Ecological Assessment and Molecular Characterization of Spirulina in Freshwater Reservoirs of Kohat, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Enrichment
2.2. Determination of Physiochemical Parameters
2.3. Microscopic Analysis of Water Samples
2.4. Microscopic Analysis of Spirulina Cell Sizes
2.5. DNA Extraction, PCR Amplification, Sequencing, and Phylogenetic Analysis
3. Results
3.1. Spirulina Is Less Prevalent in Freshwater Reservoirs of District Kohat
3.2. Determination of Physiochemical Parameters
3.3. Spirulina Cell Sizes
3.4. Molecular Analysis
3.5. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rybalka, N.; Blanke, M.; Tzvetkova, A.; Noll, A.; Roos, C.; Boy, J.; Boy, D.; Nimptsch, D.; Godoy, R.; Friedl, T. Unrecognized diversity and distribution of soil algae from maritime Antarctica (Fildes peninsula, King George Island). Front. Microbiol. 2023, 14, 1118747. [Google Scholar] [CrossRef] [PubMed]
- B-Béres, V.; Stenger-Kovács, C.; Buczkó, K.; Padisák, J.; Selmeczy, G.B.; Lengyel, E.; Tapolczai, K. Ecosystem services provided by freshwater and marine diatoms. Hydrobiologia 2023, 850, 2707–2733. [Google Scholar] [CrossRef]
- Sharma, N.K.; Rai, A.K. Biodiversity and biogeography of microalgae: Progress and pitfalls. Environ. Rev. 2011, 19, 1–15. [Google Scholar] [CrossRef]
- Hamed, I. The evolution and versatility of microalgal biotechnology: A review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1104–1123. [Google Scholar] [CrossRef] [PubMed]
- Dolganyuk, V.; Belova, D.; Babich, O.; Prosekov, A.; Ivanova, S.; Katserov, D.; Patyukov, N.; Sukhikh, S. Microalgae: A promising source of valuable bioproducts. Biomolecules 2020, 10, 1153. [Google Scholar] [CrossRef] [PubMed]
- Barone, G.D.; Cernava, T.; Ullmann, J.; Liu, J.; Lio, E.; Germann, A.T.; Nakielski, A.; Russo, D.A.; Chavkin, T.; Knufmann, K. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon 2023, 9, e14708. [Google Scholar] [CrossRef] [PubMed]
- Tanvir, R.U.; Hu, Z.; Zhang, Y.; Lu, J. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. Environ. Pollut. 2021, 290, 118056. [Google Scholar] [CrossRef] [PubMed]
- Kontogeorgis, G.M.; Holster, A.; Kottaki, N.; Tsochantaris, E.; Topsøe, F.; Poulsen, J.; Bache, M.; Liang, X.; Blom, N.S.; Kronholm, J. Water structure, properties and some applications–A review. Chem. Thermodyn. Therm. Anal. 2022, 6, 100053. [Google Scholar] [CrossRef]
- Vincent, W.F.; Quesada, A. Cyanobacteria in high latitude lakes, rivers and seas. In Ecology of Cyanobacteria II: Their Diversity in Space and Time; Springer: Berlin/Heidelberg, Germany, 2012; pp. 371–385. [Google Scholar]
- Zahra, Z.; Choo, D.H.; Lee, H.; Parveen, A. Cyanobacteria: Review of current potentials and applications. Environments 2020, 7, 13. [Google Scholar] [CrossRef]
- Rodrigo-Navarro, A.; Sankaran, S.; Dalby, M.J.; del Campo, A.; Salmeron-Sanchez, M. Engineered living biomaterials. Nat. Rev. Mater. 2021, 6, 1175–1190. [Google Scholar] [CrossRef]
- Lefler, F.W.; Berthold, D.E.; Laughinghouse IV, H.D. Cyanoseq: A database of cyanobacterial 16S rRNA gene sequences with curated taxonomy. J. Phycol. 2023, 59, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Nowicka-Krawczyk, P.; Mühlsteinová, R.; Hauer, T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Sci. Rep. 2019, 9, 694. [Google Scholar] [CrossRef] [PubMed]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M. Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Kwei, C.K.; Lewis, D.; King, K.; Donohue, W.; Neilan, B.A. Molecular classification of commercial Spirulina strains and identification of their sulfolipid biosynthesis genes. J. Microbiol. Biotechnol. 2011, 21, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Demoulin, C.F.; Lara, Y.J.; Cornet, L.; François, C.; Baurain, D.; Wilmotte, A.; Javaux, E.J. Cyanobacteria evolution: Insight from the fossil record. Free Radic. Biol. Med. 2019, 140, 206–223. [Google Scholar] [CrossRef] [PubMed]
- AlFadhly, N.K.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F. Tendencies affecting the growth and cultivation of genus Spirulina: An investigative review on current trends. Plants 2022, 11, 3063. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.S.; Shah, D.; Islam, M.; Ali, W. Assessment of Physico-Chemical Properties of Drinking Water in District Mardan, Khyber Pakhtunkhwa, Pakistan. J. Trop. Pharm. Chem. 2022, 6, 107–119. [Google Scholar] [CrossRef]
- Ghani, N.; Shahzadi, N.; Sadaf, S.; Ullah, I.; Ali, E.; Iqbal, J.; Rafique, T.; Maqbool, M. Isolation of Several Indigenous Microalgae from Kallar Kahar Lake, Chakwal Pakistan. Iran. J. Biotechnol. 2020, 18, e2214. [Google Scholar]
- Sathe, S. Evans Blue Assay to Stain Dead Cells. Available online: https://www.protocols.io/view/evans-blue-assay-to-stain-dead-cells-261ge3jbjl47/v1 (accessed on 27 February 2023).
