Blockchain-Driven Supply Chain Analytics and Sustainable Performance: Analysis Using PLS-SEM and ANFIS
Abstract
:1. Introduction
2. Research Hypothesis
2.1. LARGS and SSCP
2.2. SCI, LARGS, and SSCP
2.3. Blockchain-Driven Supply Chain Analytics, SCI, LARGS, and SSCP
3. Research Methodology
3.1. Sample and Data Collection
3.2. Data Collection Instruments
4. Results
4.1. Validity and Reliability
4.2. Structural Model Testing
4.3. ANFIS Results
5. Discussion
6. Managerial Implication
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Estampe, D.; Lamouri, S.; Paris, J.L.; Brahim-Djelloul, S. A framework for analysing supply chain performance evaluation models. Int. J. Prod. Econ. 2013, 142, 247–258. [Google Scholar] [CrossRef]
- Khorsandi, H.; Bayat, M. Prioritizing operational strategies of saman bank. Int. J. Health Sci. 2022, 6 (Suppl. S7), 1442–1453. [Google Scholar] [CrossRef]
- Nazari-Shirkouhi, S.; Shakouri, H.; Javadi, B.; Keramati, A. Supplier selection and order allocation problem using a two-phase fuzzy multi-objective linear programming. Appl. Math. Model. 2013, 37, 9308–9323. [Google Scholar] [CrossRef]
- Mousakhani, S.; Nazari-Shirkouhi, S.; Bozorgi-Amiri, A. A novel interval type-2 fuzzy evaluation model based group decision analysis for green supplier selection problems: A case study of battery industry. J. Clean. Prod. 2017, 168, 205–218. [Google Scholar] [CrossRef]
- Mangla, S.K.; Kusi-Sarpong, S.; Luthra, S.; Bai, C.; Jakhar, S.K.; Khan, S.A. Operational excellence for improving sustainable supply chain performance. Resour. Conserv. Recycl. 2020, 162, 105025. [Google Scholar] [CrossRef] [PubMed]
- Nazari-Shirkouhi, S.; Miralizadeh Jalalat, S.; Sangari, M.S.; Sepehri, A.; Rezaei Vandchali, H. A robust-fuzzy multi-objective optimization approach for a supplier selection and order allocation problem: Improving sustainability under uncertainty. Comput. Ind. Eng. 2023, 186, 109757. [Google Scholar] [CrossRef]
- Rouhi, K.; Motlagh, M.S.; Dalir, F.; Perez, J.; Golzary, A. Towards sustainable electricity generation: Evaluating carbon footprint in waste-to-energy plants for environmental mitigation in Iran. Energy Rep. 2024, 1, 2623–2632. [Google Scholar] [CrossRef]
- Foroughi, B.; Nhan, P.V.; Iranmanesh, M.; Ghobakhloo, M.; Nilashi, M.; Yadegaridehkordi, E. Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS. J. Retail. Consum. Serv. 2023, 70, 103158. [Google Scholar] [CrossRef]
- Ahmadirad, Z. Evaluating the influence of AI on market values in finance: Distinguishing between authentic growth and speculative hype. Int. J. Adv. Res. Humanit. Law 2024, 1, 50–57. [Google Scholar] [CrossRef]
- Vahdatpour, M.S.; Zhang, Y. Latency-Based Motion Detection in Spiking Neural Networks. Int. J. Cogn. Lang. Sci. 2024, 18, 150–155. [Google Scholar]
- Emami, F.; Kabir, M.Z. Strength prediction of composite metal deck slabs under free drop weight impact loading using numerical approach and data set machine learning. Sci. Iran. 2023, 1–35. [Google Scholar] [CrossRef]
- Larijani, A.; Dehghani, F. An Efficient Optimization Approach for Designing Machine Models Based on Combined Algorithm. FinTech 2023, 3, 40–54. [Google Scholar] [CrossRef]
- Tavana, M.; Nazari-Shirkouhi, S.; Farzaneh Kholghabad, H. An integrated quality and resilience engineering framework in healthcare with Z-number data envelopment analysis. Health Care Manag. Sci. 2021, 24, 768–785. [Google Scholar] [CrossRef]
