Analysis of the Current Situation of the Construction Industry in Saudi Arabia and the Factors Affecting It: An Empirical Study
Abstract
:1. Introduction
2. Literature Review
2.1. Construction Industry Efficiency
2.2. Factors Influencing the Construction Industry’s Efficiency
2.3. Spatial Autocorrelation
2.4. Research Gap
3. Methodology
3.1. Model Development
3.1.1. Super-Efficient EBM Modeling
3.1.2. Malmquist Exponential Modeling
3.1.3. Tobit Model
3.1.4. Spatial Autocorrelation
3.2. Sample Size
3.3. Types of Data
3.3.1. Industry Efficiency Indicators
3.3.2. Indicators of Impact Factors
3.4. Method of Data Collection
4. Results
4.1. Static Efficiency Results for the Construction Industry in Saudi Arabia
4.1.1. Analysis of the Technical Efficiency (TE) Results
4.1.2. Analysis of the Pure Technical Efficiency (PTE) Results
4.1.3. Analysis of the Scale Efficiency (SE) Results
4.2. Dynamic Efficiency Results for the Construction Industry in Saudi Arabia
4.3. Results for the Factors Affecting the Construction Industry in Saudi Arabia
4.4. Spatial Autocorrelation Results for the Efficiency of the Construction Industry in Saudi Arabia
5. Discussion
6. Conclusions
- At the level of static efficiency, the technical, purely technical, and scale efficiencies of the construction industry in Saudi Arabia have improved significantly; however, the industry remains at a low level of development. Continuous technological innovation and expansion of the industry’s scale contribute to the improvement in the efficiency of the construction industry.
- In terms of dynamic efficiency, the TFP is generally growing, despite fluctuating changes. This growth is mainly due to EC enhancement. Despite the fact that technological change has slowed in recent years due to the increased cost of technological advancement, Saudi Arabia should accelerate technological development by upgrading international technological exchanges and formulating policies that favor technological innovation in order to improve the competitiveness of the construction industry.
- The results of the regression analysis indicate that population and GDP have the most significant impact on the efficiency of the construction industry in Saudi Arabia. The regression coefficients for these variables are −1.287178 and 1.042445, respectively, ranking first and second. The third most influential factor is carbon dioxide emissions, with a regression coefficient of −0.926266. Although the new construction area passed the significance test, its regression coefficient was only −0.0364423, indicating that the new construction area has a small impact on the efficiency of the Saudi Arabian construction industry. The rapid population growth in Saudi Arabia has resulted in an oversaturated labor market and intensified competition for land resources, which has constrained the efficient development of the construction industry. In contrast, GDP growth improves economic conditions and market demand, which promotes the efficiency of the construction industry. It is worth noting that there is a significant correlation between reductions in carbon dioxide (CO2) emissions and improvements in the efficiency of the construction industry, which further emphasizes the importance of improving the efficiency of the construction industry to achieve environmental sustainability.
- From the analysis of the spatial autocorrelation, the results of the global Moran’s I calculations indicate that, although there is a certain spatial spillover effect, this effect is relatively weak and does not show a clear trend over the sampling period. This implies the limitations of inter-regional clustering and interactions, thus emphasizing the need to strengthen the cooperation and exchange of regional construction in the construction industry to promote resource sharing and technology diffusion.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alam, F.; Alam, S.; Asif, M.; Hani, U.; Khan, M.N. An Investigation of Saudi Arabia’s Ambitious Reform Programme with Vision 2030 to Incentivise Investment in the Country’s Non-Oil Industries. Sustainability 2023, 15, 5357. [Google Scholar] [CrossRef]
- Ertuğrul, H.M.; Pirgaip, B. The nexus between construction investment and economic development: Evidence from MENA countries. Constr. Manag. Econ. 2021, 39, 932–947. [Google Scholar] [CrossRef]
- Filippi, L.D.; Mazzetto, S. Comparing AlUla and The Red Sea Saudi Arabia’s Giga Projects on Tourism towards a Sustainable Change in Destination Development. Sustainability 2024, 16, 2117. [Google Scholar] [CrossRef]
- Ajeeb, S.; Lai, W.S. The impact of the mortgage on the real estate market: A study case in Saudi Arabia. Int. J. Hous. Mark. Anal. 2024, 17, 329–344. [Google Scholar] [CrossRef]
- Alhammad, I.; Yi, T.Y. Towards BIM Guidelines in Saudi Arabia: Literature Review and Stakeholders Identification. IOP Conf. Ser. Earth Environ. Sci. 2022, 1026, 012055. [Google Scholar] [CrossRef]
