Vehicle Stock Numbers and Survival Functions for On-Road Exhaust Emissions Analysis in India: 1993–2018
Abstract
:1. Introduction
2. Complexity in On-Road Exhaust Emissions Analysis
3. Share of Road Transport in India’s Urban Air Pollution
4. India Vehicle Stock Numbers
4.1. Registered Vehicle Stock Numbers
- RNV = the number of registered vehicles by vehicle type (v), as reported by MoRTH
- NV = the number of new vehicles registered every year (by age (g))
4.2. Survival Functions and In-Use Vehicle Stock Numbers
- SF = survival function by vehicle (v)
- g = age of the vehicle (v)
- SF = survival function by vehicle (v)
- g = age of the vehicle
- T = characteristic service life of the vehicle (v)
- α, β = shape and scale functions of the SF by vehicle (v)
5. Vehicle Exhaust Emissions Analysis Tools
- A method to convert fleet average speeds and fleet average travel time per day into vehicle km travelled per day.
- A method to calculate how many additional buses are required to support odd–even or an equivalent scheme (with and without fuel mix exemptions).
- A method to calculate total fuel wasted from idling in the city and to calculate savings from traffic management.
- A method to calculate fuel and emission benefits of shifting a share of two-wheeler and four-wheeler trips to buses and non-motorized transport.
- A method to estimate vehicle exhaust emission factors using emission standards and deterioration rates.
- An example set of survival rates based on vehicle age for nine broad vehicle categories in Table 5 (to convert yearly RNV into INV).
- A method to spatially disaggregate (grid) the total vehicle exhaust emissions using multiple grid-level proxies as weights, such as density (km per grid) of various road types, population density, land use/land cover, and information on commercial and industrial activities.
- A library of emission factors for aerosols and gaseous species.
6. Applications and Recommendations
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monks, P.S.; Williams, M.L. What does success look like for air quality policy? A perspective. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190326. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.; Brimblecombe, P.; Burrows, J.; Heal, M.R.; Grennfelt, P.; Stevenson, D.S.; Jowett, A.; Nemitz, E.; Coyle, M.; Liu, X.; et al. A chronology of global air quality. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190314. [Google Scholar] [CrossRef] [PubMed]
- Mądziel, M. Vehicle Emission Models and Traffic Simulators: A Review. Energies 2023, 16, 3941. [Google Scholar] [CrossRef]
- Garland, R.M.; Altieri, K.E.; Dawidowski, L.; Gallardo, L.; Mbandi, A.; Rojas, N.Y.; Touré, N.d.E. Opinion: Strengthening research in the Global South–atmospheric science opportunities in South America and Africa. Atmos. Chem. Phys. 2024, 24, 5757–5764. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Butler, T.; Keating, T.; Wu, R.; Kaminski, J.; Kuenen, J.; Kurokawa, J.; Chatani, S.; Morikawa, T. The HTAP_v3 emission mosaic: Merging regional and global monthly emissions (2000–2018) to support air quality modelling and policies. Earth Syst. Sci. Data 2023, 15, 2667–2694. [Google Scholar] [CrossRef]
- McDuffie, E.E.; Smith, S.J.; O’Rourke, P.; Tibrewal, K.; Venkataraman, C.; Marais, E.A.; Zheng, B.; Crippa, M.; Brauer, M.; Martin, R.V. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): An application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 2020, 12, 3413–3442. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H.; et al. Anthropogenic emission inventories in China: A review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Venkataraman, C.; Brauer, M.; Tibrewal, K.; Sadavarte, P.; Ma, Q.; Cohen, A.; Chaliyakunnel, S.; Frostad, J.; Klimont, Z.; Martin, R.V.; et al. Source influence on emission pathways and ambient PM2.5 pollution over India (2015–2050). Atmos. Chem. Phys. 2018, 18, 8017–8039. [Google Scholar] [CrossRef] [PubMed]