- Nazari-Shirkouhi, S.; Tavakoli, M.; Govindan, K.; Mousakhani, S. A hybrid approach using Z-number DEA model and Artificial Neural Network for Resilient supplier Selection. Expert Syst. Appl. 2023, 222, 119746. [Google Scholar] [CrossRef]
- Alqudah, S.; Shrouf, H.; Suifan, T.; Alhyari, S. A moderated mediation model of lean, agile, resilient, and green paradigms in the supply chain. Int. J. Supply Chain Manag. 2020, 9, 158–172. [Google Scholar]
- Espahbod, S. Intelligent Freight Transportation and Supply Chain Drivers: A Literature Survey. In Proceedings of the Seventh International Forum on Decision Sciences; Springer: Singapore, 2020; pp. 49–56. [Google Scholar] [CrossRef]
- Alipour, N.; Nazari-Shirkouhi, S.; Sangari, M.S.; Vandchali, H.R. Lean, agile, resilient, and green human resource management: The impact on organizational innovation and organizational performance. Environ. Sci. Pollut. Res. 2022, 29, 82812–82826. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, S.; Koohestani, K.; Poshdar, M.; Talebi, S. Investigation of the construction supply chain vulnerabilities under an unfavorable macro-environmental context. In Proceedings of the 30th Annual Conference of the International Group for Lean Construction (IGLC30), Edmonton, BC, Canada, 25–31 July 2022. [Google Scholar] [CrossRef]
- Anbari, M.; Arıkan Öztürk, E.B.R.U.; Ateş, H. Evaluation of sustainable transport strategies for Tehran with thetheir urbanization rate criterion based on the fuzzy ahp method. J. Xi’xxan Univ. Archit. Technol. 2020, 12, 867–881. [Google Scholar] [CrossRef]
- Villena, V.H.; Gioia, D.A. A more sustainable supply chain. Harv. Bus. Rev. 2020, 98, 84–93. [Google Scholar]
- Zandi, S.; Luhan, G.A. Exploring User Interactions in AR/VR Interfaces: A Simulation-Based Study. In Proceedings of the 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 16–17 November 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Govindan, K.; Jafarian, A.; Nourbakhsh, V. Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic. Comput. Oper. Res. 2015, 62, 112–130. [Google Scholar] [CrossRef]
- Raut, R.D.; Mangla, S.K.; Narwane, V.S.; Dora, M.; Liu, M. Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains. Transp. Res. Part E Logist. Transp. Rev. 2021, 145, 102170. [Google Scholar] [CrossRef]
- Nazari-Shirkouhi, S.; Keramati, A. Modeling customer satisfaction with new product design using a flexible fuzzy regression-data envelopment analysis algorithm. Appl. Math. Model. 2017, 50, 755–771. [Google Scholar] [CrossRef]
- Tehranian, K.; Khorsand, M.S.; Zarei, M.; Arani, G.G.; Banabari, H.G.; Sasani, F. Unveiling the Impact of Social Media Usage on Firm Performance: The Mediating Influence of Organizational Agility and Innovation Capability. Teh. Glas. 2024, 18, 1–9. [Google Scholar] [CrossRef]
- Nazari-Shirkouhi, S.; Keramati, A.; Rezaie, K. Investigating the effects of customer relationship management and supplier relationship management on new product development. Teh. Vjesn. 2015, 22, 191–200. [Google Scholar] [CrossRef]
- Sanaei, F. How customers’ satisfaction change with the use of AR shopping application: A conceptuall model. arXiv 2024, arXiv:2401.10953. [Google Scholar] [CrossRef]