- Almulhim, A.I.; Al-Saidi, M. Circular economy and the resource nexus: Realignment and progress towards sustainable development in Saudi Arabia. Environ. Dev. 2023, 46, 100851. [Google Scholar] [CrossRef]
- Almulhim, M.S.; Taher, R. Environmental impact assessment of residential building structural systems: A case study in Saudi Arabia. J. Buildi. Eng. 2023, 72, 106644. [Google Scholar] [CrossRef]
- Altarrazi, A.; Islam, M.; Ghaithan, A.M. Benefits Realization and Application Challenges of Green Concrete Towards Sustainability in Saudi Arabian Construction. IOP Conf. Ser. Earth Environ. Sci. 2022, 1026, 012019. [Google Scholar] [CrossRef]
- Almutairi, S.; Bakri, M.; AlMunifi, A.A.; Algahtany, M.; Aldalbahy, S. The Status of the Saudi Construction Industry during the COVID-19 Pandemic. Sustainability 2023, 15, 15432. [Google Scholar] [CrossRef]
- Ayres, R.U.; Talens Peiró, L.; Villalba Méndez, G. Exergy efficiency in industry: Where do we stand? Environ. Sci. Technol. 2011, 45, 10634–10641. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Wang, C.; Zhang, Y.; Zhang, C. Temporal and Spatial Evolution of the Science and Technology Innovative Efficiency of Regional Industrial Enterprises: A Data-Driven Perspective. Sustainability 2022, 14, 10721. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdul-Rahim, A. Determinants of cost efficiency of bioenergy industry: Evidence from EU28 countries. Renew. Energy 2018, 127, 746–762. [Google Scholar] [CrossRef]
- Świtłyk, M.; Sompolska-Rzechuła, A.; Kurdyś-Kujawska, A. Measurement and Evaluation of the Efficiency and Total Productivity of Dairy Farms in Poland. Agronomy 2021, 11, 2095. [Google Scholar] [CrossRef]
- Zakaria, M.; Yang, X.; Mumshad, S. Measuring the Technical Efficiency of Cement Industry in Pakistan. Singap. Econ. Rev. 2023, 68, 141–155. [Google Scholar] [CrossRef]
- Hjalmarsson, L.; Kumbhakar, S.C.; Heshmati, A. DEA, DFA and SFA: A comparison. J. Prod. Anal. 1996, 7, 303–327. [Google Scholar] [CrossRef]
- Nazarko, J.; Chodakowska, E. Measuring productivity of construction industry in Europe with Data Envelopment Analysis. Procedia Eng. 2015, 122, 204–212. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.; Cui, Z.; Wang, C.; Li, G. Workforce productivity evaluation of the US construction industry from 2006 to 2016. Eng. Constr. Archit. Manag. 2021, 28, 55–81. [Google Scholar] [CrossRef]
- Yi, X. Research on the Production Efficiency of Construction Industry in China’s Provinces along the Belt and Road. Front. Bus. Econ. Manag. 2022, 5, 128–133. [Google Scholar] [CrossRef]
- Yuan, F.; Tang, M.; Hong, J. Efficiency estimation and reduction potential of the Chinese construction industry via SE-DEA and artificial neural network. Eng. Constr. Archit. Manag. 2020, 27, 1533–1552. [Google Scholar] [CrossRef]
- Wang, X.M.; Wang, Z.S. Research on Spatiotemporal Differences in Construction Industry Efficiency in the Yangtze River Economic Belt. Constr. Econ. 2021, 42, 5. [Google Scholar] [CrossRef]
- Asamoah, R.O.; Baiden, B.K.; Nani, G.; Kissi, E. Review of exogenous economic indicators influencing construction industry. Adv. Civ. Eng. 2019, 2019, 6073289. [Google Scholar] [CrossRef]
- Yang, S.D. Empirical Study on Factors Influencing the Development of Construction Industry-Based on Anhui Construction. Appl. Mech. Mater. 2012, 193, 1300–1306. [Google Scholar] [CrossRef]
- Ustinova, L.; Sirazetdinov, R. Factors affecting the parameters of the construction industry. IOP Conf. Ser. Mater. Sci. Eng. 2020, 890, 012117. [Google Scholar] [CrossRef]
- Wu, W.Y. Efficiency Evaluation of Henan Province’s Construction Industry Based on Carbon. Master’s Thesis, Qingdao University of Technology, Qingdao, China, 2017. [Google Scholar]
- Shang, Z.; Wang, F.; Yang, X. The efficiency of the Chinese prefabricated building industry and its influencing factors: An empirical study. Sustainability 2022, 14, 10695. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: New York, NY, USA, 2009. [Google Scholar]
- Wang, X. Study on the Temporal and Spatial Evolution Trends and Influencing Factors of the Construction Industry Efficiency in the Beijing-Tianjin-Hebei. Master’s Thesis, Qingdao University of Technology, Qingdao, China, 2022. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, B.; Shen, Y.; Wang, X. Spatial analysis of change trend and influencing factors of total factor productivity in China’s regional construction industry. Appl. Econ. 2018, 50, 2824–2843. [Google Scholar] [CrossRef]
- Fang, L.; Yang, J. A financing perspective on DEA-based resource allocation and the aggregate profit inefficiency decomposition. J. Oper. Res. Soc. 2021, 72, 320–341. [Google Scholar] [CrossRef]
- Liu, D. Local government competition and resource allocation efficiency. Financ Res Lett. 2024, 60, 104830. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA–a third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Intertemporal production frontiers: With dynamic DEA. J. Oper. Res. Soc. 1997, 48, 656. [Google Scholar] [CrossRef]