- Crippa, M.; Solazzo, E.; Huang, G.; Guizzardi, D.; Koffi, E.; Muntean, M.; Schieberle, C.; Friedrich, R.; Janssens-Maenhout, G. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 2020, 7, 121. [Google Scholar] [CrossRef] [PubMed]
- Crippa, M.; Guizzardi, D.; Pisoni, E.; Solazzo, E.; Guion, A.; Muntean, M.; Florczyk, A.; Schiavina, M.; Melchiorri, M.; Hutfilter, A.F. Global anthropogenic emissions in urban areas: Patterns, trends, and challenges. Environ. Res. Lett. 2021, 16, 074033. [Google Scholar] [CrossRef]
- Solazzo, E.; Crippa, M.; Guizzardi, D.; Muntean, M.; Choulga, M.; Janssens-Maenhout, G. Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases. Atmos. Chem. Phys. 2021, 21, 5655–5683. [Google Scholar] [CrossRef]
- Lekaki, D.; Kastori, M.; Papadimitriou, G.; Mellios, G.; Guizzardi, D.; Muntean, M.; Crippa, M.; Oreggioni, G.; Ntziachristos, L. Road transport emissions in EDGAR (Emissions Database for Global Atmospheric Research). Atmos. Environ. 2024, 324, 120422. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Critical review of receptor modelling for particulate matter: A case study of India. Atmos. Environ. 2012, 49, 1–12. [Google Scholar] [CrossRef]
- UEinfo. Air Pollution Knowledge Assessments (APnA) City Program Covering 50 Airsheds and 60 Cities in India. 2024. Available online: https://www.urbanemissions.info (accessed on 15 May 2024).
- Ganguly, T.; Selvaraj, K.L.; Guttikunda, S.K. National Clean Air Programme (NCAP) for Indian cities: Review and outlook of clean air action plans. Atmos. Environ. X 2020, 8, 100096. [Google Scholar] [CrossRef]
- Yadav, S.; Tripathi, S.N.; Rupakheti, M. Current status of source apportionment of ambient aerosols in India. Atmos. Environ. 2022, 274, 118987. [Google Scholar] [CrossRef]
- Venkataraman, C.; Bhushan, M.; Dey, S.; Ganguly, D.; Gupta, T.; Habib, G.; Kesarkar, A.; Phuleria, H.; Raman, R.S. Indian Network Project on Carbonaceous Aerosol Emissions, Source Apportionment and Climate Impacts (COALESCE). Bull. Am. Meteorol. Soc. 2020, 101, E1052–E1068. [Google Scholar] [CrossRef]
- Purohit, P.; Amann, M.; Kiesewetter, G.; Rafaj, P.; Chaturvedi, V.; Dholakia, H.H.; Koti, P.N.; Klimont, Z.; Borken-Kleefeld, J.; Gomez-Sanabria, A.; et al. Mitigation pathways towards national ambient air quality standards in India. Environ. Int. 2019, 133, 105147. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Kota, S.H.; Sahu, S.K.; Hu, J.; Ying, Q.; Gao, A.; Zhang, H. Source apportionment of PM2.5 in North India using source-oriented air quality models. Environ. Pollut. 2017, 231, 426–436. [Google Scholar] [CrossRef] [PubMed]
- CPCB. Air Quality Monitoring, Emission Inventory and Source Apportionment Study for Indian Cities; Central Pollution Control Board, Government of India: New Delhi, India, 2011.
- Guttikunda, S.; Ka, N. Evolution of India’s PM2.5 pollution between 1998 and 2020 using global reanalysis fields coupled with satellite observations and fuel consumption patterns. Environ. Sci. Atmos. 2022, 2, 1502–1515. [Google Scholar] [CrossRef]
- Hakkim, H.; Kumar, A.; Annadate, S.; Sinha, B.; Sinha, V. RTEII: A new high-resolution (0.1° × 0.1°) road transport emission inventory for India of 74 speciated NMVOCs, CO, NOx, NH3, CH4, CO2, PM2.5 reveals massive overestimation of NOx and CO and missing nitromethane emissions by existing inventories. Atmos. Environ. X 2021, 11, 100118. [Google Scholar] [CrossRef]
- Ahn, D.; Goldberg, D.; Coombes, T.; Kleiman, G.; Anenberg, S. CO2 emissions from C40 cities: Citywide emission inventories and comparisons with global gridded emission datasets. Environ. Res. Lett. 2023, 18, 034032. [Google Scholar] [CrossRef] [PubMed]
- India-PIB. NCAP Targets to Achieve Reductions up to 40% of PM10 Concentrations by 2025–26; Press Information Bureau, Release ID: 1914423; Government of India: New Delhi, India, 2023.