- Hashemian, F.; Maleki, N.; Zeinali, Y. From User Behavior to Subscription Sales: An Insight Into E-Book Platform Leveraging Customer Segmentation and A/B Testing. Serv. Mark. Q. 2024, 45, 153–181. [Google Scholar] [CrossRef]
- Mirshekari, S.; Moradi, M.; Jafari, H.; Jafari, M.; Ensaf, M. Enhancing Predictive Accuracy in Pharmaceutical Sales Through an Ensemble Kernel Gaussian Process Regression Approach. Int. J. Comput. Inf. Eng. 2024, 18, 255–260. [Google Scholar] [CrossRef]
- Kwak, D.W.; Seo, Y.J.; Mason, R. Investigating the relationship between supply chain innovation, risk management capabilities and competitive advantage in global supply chains. Int. J. Oper. Prod. Manag. 2018, 38, 2–21. [Google Scholar] [CrossRef]
- Sadeghi, S.; Marjani, T.; Hassani, A.; Moreno, J. Development of Optimal Stock Portfolio Selection Model in the Tehran Stock Exchange by Employing Markowitz Mean-Semivariance Model. J. Financ. Issues 2022, 20, 47–71. [Google Scholar] [CrossRef]
- Niyafard, S.; Jalalian, S.S.; Damirchi, F.; Jazayerifar, S.; Heidari, S. Exploring the impact of information technology on the relationship between management skills, risk management, and project success in construction industries. Int. J. Bus. Contin. Risk Manag. 2023, 14, 97–118. [Google Scholar] [CrossRef]
- AL-Khatib, A.W. The impact of big data analytics capabilities on green supply chain performance: Is green supply chain innovation the missing link? Bus. Process Manag. J. 2023, 29, 22–42. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Wamba, S.F. Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. Int. J. Inf. Manag. 2019, 46, 70–82. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Telles, R.; Bonilla, S.H. Blockchain and supply chain management integration: A systematic review of the literature. Supply Chain Manag. Int. J. 2020, 25, 241–254. [Google Scholar] [CrossRef]
- Eslamdoust, S.; Lee, J.H.; Bohrani, T. Enhancing team performance in the digital age: Impact of technologically moderated communication in the interplay of e-leadership & trust. Int. J. Bus. Manag. Stud. 2024, 5, 56–67. [Google Scholar] [CrossRef]
- Abbasihafshejani, M.; Manshaei, M.H.; Jadliwala, M. Detecting and Punishing Selfish Behavior During Gossiping in Algorand Blockchain. In Proceedings of the 2023 IEEE Virtual Conference on Communications (VCC), New York, NY, USA, 28–30 November 2023; pp. 49–55. [Google Scholar] [CrossRef]
- Khan, S.A.; Mubarik, M.S.; Kusi-Sarpong, S.; Gupta, H.; Zaman, S.I.; Mubarik, M. Blockchain technologies as enablers of supply chain mapping for sustainable supply chains. Bus. Strategy Environ. 2022, 31, 3742–3756. [Google Scholar] [CrossRef]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Subramanian, N.; Ghadge, A.; Belhadi, A.; Venkatesh, M. Blockchain technology’s impact on supply chain integration and sustainable supply chain performance: Evidence from the automotive industry. Ann. Oper. Res. 2023, 327, 575–600. [Google Scholar] [CrossRef]
- Al-Farsi, S.; Rathore, M.M.; Bakiras, S. Security of blockchain-based supply chain management systems: Challenges and opportunities. Appl. Sci. 2021, 17, 5585. [Google Scholar] [CrossRef]
- Dutta, P.; Choi, T.M.; Somani, S.; Butala, R. Blockchain technology in supply chain operations: Applications, challenges and research opportunities. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 102067. [Google Scholar] [CrossRef]
