347. [Google Scholar] [CrossRef]
- Genaidy, E.A.E.; Abd-Alhamid, N.; Hassan, H.S.A.; Hassan, A.M.; Hagagg, L.F. Effect of foliar application of boron trioxide and zinc oxide nanoparticles on leaves chemical composition, yield and fruit quality of Olea europaea L. cv. Picual. Bull. Natl. Res. Cent. 2020, 44, 106. [Google Scholar] [CrossRef]
Season | Treatment | N (%) | P (%) | K (%) | Ca (%) | Mg (%) | Cu (ppm) | Fe (ppm) | Mn (ppm) | B (ppm) | Zn (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|
2022 | Control | 1.17 j | 0.12 h | 0.43 j | 1.64 j | 0.17 j | 6.25 j | 84.50 j | 16.50 j | 7.00 j | 21.00 j |
A + A | 1.98 a | 0.36 a | 0.98 a | 2.72 a | 0.79 a | 22.75 a | 192.00 a | 97.25 a | 28.75 a | 120.00 a | |
B + B | 1.59 f | 0.22 e | 0.82 f | 2.21 f | 0.48 f | 12.75 f | 147.75 f | 57.75 f | 14.50 f | 81.00 f | |
C + C | 1.34 i | 0.16 g | 0.56 i | 1.96 i | 0.27 i | 7.50 i | 123.50 i | 29.00 i | 9.50 i | 58.75 i | |
A + B | 1.91 b | 0.34 b | 0.95 b | 2.64 b | 0.76 b | 20.50 b | 186.00 b | 90.75 b | 26.00 b | 113.00 b | |
A + C | 1.85 c | 0.33 b | 0.93 c | 2.55 c | 0.72 c | 18.50 c | 179.00 c | 85.25 c | 24.50 c | 105.00 c | |
B + A | 1.76 d | 0.29 c | 0.91 d | 2.41 d | 0.64 d | 16.50 d | 163.00 d | 76.75 d | 19.00 d | 98.00 d | |
B + C | 1.54 g | 0.19 f | 0.75 g | 2.14 g | 0.42 g | 10.50 g | 137.00 g | 45.00 g | 12.50 g | 73.00 g | |
C + A | 1.69 e | 0.26 d | 0.86 e | 2.29 e | 0.58 e | 14.50 e | 156.00 e | 69.75 e | 17.00 e | 90.25 e | |
C + B | 1.42 h | 0.17 g | 0.68 h | 2.05 h | 0.37 h | 8.75 h | 130.25 h | 38.25 h | 11.25 h | 66.50 h | |
LSD0.05 | 0.020 | 0.014 | 0.010 | 0.021 | 0.013 | 0.879 | 2.095 | 1.637 | 1.148 | 1.498 | |
2023 | Control | 1.16 j | 0.07 i | 0.40 j | 1.49 j | 0.16 j | 6.00 j | 81.75 j | 14.75 j | 6.25 j | 21.25 j |
A + A | 1.84 a | 0.33 a | 0.95 a | 2.55 a | 0.74 a | 20.50 a | 166.50 a | 76.25 a | 26.50 a | 112.00 a | |
B + B | 1.52 f | 0.18 f | 0.75 f | 2.14 f | 0.39 f | 11.25 f | 134.25 f | 44.00 f | 14.00 f | 80.25 f | |
C + C | 1.31 i | 0.12 h | 0.46 i | 1.93 i | 0.22 i | 7.75 i | 112.75 i | 20.75 i | 9.50 i | 58.50 i | |
A + B | 1.75 b | 0.29 b | 0.93 b | 2.46 b | 0.68 b | 18.50 b | 160.00 b | 72.50 b | 24.00 b | 107.50 b | |
A + C | 1.71 c | 0.27 c | 0.91 c | 2.35 c | 0.63 c | 16.75 c | 156.50 c | 67.00 c | 21.50 c | 103.50 c | |
B + A | 1.63 d | 0.22 d | 0.85 d | 2.28 d | 0.55 d | 14.00 d | 146.75 d | 59.00 d | 18.00 d | 95.00 d | |
B + C | 1.43 g | 0.16 f | 0.68 g | 2.07 g | 0.31 g | 9.75 g | 126.00 g | 36.50 g | 12.50 g | 74.50 g | |