- van Aardenne, J.A.; Carmichael, G.R.; LevyIi, H.; Streets, D.; Hordijk, L. Anthropogenic NOx emissions in Asia in the period 1990–2020. Atmos. Environ. 1999, 33, 633–646. [Google Scholar] [CrossRef]
- Reddy, M.S.; Venkataraman, C. Inventory of aerosol and sulphur dioxide emissions from India: I—Fossil fuel combustion. Atmos. Environ. 2002, 36, 677–697. [Google Scholar] [CrossRef]
- Gurjar, B.R.; van Aardenne, J.A.; Lelieveld, J.; Mohan, M. Emission estimates and trends (1990–2000) for megacity Delhi and implications. Atmos. Environ. 2004, 38, 5663–5681. [Google Scholar] [CrossRef]
- Garg, A.; Shukla, P.R.; Kapshe, M. The sectoral trends of multigas emissions inventory of India. Atmos. Environ. 2006, 40, 4608–4620. [Google Scholar] [CrossRef]
- Singh, A.; Gangopadhyay, S.; Nanda, P.K.; Bhattacharya, S.; Sharma, C.; Bhan, C. Trends of greenhouse gas emissions from the road transport sector in India. Sci. Total Environ. 2008, 390, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Baidya, S.; Borken-Kleefeld, J. Atmospheric emissions from road transportation in India. Energy Policy 2009, 37, 3812–3822. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Shwetmala. Emissions from India’s transport sector: Statewise synthesis. Atmos. Environ. 2009, 43, 5510–5517. [Google Scholar] [CrossRef]
- Goel, R.; Guttikunda, S.K. Evolution of on-road vehicle exhaust emissions in Delhi. Atmos. Environ. 2015, 105, 78–90. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, C.; Agrawal, M. Emission inventory of trace gases from road transport in India. Transp. Res. Part D Transp. Environ. 2017, 52, 64–72. [Google Scholar] [CrossRef]
- Singh, N.; Mishra, T.; Banerjee, R. Emission inventory for road transport in India in 2020: Framework and post facto policy impact assessment. Environ. Sci. Pollut. Res. 2022, 29, 20844–20863. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.; Shukla, P.R. Low carbon scenarios for transport in India: Co-benefits analysis. Energy Policy 2015, 81, 186–198. [Google Scholar] [CrossRef]
- Nagpure, A.S.; Gurjar, B.R. Urban Traffic Emissions and Associated Environmental Impacts in India. In Proceedings of the Novel Combustion Concepts for Sustainable Energy Development; Springer: New Delhi, India, 2014; pp. 405–414. [Google Scholar]
- Sahu, S.K.; Beig, G.; Parkhi, N. Critical Emissions from the Largest On-Road Transport Network in South Asia. Aerosol Air Qual. Res. 2014, 14, 135–144. [Google Scholar] [CrossRef]
- Mohan, D. Moving around in Indian cities. Econ. Political Wkly. 2013, 48, 40–48. [Google Scholar]
- Guttikunda, S.K.; Mohan, D. Re-fueling road transport for better air quality in India. Energy Policy 2014, 68, 556–561. [Google Scholar] [CrossRef]
- Goel, R.; Guttikunda, S.K.; Mohan, D.; Tiwari, G. Benchmarking vehicle and passenger travel characteristics in Delhi for on-road emissions analysis. Travel Behav. Soc. 2015, 2, 88–101. [Google Scholar] [CrossRef]
- MoRTH. Road Transport Yearbook and Statistics Reports for 2000 to 2020; Minister of Road Transport and Highways, the Government of India: New Delhi, India, 2022.