- Lim, M.K.; Li, Y.; Wang, C.; Tseng, M.L. A literature review of blockchain technology applications in supply chains: A comprehensive analysis of themes, methodologies and industries. Comput. Ind. Eng. 2021, 154, 107133. [Google Scholar] [CrossRef]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J. Blockchain technology: A panacea or pariah for resources conservation and recycling? Resour. Conserv. Recycl. 2018, 130, 80–81. [Google Scholar] [CrossRef]
- Sciarelli, M.; Prisco, A.; Gheith, M.H.; Muto, V. Factors affecting the adoption of blockchain technology in innovative Italian companies: An extended TAM approach. J. Strategy Manag. 2022, 15, 495–507. [Google Scholar] [CrossRef]
- Chin, T.; Shi, Y.; Singh, S.K.; Agbanyo, G.K.; Ferraris, A. Leveraging blockchain technology for green innovation in ecosystem-based business models: A dynamic capability of values appropriation. Technol. Forecast. Soc. Change 2022, 183, 121908. [Google Scholar] [CrossRef]
- Yousefi, S.; Tosarkani, B.M. An analytical approach for evaluating the impact of blockchain technology on sustainable supply chain performance. Int. J. Prod. Econ. 2022, 246, 108429. [Google Scholar] [CrossRef]
- Difrancesco, R.M.; Meena, P.; Kumar, G. How blockchain technology improves sustainable supply chain processes: A practical guide. Oper. Manag. Res. 2022, 16, 620–641. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Anvari, A.R. The integration of LARG supply chain paradigms and supply chain sustainable performance (A case study of Iran). Prod. Manuf. Res. 2021, 9, 157–177. [Google Scholar] [CrossRef]
- Gunasekaran, A.; Papadopoulos, T.; Dubey, R.; Wamba, S.F.; Childe, S.J.; Hazen, B.; Akter, S. Big data and predictive analytics for supply chain and organizational performance. J. Bus. Res. 2017, 70, 308–317. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Yazdi, M.R.T.; Mozaffari, M.M.; Nazari-Shirkouhi, S.; Asadzadeh, S.M. Integrated fuzzy DEA-ANFIS to measure the success effect of human resource spirituality. Cybern. Syst. 2018, 49, 151–169. [Google Scholar] [CrossRef]
- Khorshidpour-Nobandegani, A.; Nazari-Shirkouhi, S.; Amin-Tahmasbi, H. Risk Assessment of Public-Private Partnership Projects For Water Transmission and Distribution Using ANFIS Method. Sharif J. Ind. Eng. Manag. 2023, 38, 67–78. [Google Scholar] [CrossRef]
- Darvishinia, N. AI in Education: Cracking the Code Through Challenges: A Content Analysis of one of the recent Issues of Educational Technology and Society (ET&S) Journal. Partn. Univers. Int. Innov. J. 2023, 1, 61–71. [Google Scholar] [CrossRef]
- Larijani, A.; Dehghani, F. A Computationally Efficient Method for Increasing Confidentiality in Smart Electricity Networks. Electronics 2023, 13, 170. [Google Scholar] [CrossRef]
- Mirshekari, S.; Motedayen, N.H.; Ensaf, M. Integrating Marketing Channels into Quantile Transformation and Bayesian Optimization of Ensemble Kernels for Sales Prediction with Gaussian Process Models. arXiv 2024, arXiv:2404.09386. [Google Scholar] [CrossRef]
- Kiaghadi, M.; Sheikholeslami, M.; Alinia, A.M.; Boora, F.M. Predicting the performance of a photovoltaic unit via machine learning methods in the existence of finned thermal storage unit. J. Energy Storage 2024, 15, 111766. [Google Scholar] [CrossRef]