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 1997, 63, 3327–3332. [Google Scholar] [CrossRef]
- Neilan, B.A.; Jacobs, D.; Therese, D.D.; Blackall, L.L.; Hawkins, P.R.; Cox, P.T.; Goodman, A.E. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. Syst. Evol. Microbiol. 1997, 47, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Freeman, E.C.; Creed, I.F.; Jones, B.; Bergström, A.K. Global changes may be promoting a rise in select cyanobacteria in nutrient-poor northern lakes. Glob. Chang. Biol. 2020, 26, 4966–4987. [Google Scholar] [CrossRef]
- Braga, F.H.R.; Dutra, M.L.S.; Lima, N.S.; da Silva, G.M.; de Cássia Mendonça de Miranda, R.; da Cunha Araújo Firmo, W.; de Moura, A.R.L.; de Souza Monteiro, A.; da Silva, L.C.N.; da Silva, D.F. Study of the influence of physicochemical parameters on the Water Quality Index (WQI) in the Maranhão Amazon, Brazil. Water 2022, 14, 1546. [Google Scholar] [CrossRef]
- Moayedi, A.; Yargholi, B.; Pazira, E.; Babazadeh, H. Investigation of bio-desalination potential algae and their effect on water quality. Desalin. Water Treat 2021, 212, 78–86. [Google Scholar] [CrossRef]
- Tiseer, F.; Tanimu, Y.; Chia, A. Seasonal occurrence of algae and physicochemical parameters of Samaru stream, Zaria, Nigeria. Asian J. Earth Sci. 2010, 3, 50–56. [Google Scholar] [CrossRef]
- Shi, W.-Q.; Li, S.-D.; Li, G.-R.; Wang, W.-H.; Chen, Q.-X.; Li, Y.-Q.; Ling, X.-W. Investigation of main factors affecting the growth rate of Spirulina. Optik 2016, 127, 6688–6694. [Google Scholar] [CrossRef]
Sampling Sites | pH | TDSs (mg/L−1) | DO (mg/L−1) | EC (µS/cm−1) | Prevalent Algal Species * | |
---|---|---|---|---|---|---|
South Kohat | Jarma Bridge | 8.15 ± 0.05 | 230 ± 0.95 | 3.00 ± 0.08 | 450 ± 0.81 | Spirogyra sp. (A) |
Chichana | 7.80 ± 0.16 | 300 ± 1.70 | 7.07 ± 0.15 | 351 ± 0.95 | Spirogyra sp. (B) | |
Sur gul | 7.60 ± 0.08 | 330 ± 1.63 | 5.00 ± 0.21 | 380 ± 0.81 | Spirogyra sp., Scenedesmus sp. (C) | |
Muslim Abad | 6.90 ± 0.14 | 380 ± 1.70 | 5.00 ± 0.21 | 560 ± 1.63 | Spirogyra sp. (D) | |
Bagoto Khel | 6.07 ± 0.22 | 276 ± 1.29 | 4.00 ± 0.21 | 380 ± 0.81 | Scenedesmus sp. (E) | |
Lachi (Mandoori) | 8.6 2 ± 0.17 | 300 ± 0.81 | 6.05 ± 0.12 | 500 ± 1.70 | Cladophora sp. (F) | |
Somari Payan | 8.10 ± 0.21 | 230 ± 1.29 | 3.00 ± 0.08 | 450 ± 1.29 | Cladophora sp. (G) | |
North Kohat | Jungle Khel Chashma | 7.42 ± 0.12 | 220 ± 1.70 | 6.20 ± 0.08 | 340 ± 0.81 | Chroococcus turgidus sp. (H) |
Dara Adam Khel | 7.60 ± 0.08 | 250 ± 0.50 | 6.60 ± 0.08 | 340 ± 1.63 | Spirogyra sp. (I) | |
West Kohat | Mohmad Zai | 8.20 ± 0.21 | 320 ± 0.81 | 3.20 ± 0.08 | 650 ± 2.16 | Scenedesmus sp. (J) |