- CPCB. White Paper on Pollution in Delhi; Central Pollution Control Board, Government of India: New Delhi, India, 1997. [Google Scholar]
- Guttikunda, S.K.; Dammalapati, S.K.; Pradhan, G.; Krishna, B.; Jethwa, H.T.; Jawahar, P. What Is Polluting Delhi’s Air? A Review from 1990 to 2022. Sustainability 2023, 15, 4209. [Google Scholar] [CrossRef]
- Zachariadis, T.; Samaras, Z.; Zierock, K.-H. Dynamic modeling of vehicle populations: An engineering approach for emissions calculations. Technol. Forecast. Soc. Chang. 1995, 50, 135–149. [Google Scholar] [CrossRef]
- Goel, R.; Mohan, D.; Guttikunda, S.K.; Tiwari, G. Assessment of motor vehicle use characteristics in three Indian cities. Transp. Res. Part D Transp. Environ. 2016, 44, 254–265. [Google Scholar] [CrossRef]
- BSPCB. Comprehensive Clean Air Action Plan for the City of Patna; Bihar State Pollution Control Board with Consortium Partners CSTEP, ADRI and Urbanemission.info: Patna, India, 2019. [Google Scholar]
- Guttikunda, S.K.; Ka, N.; Tejaswi, V.; Goel, R. Fuel Station Survey (FuSS) to Profile In-Use Vehicle Characteristics for a City’s Vehicle Exhaust Emissions Inventory. Preprints 2024. [Google Scholar] [CrossRef]
- Malik, L.; Tiwari, G.; Thakur, S.; Kumar, A. Assessment of freight vehicle characteristics and impact of future policy interventions on their emissions in Delhi. Transp. Res. Part D Transp. Environ. 2019, 67, 610–627. [Google Scholar] [CrossRef]
- Sadavarte, P.; Venkataraman, C. Trends in multi-pollutant emissions from a technology-linked inventory for India: I. Industry and transport sectors. Atmos. Environ. 2014, 99, 353–364. [Google Scholar] [CrossRef]
- Debbarma, S.; Raparthi, N.; Venkataraman, C.; Phuleria, H.C. Impact of real-world traffic and super-emitters on vehicular emissions under inter-city driving conditions in Maharashtra, India. Atmos. Pollut. Res. 2024, 15, 102058. [Google Scholar] [CrossRef]
- GAINS. Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) by International Institute of Applied Systems Analysis (IIASA), Laxenburg, Austria. 2024. Available online: https://iiasa.ac.at/models-tools-data/gains (accessed on 15 June 2024).
- Jaiprakash; Habib, G. On-road assessment of light duty vehicles in Delhi city: Emission factors of CO, CO2 and NOX. Atmos. Environ. 2018, 174, 132–139. [Google Scholar] [CrossRef]
- CPCB. National Clean Air Programme (NCAP), Portal for Regulation of Air-Pollution in Non-Attainment cities (PRANA). Available online: https://prana.cpcb.gov.in (accessed on 15 June 2024).
- CREA. Tracing the Hazy Air 2023. Progress Report on National Clean Air Programme (NCAP); Centre for Research on Energy and Clean Air: New Delhi, India, 2023. [Google Scholar]