- Farhang, M.; Safi-Esfahani, F. Recognizing mapreduce straggler tasks in big data infrastructures using artificial neural networks. J. Grid Comput. 2020, 18, 879–901. [Google Scholar] [CrossRef]
- Asadollahi, A.; Latifi, H.; Zeynali, S.; Pramanik, M.; Qazvini, H. Accuracy of peak-power compensation in fiber-guided and free-space acoustic-resolution photoacoustic microscopy. Biomed. Opt. Express 2022, 13, 1774–1783. [Google Scholar] [CrossRef] [PubMed]
- Ghafariasl, P.; Mahmoudan, A.; Mohammadi, M.; Nazarparvar, A.; Hoseinzadeh, S.; Fathali, M.; Chang, S.; Zeinalnezhad, M.; Garcia, D.A. Neural network-based surrogate modeling and optimization of a multigeneration system. Appl. Energy 2024, 364, 123130. [Google Scholar] [CrossRef]
- Nazari-Shirkouhi, S.; Keramati, A.; Rezaie, K. Improvement of customers’ satisfaction with new product design using an adaptive neuro-fuzzy inference systems approach. Neural Comput. Appl. 2013, 23, 333–343. [Google Scholar] [CrossRef]
- Dehghani, A.; Soltani, A. Site selection of car parking with the GIS-based fuzzy multi-criteria decision making. Int. J. Inf. Technol. Decis. Mak. 2024, 1, 715–740. [Google Scholar] [CrossRef]
- Wang, Z.; Li, M.; Lu, J.; Cheng, X. Business Innovation based on artificial intelligence and Blockchain technology. Inf. Process. Manag. 2022, 59, 102759. [Google Scholar] [CrossRef]
- Mubarik, M.; Raja Mohd Rasi, R.Z.; Mubarak, M.F.; Ashraf, R. Impact of blockchain technology on green supply chain practices: Evidence from emerging economy. Manag. Environ. Qual. Int. J. 2021, 32, 1023–1039. [Google Scholar] [CrossRef]
- Abdallah, A.B.; Alfar, N.A.; Alhyari, S. The effect of supply chain quality management on supply chain performance: The indirect roles of supply chain agility and innovation. Int. J. Phys. Distrib. Logist. Manag. 2021, 51, 785–812. [Google Scholar] [CrossRef]
- Cherrafi, A.; Garza-Reyes, J.A.; Kumar, V.; Mishra, N.; Ghobadian, A.; Elfezazi, S. Lean, green practices and process innovation: A model for green supply chain performance. Int. J. Prod. Econ. 2018, 206, 79–92. [Google Scholar] [CrossRef]
- Ghazvinian, A.; Feng, B.; Feng, J.; Talebzadeh, H.; Dzikuć, M. Lean, Agile, Resilient, Green, and Sustainable (LARGS) Supplier Selection Using Multi-Criteria Structural Equation Modeling under Fuzzy Environments. Sustainability 2024, 16, 1594. [Google Scholar] [CrossRef]
- Azevedo, S.G.; Carvalho, H.; Cruz-Machado, V. The Influence of LARG Supply Chain Management Practices on Manufacturing Supply Chain Performance. In Proceedings of the International Conference on Economics, Business and Marketing—EBMM 2011, Shanghai, China, 11–13 March 2011. [Google Scholar]
- Talebzadeh, H.; Fattahiamin, A.; Talebzadeh, M.; Sanaei, F.; Moghaddam, P.K.; Espahbod, S. Optimizing Supply Chains: A Grey-DEMATEL Approach to Implementing LARG Framework. Teh. Glas. 2024, 19, 1–8. [Google Scholar]
- Khameneh, R.T.; Elyasi, M.; Özener, O.Ö.; Ekici, A. A non-clustered approach to platelet collection routing problem. Comput. Oper. Res. 2023, 160, 106366. [Google Scholar] [CrossRef]
- Manshour, N.; He, F.; Wang, D.; Xu, D. Integrating protein structure prediction and bayesian optimization for peptide design. In NeurIPS 2023 Generative AI and Biology (GenBio) Workshop 2023. 2023. Available online: https://openreview.net/forum?id=CsjGuWD7hk (accessed on 1 January 2014).