Kaghazai | 8.70 ± 0.43 | 320 ± 1.63 | 3.19 ± 0.08 | 650 ± 1.29 | Hematococcus sp. (K) | |
Nasrat Khel | 8.20 ± 0.08 | 320 ± 0.50 | 3.20 ± 0.08 | 650 ± 2.16 | Oscillatoria sp. (L) | |
Usterzai | 8.60 ± 0.08 | 313 ± 0.81 | 4.50 ± 0.05 | 540 ± 0.81 | Spirulina sp. (M) | |
Jawzara | 8.00 ± 0.08 | 318 ± 1.70 | 7.50 ± 0.14 | 490 ± 0.81 | Scenedesmus sp. Oscillatoria sp. Chlorella sp.(N) | |
Tanda Dam | 8.20 ± 0.08 | 320 ± 0.81 | 3.10 ± 0.08 | 650 ± 0.81 | Nitzschia acicularis sp. (O) | |
Sher Kot | 8.90 ± 0.16 | 302 ± 1.25 | 2.97 ± 0.15 | 580 ± 0.81 | Spirogyra sp. Scenedesmus sp. Oscillatoria sp. (P) | |
Thall | 8.30 ± 0.08 | 318 ± 0.81 | 2.85 ± 0.05 | 609 ± 0.81 | Scenedesmus sp. Oscillatoria sp. Chlorella sp. (Q) | |
East Kohat | Togh Bala | 7.02 ± 0.12 | 230 ± 0.81 | 5.70 ± 0.08 | 376 ± 0.81 | Scenedesmus sp. (R) |
Bilitang | 7.50 ± 0.08 | 240 ± 0.81 | 5.00 ± 0.21 | 350 ± 0.81 | Cladophora sp. (S) | |
Babri Banda | 8.07 ± 0.05 | 250 ± 1.25 | 6.00 ± 0.08 | 300 ± 1.29 | Spirogyra sp. Ulothrix sp. (T) | |
Gandiali Dam | 7.15 ± 0.12 | 200 ± 1.70 | 8.72 ± 0.05 | 364 ± 0.81 | Spirogyra sp. (U) | |
Chorlakki Dam | 7.30 ± 0.16 | 215 ± 0.81 | 8.60 ± 0.08 | 357 ± 0.95 | Cladophora sp. Spirogyra sp. (V) | |
Kander Dam | 6.80 ± 0.24 | 320 ± 0.57 | 3.50 ± 0.08 | 550 ± 1.29 | Spirogyra sp. (W) | |
Khushal Garh | 8.07 ± 0.09 | 250 ± 1.29 | 6.05 ± 0.12 | 530 ± 0.81 | Oscillatoria sp. (X) | |
Gumbat | 7.90 ± 0.14 | 250 ± 1.29 | 5.00 ± 0.21 | 400 ± 0.95 | Scenedesmus sp. Spirogyra sp. (Y) | |
Parshai | 7.90 ± 0.24 | 350 ± 1.25 | 5.15 ± 0.12 | 530 ± 0.81 | Fragelaria sp. (Z) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, M.; Wetters, S.; Nick, P.; Jamil, M.; Arslan, M.; Naeem, R. Ecological Assessment and Molecular Characterization of Spirulina in Freshwater Reservoirs of Kohat, Pakistan. Sustainability 2024, 16, 6400. https://doi.org/10.3390/su16156400
Rehman M, Wetters S, Nick P, Jamil M, Arslan M, Naeem R. Ecological Assessment and Molecular Characterization of Spirulina in Freshwater Reservoirs of Kohat, Pakistan. Sustainability. 2024; 16(15):6400. https://doi.org/10.3390/su16156400
Chicago/Turabian StyleRehman, Maha, Sascha Wetters, Peter Nick, Muhammad Jamil, Muhammad Arslan, and Rehan Naeem. 2024. "Ecological Assessment and Molecular Characterization of Spirulina in Freshwater Reservoirs of Kohat, Pakistan" Sustainability 16, no. 15: 6400. https://doi.org/10.3390/su16156400
APA StyleRehman, M., Wetters, S., Nick, P., Jamil, M., Arslan, M., & Naeem, R. (2024). Ecological Assessment and Molecular Characterization of Spirulina in Freshwater Reservoirs of Kohat, Pakistan. Sustainability, 16(15), 6400. https://doi.org/10.3390/su16156400