- Gupta, M.; Nayak, D.K.; Harsha Kota, S. Impact of Particulate Matter-Centric Clean Air Action Plans on Ozone Concentrations in India. ACS Earth Space Chem. 2023, 7, 1038–1048. [Google Scholar] [CrossRef]
City (%Transport + %Dust) | ||
---|---|---|
Agartala (17.5 + 15.3) | Gaya (23.1 + 17.3) | Nagpur (17.2 + 10.9) |
Agra (13.9 + 10.7) | Guwahati-Dispur (36.5 + 27.0) | Nashik (12.1 + 13.2) |
Ahmedabad (14.9 + 17.7) | Gwalior (12.7 + 12.9) | Panjim-Vasco-Margao (22.6 + 12.6) |
Allahabad (18.6 + 14.9) | Hyderabad (16.5 + 18.6) | Patna (14.8 + 12.1) |
Amritsar-Tarn Taran (10.5 + 7.1) | Indore (26.9 + 22.7) | Pune-Pimpri-Chinchwad (24.0 + 23.4) |
Asansol-Durgapur (12.5 + 16.2) | Jaipur (24.1 + 17.5) | Raipur-Durg-Bhillai (17.2 + 11.5) |
Aurangabad (10.8 + 10.7) | Jamshedpur (19.5 + 15.0) | Rajkot (19.0 + 16.4) |
Bengaluru (26.5 + 23.0) | Jodhpur (19.9 + 25.5) | Ranchi (21.1 + 14.1) |
Bhopal (14.1 + 17.1) | Kanpur (13.7 + 8.9) | Shimla (17.4 + 11.8) |
Bhubaneswar (17.0 + 20.8) | Kochi (20.2 + 16.3) | Srinagar (9.8 + 8.2) |
Chandigarh-Patiala (10.6 + 12.6) | Kolkata-Howarh (13.5 + 12.5) | Surat (16.4 + 10.3) |
Chennai (24.5 + 23.5) | Kota (16.7 + 12.5) | Thiruvananthapuram (37.0 + 17.4) |
Coimbatore (18.3 + 13.7) | Lucknow (13.0 + 13.9) | Tiruchirapalli (19.0 + 16.2) |
Dehradun (14.2 + 4.4) | Ludhiana-Phillaur (16.3 + 12.3) | Vadodara (20.8 + 17.2) |
Dhanbad-Bokaro (12.2 + 29.2) | Madurai (23.4 + 19.0) | Vijayawada-Guntur (22.7 + 19.7) |
Dharwad-Hubli (21.6 + 14.7) | Mumbai (16.4 + 12.6) | Visakhapatnam (19.3 + 10.9) |
Clubbed Category | MoRTH Vehicle Categories | |
---|---|---|
1 | 2W | Scooters, mopeds, motorcycles |
2 | 3W | Three wheelers with three, four, and six seaters |
3 | 4W1 | Cars |
4 | 4W2 | Jeeps and other passenger sports utility vehicles |
5 | 4WT | Taxi motor cabs, maxi cabs, and others |
6 | BUS | Omni buses, stage carriages, contract carriages, private service vehicles, and others |
7 | LDV | Three and four-wheeler goods carriages |
8 | HDV | Multi-axle vehicles, trucks, and lorries |
9 | NNRD | Tractors, trailers, and other non-road vehicles |
2W | 3W | 4W | 4WT | BUS | HDV | LDV | NRV | Total | |
---|---|---|---|---|---|---|---|---|---|
1993 | 18.3 | 0.8 | 3.3 | 0.3 | 0.4 | 2.1 | 1.8 | 0.1 | 27 |
1994 | 20.8 | 0.9 | 3.5 | 0.4 | 0.4 | 2.3 | 1.9 | 0.2 | 30 |
1995 | 23.3 | 1.0 | 3.8 | 0.4 | 0.4 | 2.2 | 2.5 | 0.2 | 34 |
1996 | 25.7 | 1.2 | 4.2 | 0.4 | 0.5 | 2.4 | 2.7 | 0.3 | 37 |
1997 | 28.4 | 1.3 | 4.6 | 0.4 | 0.5 | 3.4 | 2.3 | 0.3 | 41 |
1998 | 31.3 | 1.5 | 5.0 | 0.5 | 0.5 | 2.6 | 3.2 | 0.3 | 45 |