C + A | 1.57 e | 0.20 e | 0.82 e | 2.21 e | 0.47 e | 12.50 e | 141.00 e | 51.00 e | 16.50 e | 89.75 e | |
C + B | 1.38 h | 0.14 g | 0.56 h | 2.01 h | 0.27 h | 8.75 h | 120.00 h | 31.00 h | 11.25 h | 67.50 h | |
LSD0.05 | 0.015 | 0.013 | 0.012 | 0.020 | 0.014 | 0.788 | 1.937 | 1.466 | 0.987 | 1.893 |
Season | Treatment | Fruit Set (%) | Fruit Retention (%) | Fruit Drop (%) | Number of Fruits/Tree | ||||
---|---|---|---|---|---|---|---|---|---|
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | ||
2022 | Control | 2.75 h | 3.25 i | 13.50 i | 12.42 h | 86.50 a | 87.58 a | 81.00 j | 152.00 i |
A + A | 9.25 a | 10.00 a | 24.80 a | 27.60 a | 75.20 i | 72.40 h | 132.25 a | 200.00 a | |
B + B | 5.50 ed | 6.25 fe | 18.72 f | 19.07 e | 81.28 d | 80.93 d | 106.50 f | 184.25 e | |
C + C | 3.75 g | 4.75 h | 16.00 h | 16.55 g | 84.00 b | 83.45 b | 96.00 i | 172.25 h | |
A + B | 8.25 b | 8.75 b | 23.61 b | 26.60 a | 76.39 h | 73.40 h | 127.50 b | 198.50 a | |
A + C | 7.50 b | 8.00 bc | 22.58 c | 25.48 b | 77.42 g | 74.52 g | 124.75 c | 195.00 b | |
B + A | 6.50 c | 7.25 dc | 20.76 d | 22.47 c | 79.24 f | 77.54 f | 116.25 d | 192.50 c | |
B + C | 4.75 ef | 5.75 fg | 17.05 g | 18.55 ef | 82.95 c | 81.45 cd | 104.25 g | 181.50 f | |
C + A | 6.00 cd | 6.75 de | 19.82 e | 20.11 d | 80.19 e | 79.89 e | 112.00 e | 186.50 d | |
C + B | 4.50 gf | 5.25 hg | 16.30 gh | 17.63 f | 83.70 bc | 82.38 c | 100.75 h | 176.75 g | |
LSD0.05 | 0.803 | 0.991 | 0.878 | 1.026 | 0.879 | 1.025 | 1.952 | 1.661 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhasha, E.; Al-Obeed, R.S.; Abdel-Sattar, M. Responses of Nutritional Status and Productivity of Timor Mango Trees to Foliar Spray of Conventional and/or Nano Zinc. Sustainability 2024, 16, 6060. https://doi.org/10.3390/su16146060
Makhasha E, Al-Obeed RS, Abdel-Sattar M. Responses of Nutritional Status and Productivity of Timor Mango Trees to Foliar Spray of Conventional and/or Nano Zinc. Sustainability. 2024; 16(14):6060. https://doi.org/10.3390/su16146060
Chicago/Turabian StyleMakhasha, Essa, Rashid S. Al-Obeed, and Mahmoud Abdel-Sattar. 2024. "Responses of Nutritional Status and Productivity of Timor Mango Trees to Foliar Spray of Conventional and/or Nano Zinc" Sustainability 16, no. 14: 6060. https://doi.org/10.3390/su16146060
APA StyleMakhasha, E., Al-Obeed, R. S., & Abdel-Sattar, M. (2024). Responses of Nutritional Status and Productivity of Timor Mango Trees to Foliar Spray of Conventional and/or Nano Zinc. Sustainability, 16(14), 6060. https://doi.org/10.3390/su16146060