- Lin, T.; Pham, H. A two-stage intervened decision system with multi-state decision units and dynamic system configuration. Ann. Oper. Res. 2022, 311, 255–277. [Google Scholar] [CrossRef]
- Soleimani, A.; Hosseini Dolatabadi, S.H.; Heidari, M.; Pinnarelli, A.; Mehdizadeh Khorrami, B.; Luo, Y.; Vizza, P.; Brusco, G. Progress in hydrogen fuel cell vehicles and up-and-coming technologies for eco-friendly transportation: An international assessment. Multiscale Multidiscip. Model. Exp. Des. 2024, 1–20. [Google Scholar] [CrossRef]
- Mehrabian, A.; Bahrami, S.; Wong, V.W. A dynamic Bernstein graph recurrent network for wireless cellular traffic prediction. In Proceedings of the ICC 2023-IEEE International Conference on Communications, Rome, Italy, 28 May–1 June 2023; pp. 3842–3847. [Google Scholar] [CrossRef]
- Lin, T.; Pham, H. Reliability and cost-benefit analysis for two-stage intervened decision-making systems with interdependent decision units. Int. J. Math. Eng. Manag. Sci. 2019, 4, 531. [Google Scholar] [CrossRef]
- Bevilacqua, C.; Sohrabi, P.; Hamdy, N. Spatializing Social Networking Analysis to Capture Local Innovation Flows towards Inclusive Transition. Sustainability 2022, 14, 3000. [Google Scholar] [CrossRef]
- Alshurideh, M.; Al Kurdi, B.; Salloum, S.A.; Arpaci, I.; Al-Emran, M. Predicting the actual use of m-learning systems: A comparative approach using PLS-SEM and machine learning algorithms. Interact. Learn. Environ. 2023, 31, 1214–1228. [Google Scholar] [CrossRef]
Variable | Item | Factor | Cronbach’s Alpha | CR | AVE |
---|---|---|---|---|---|
Blockchain-driven supply chain analytics | 1 | 0.739 | 0.903 | 0.920 | 0.562 |
2 | 0.787 | ||||
3 | 0.736 | ||||
4 | 0.724 | ||||
5 | 0.768 | ||||
6 | 0.728 | ||||
7 | 0.775 | ||||
8 | 0.755 | ||||
9 | 0.729 | ||||
SCI | 1 | 0.797 | 0.899 | 0.9211 | 0.662 |
2 | 0.861 | ||||
3 | 0.853 | ||||
4 | 0.830 | ||||
5 | 0.772 | ||||
6 | 0.765 | ||||
Leanness | 1 | 0.856 | 0.787 | 0.876 | 0.703 |
2 | 0.888 | ||||
3 | 767 | ||||
Agility | 1 | 0.700 | 0.649 | 0.811 | 0.589 |
2 | 0.805 | ||||
3 | 0.794 | ||||
Resilience | 1 | 0.786 | 0.811 | 0.889 | 0.728 |
2 | 0.867 | ||||
3 | 0.902 | ||||
Greenness | 1 | 0.90 | 0.773 | 0.898 | 0.815 |
2 | 0.905 | ||||
Sustainability | 1 | 0.859 | 0.864 | 0.917 | 0.7878 |
2 | 0.865 | ||||
3 | 0.934 | ||||
SSCP | 1 | 0.802 | 0.906 | 0.922 | 0.598 |
2 | 0.799 | ||||
3 | 0.756 | ||||
4 | 0.729 | ||||
5 | 0.761 | ||||
6 | 0.759 | ||||
7 | 0.794 | ||||
8 | 0.784 |
Variable | Blockchain-Driven Supply Chain Analytics | SCI | LARGS | SSCP |
---|---|---|---|---|
Blockchain-driven supply chain analytics | 0.75 | |||
SCI | 0.44 ** | 0.81 | ||
LARGS | 0.73 ** | 0.57 ** | 0.83 | |
SSCP | 0.63 ** | 0.56 ** | 0.66 ** | 0.77 |
Variable | β | t-Value | p-Value | Explained Variance |
---|---|---|---|---|
On SSCP via: | 0.594 | |||