1999 | 34.1 | 1.6 | 5.5 | 0.6 | 0.6 | 2.7 | 3.5 | 0.3 | 49 |
2000 | 38.6 | 2.0 | 6.4 | 0.7 | 0.6 | 2.9 | 3.9 | 0.4 | 56 |
2001 | 41.8 | 2.0 | 7.0 | 0.7 | 0.6 | 2.9 | 4.1 | 0.4 | 59 |
2002 | 46.8 | 2.2 | 7.7 | 0.8 | 0.8 | 3.2 | 4.5 | 0.4 | 66 |
2003 | 51.9 | 2.3 | 8.5 | 0.9 | 0.8 | 3.3 | 4.7 | 0.4 | 73 |
2004 | 58.8 | 2.5 | 9.4 | 0.9 | 0.9 | 3.8 | 5.1 | 0.5 | 82 |
2005 | 64.7 | 2.6 | 10.5 | 1.0 | 1.0 | 4.1 | 5.5 | 0.5 | 90 |
2006 | 69.1 | 2.8 | 11.6 | 1.1 | 1.4 | 4.3 | 6.2 | 0.6 | 97 |
2007 | 75.4 | 3.1 | 12.8 | 1.3 | 1.4 | 4.6 | 6.7 | 0.6 | 106 |
2008 | 82.4 | 3.4 | 14.0 | 1.4 | 1.5 | 4.9 | 7.3 | 0.7 | 115 |
2009 | 91.6 | 3.6 | 15.5 | 1.6 | 1.5 | 5.1 | 7.9 | 0.7 | 128 |
2010 | 101.9 | 4.0 | 17.5 | 1.8 | 1.6 | 5.5 | 8.6 | 0.8 | 142 |
2011 | 115.5 | 4.4 | 19.6 | 2.0 | 1.7 | 6.0 | 9.4 | 0.9 | 159 |
2012 | 133.2 | 4.9 | 22.9 | 2.2 | 1.8 | 6.2 | 10.7 | 1.1 | 183 |
2013 | 141.5 | 4.8 | 24.3 | 2.1 | 1.8 | 6.5 | 11.3 | 1.2 | 194 |
2014 | 156.7 | 5.2 | 26.9 | 2.3 | 1.8 | 6.9 | 12.3 | 1.3 | 214 |
2015 | 171.7 | 5.5 | 29.7 | 2.4 | 1.7 | 7.7 | 13.2 | 1.3 | 233 |
2016 | 187.2 | 5.7 | 32.5 | 2.7 | 1.9 | 7.7 | 14.4 | 1.6 | 254 |
2017 | 204.4 | 6.3 | 35.4 | 2.9 | 1.9 | 9.3 | 14.3 | 1.9 | 276 |
2018 | 223.0 | 6.9 | 37.3 | 3.1 | 2.1 | 10.0 | 15.3 | 2.2 | 300 |
2018% | 74.4% | 2.3% | 12.4% | 1.0% | 0.7% | 3.3% | 5.1% | 0.7% |
1993 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 | |
---|---|---|---|---|---|---|---|
Andaman and Nicobar Islands | 0.01 | 0.01 | 0.03 | 0.03 | 0.07 | 0.11 | 0.14 |
Andhra Pradesh | 1.61 | 2.58 | 4.05 | 7.22 | 10.19 | 8.53 | 11.67 |
Arunachal Pradesh | 0.01 | 0.02 | 0.02 | 0.02 | 0.14 | 0.26 | 0.23 |
Assam | 0.35 | 0.36 | 0.55 | 0.91 | 1.58 | 2.85 | 3.97 |
Bihar | 1.22 | 1.33 | 0.97 | 1.45 | 2.67 | 5.48 | 8.55 |
Chhattisgarh | 0.86 | 1.54 | 2.77 | 4.81 | 6.38 | ||
Chandigarh | 0.31 | 0.37 | 0.39 | 0.65 | 1.02 | 0.84 | 1.02 |
Diu and Daman | 0.01 | 0.02 | 0.04 | 0.06 | 0.08 | 0.11 | 0.12 |
Delhi | 2.28 | 2.68 | 3.55 | 4.50 | 7.24 | 9.94 | 11.40 |
Dadar Nagar Haveli | 0.01 | 0.01 | 0.01 | 0.05 | 0.08 | 0.11 | 0.00 |
Goa | 0.18 | 0.21 | 0.34 | 0.53 | 0.77 | 1.13 | 1.40 |
Gujarat | 2.73 | 3.38 | 5.60 | 8.62 | 12.99 | 20.36 | 25.20 |
Himachal Pradesh | 0.09 | 0.12 | 0.22 | 0.33 | 0.62 | 1.18 | 1.63 |
Haryana | 0.84 | 1.07 | 1.99 | 3.09 | 5.41 | 8.68 | 11.43 |
Jharkhand | 0.91 | 1.51 | 3.11 | 3.35 | 4.30 | ||
Jammu Kashmir | 0.16 | 0.20 | 0.33 | 0.52 | 0.93 | 1.37 | 1.82 |
Karnataka | 1.81 | 2.25 | 3.56 | 6.22 | 9.82 | 16.15 | 20.90 |
Kerala | 0.89 | 1.17 | 2.15 | 3.76 | 5.98 | 10.09 | 13.25 |
Lakshadweep | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.02 |
Maharashtra | 3.27 | 4.03 | 6.88 | 11.02 | 17.50 | 27.87 | 35.39 |
Meghalaya | 0.04 | 0.04 | 0.06 | 0.10 | 0.18 | 0.29 | 0.37 |
Manipur | 0.05 | 0.06 | 0.08 | 0.12 | 0.21 | 0.31 | 0.36 |
Madhya Pradesh | 1.89 | 2.31 | 3.10 | 4.61 | 7.36 | 11.98 | 15.30 |
Mizoram | 0.02 | 0.02 | 0.03 | 0.05 | 0.09 | 0.17 | 0.26 |
Nagaland | 0.08 | 0.10 | 0.17 | 0.20 | 0.29 | 0.38 | 0.49 |
Odisha | 0.54 | 0.66 | 1.11 | 1.94 | 3.34 | 5.83 | 8.28 |
Punjab | 1.64 | 1.92 | 2.92 | 4.04 | 5.27 | 9.60 | 10.61 |
Puducherry | 0.11 | 0.13 | 0.25 | 0.38 | 0.67 | 0.86 | 1.06 |
Rajasthan | 1.44 | 1.77 | 2.96 | 4.75 | 7.99 | 13.64 | 17.72 |
Sikkim | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 | 0.05 | 0.07 |
Tamil Nadu | 2.15 | 2.77 | 5.17 | 10.05 | 15.64 | 24.20 | 30.18 |
Tripura | 0.03 | 0.03 | 0.05 | 0.11 | 0.19 | 0.33 | 0.50 |
Telangana | 8.82 | 12.50 | |||||
Uttarakhand | 0.37 | 0.64 | 1.00 | 1.89 | 2.75 | ||
Uttar Pradesh | 2.48 | 2.99 | 4.91 | 7.99 | 13.29 | 23.94 | 32.71 |
West Bengal | 1.01 | 1.24 | 1.89 | 2.87 | 3.26 | 7.61 | 7.80 |
Clubbed | A | β | T | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Category | Low | Medium | High | Low | Medium | High | Low | Medium | High | |
1 | 2W | 0.5 | 0.3 | 0.1 | 3.1 | 3.1 | 3.1 | 8 | 10 | 14 |
2 | 3W | −1.0 | 0.0 | 0.0 | 2.0 | 2.0 | 2.0 | 8 | 12 | 15 |
3 | 4W1 | 0.0 | 0.0 | −0.5 | 3.0 | 3.0 | 3.0 | 8 | 12 | 16 |
4 | 4W2 | 0.5 | 0.5 | 0.0 | 2.5 | 2.5 | 2.5 | 10 | 12 | 15 |
5 | 4WT | −0.5 | −0.5 | −0.5 | 4.0 | 3.5 | 3.0 | 8 | 10 | 12 |
6 | BUS | −1.0 | 0.0 | −1.0 | 3.2 | 3.0 | 3.0 | 8 | 12 | 12 |
7 | LDV | −1.0 | 0.0 | 0.0 | 2.5 | 3.0 | 3.0 | 12 | 16 | 20 |
8 | HDV | 1.0 | 1.0 | 0.0 | 3.8 | 3.8 | 3.8 | 12 | 16 | 18 |
9 | NNRD | 1.0 | 1.0 | 1.0 | 3.5 | 3.5 | 4.0 | 16 | 18 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guttikunda, S.K. Vehicle Stock Numbers and Survival Functions for On-Road Exhaust Emissions Analysis in India: 1993–2018. Sustainability 2024, 16, 6298. https://doi.org/10.3390/su16156298
Guttikunda SK. Vehicle Stock Numbers and Survival Functions for On-Road Exhaust Emissions Analysis in India: 1993–2018. Sustainability. 2024; 16(15):6298. https://doi.org/10.3390/su16156298
Chicago/Turabian StyleGuttikunda, Sarath K. 2024. "Vehicle Stock Numbers and Survival Functions for On-Road Exhaust Emissions Analysis in India: 1993–2018" Sustainability 16, no. 15: 6298. https://doi.org/10.3390/su16156298
APA StyleGuttikunda, S. K. (2024). Vehicle Stock Numbers and Survival Functions for On-Road Exhaust Emissions Analysis in India: 1993–2018. Sustainability, 16(15), 6298. https://doi.org/10.3390/su16156298