Blockchain-driven supply chain analytics | 0.285 ** | 4.119 | 0.01 | |
SCI | 0.213 ** | 3.798 | 0.001 | |
LARGS | 0.384 ** | 4.885 | 0.001 | |
On LARGS via: | 0.634 | |||
Blockchain-driven supply chain analytics | 0.593 ** | 13.269 | 0.001 | |
SCI | 0.320 ** | 6.945 | 0.001 | |
On SCI via: | ||||
Blockchain-driven supply chain analytics | 0.475 ** | 0.8797 | 0.001 | 0.226 |
Indirect Paths | Indirect Effects | t-Value | p-Value |
---|---|---|---|
Blockchain-driven supply chain analytics → SC Innovation → LARGS SCM | 0.152 | 4.983 | 0.000 |
Blockchain-driven supply chain analytics → LARGS SCM → Sustainable SC Performance | 0.228 | 4.224 | 0.000 |
SC Innovation → LARGS SCM → SSCP | 0.123 | 3.923 | 0.000 |
Blockchain-driven supply chain analytics → SC Innovation → SSCP | 0.101 | 3.033 | 0.003 |
Hypothesis | Result |
---|---|
H1. LARGS supply chain practices are effective for SSCP. | Confirmed |
H2. SCI is effective for SSCP. | Confirmed |
H3. SCI is effective for LARGS SCM. | Confirmed |
H4. LARGS supply chain practices mediate the effect of SC innovation on SSCP. | Confirmed |
H5. Blockchain-driven supply chain analytics is effective for SSCP. | Confirmed |
H6. Blockchain-driven supply chain analytics is effective for SCI. | Confirmed |
H7. Blockchain-driven supply chain analytics is effective for LARGS supply chain practices. | Confirmed |
H8. SCI mediates the effect of blockchain-driven supply chain analytics on SSCP | Confirmed |
H9. LARGS supply chain practices mediate the effect of blockchain-driven supply chain analytics on SSCP. | Confirmed |
H10. SCI mediates the effect of blockchain-driven supply chain analytics on LARGS SCM | Confirmed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espahbod, S.; Tashakkori, A.; Mohsenibeigzadeh, M.; Zarei, M.; Arani, G.G.; Dzikuć, M.; Dzikuć, M. Blockchain-Driven Supply Chain Analytics and Sustainable Performance: Analysis Using PLS-SEM and ANFIS. Sustainability 2024, 16, 6469. https://doi.org/10.3390/su16156469
Espahbod S, Tashakkori A, Mohsenibeigzadeh M, Zarei M, Arani GG, Dzikuć M, Dzikuć M. Blockchain-Driven Supply Chain Analytics and Sustainable Performance: Analysis Using PLS-SEM and ANFIS. Sustainability. 2024; 16(15):6469. https://doi.org/10.3390/su16156469
Chicago/Turabian StyleEspahbod, Shervin, Arash Tashakkori, Mahsa Mohsenibeigzadeh, Mehrnaz Zarei, Ghasem Golshan Arani, Maria Dzikuć, and Maciej Dzikuć. 2024. "Blockchain-Driven Supply Chain Analytics and Sustainable Performance: Analysis Using PLS-SEM and ANFIS" Sustainability 16, no. 15: 6469. https://doi.org/10.3390/su16156469
APA StyleEspahbod, S., Tashakkori, A., Mohsenibeigzadeh, M., Zarei, M., Arani, G. G., Dzikuć, M., & Dzikuć, M. (2024). Blockchain-Driven Supply Chain Analytics and Sustainable Performance: Analysis Using PLS-SEM and ANFIS. Sustainability, 16(15), 6469. https://doi.org/10.3390/su16156469