- Chen, Y. Spatial autocorrelation equation based on Moran’s index. Sci. Rep. 2023, 13, 19296. [Google Scholar] [CrossRef] [PubMed]
- Li-Bo, W.; Sun, K.; Shi, Z. Research on cost technical efficiency of coal power generation enterprises in Chinaunder environmental regulation. China Popul. Resour. Environ. 2018, 8, 31–38. [Google Scholar]
- Jerzmanowski, M. Total factor productivity differences: Appropriate technology vs. efficiency. Eur. Econ. Rev. 2007, 51, 2080–2110. [Google Scholar] [CrossRef]
- Tan, W. Total factor productivity in Singapore construction. Eng. Constr. Archit. Manag. 2000, 7, 154–158. [Google Scholar] [CrossRef]
- Altuwaim, A.; AlTasan, A.; Almohsen, A. Success Criteria for Applying Construction Technologies in Residential Projects. Sustainability 2023, 15, 6854. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X. Research on High-Quality Development Evaluation, Space–Time Characteristics and Driving Factors of China’s Construction Industry under Carbon Emission Constraints. Sustainability 2022, 14, 10729. [Google Scholar] [CrossRef]
- Yue, A.; Yin, X. Measuring comprehensive production efficiency of the Chinese construction industry: A Bootstrap-DEA-Malmquist approach. Buildings 2023, 13, 834. [Google Scholar] [CrossRef]
- Raouf, S.A. Measuring and Analyzing the Impact of Population Growth on the Labor Force and Unemployment in Iraq During the Period (1990–2020). J. Kurdistani Strateg. Stud. 2022, 6, 153. [Google Scholar] [CrossRef]
- Wang, G.; Yang, J.; Ou, D.; Xiong, Y.; Deng, O.; Li, Q. Temporal-spatial variations and regional disparities in land-use efficiency, and the response to demographic transition. Sustainability 2019, 11, 4756. [Google Scholar] [CrossRef]
- Geiger, T. Continuous national gross domestic product (GDP) time series for 195 countries: Past observations (1850–2005) harmonized with future projections according to the Shared Socio-economic Pathways (2006–2100). Earth Syst. Sci. Data. 2018, 10, 847–856. [Google Scholar] [CrossRef]
- Park, J.; Ham, S.; Hong, T. Construction business cycle analysis using the regime switching model. J. Manag. Eng. 2012, 28, 362–371. [Google Scholar] [CrossRef]
- Tatum, C. Organizing to increase innovation in construction firms. J. Constr. Eng. Manag. 1989, 115, 602–617. [Google Scholar] [CrossRef]
- Storey, K. From ‘new town’ to ‘no town’ to ‘source’, ‘host’ and ‘hub’ communities: The evolution of the resource community in an era of increased labour mobility. J. Rural. Community Dev. 2018, 13, 1576. [Google Scholar]
- Liao, B.; Li, L. How can green building development promote carbon emission reduction efficiency of the construction industry?—Based on the dual perspective of industry and space. Environ. Sci. Pollut. Res. 2022, 29, 9852–9866. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Li, T.; Yu, J.; Sun, Y.; Xie, S. Spatial correlation network structure of carbon emission efficiency in China’s construction industry and its formation mechanism. Sustainability 2023, 15, 5108. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Adhikari, S. The role of bim in integrating digital twin in building construction: A literature review. Sustainability 2023, 15, 10462. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Zhang, X. Technology innovation for sustainability in the building construction industry: An analysis of patents from the Yangtze River Delta, China. Buildings 2022, 12, 2205. [Google Scholar] [CrossRef]
- Li, D.Q. Study on the Economy of Scale in Industry Based on DEA. Key Eng. Mater. 2011, 480, 1313–1317. [Google Scholar] [CrossRef]
- Ercan, T.Ş.; Günlü, G. Risks of Construction Projects and Digital Practices in the COVID-19 Outbreak. In Proceedings of the International Conference of Contemporary Affairs in Architecture and Urbanism-ICCAUA, Alanya, Turkey, 20–21 November 2021; Volume 4, pp. 705–710. [Google Scholar] [CrossRef]
- Yan, X.; Yang, R.; Chong, H.-Y.; Feng, M. Multi-Role Collaborative Behavior in the Construction Industry through Training Strategies. Buildings 2023, 13, 482. [Google Scholar] [CrossRef]
- Al-Sinan, M.A.; Bubshait, A.A.; Alamri, F. Saudi Arabia’s journey toward net-zero emissions: Progress and challenges. Energies 2023, 16, 978. [Google Scholar] [CrossRef]
- Liu, C.; Peng, M.Y.P.; Gong, W. Spatial Spillover Effects Promote the Overall Improvement of Urban Competitiveness: Evidence of SDM in Asian Cities. Front. Environ. Sci. 2022, 10, 779596. [Google Scholar] [CrossRef]
References | Research Objects | Input Indicators | Output Indicators | Research Method |
---|---|---|---|---|
Nazarko and Chodakowska [16] | Construction industry in European countries | Number of employees | Total output value and total profit of the construction industry | DEA–Malmquist |
Li et.al. [17] | Construction industry in America | Number of employees | Total output value of the construction industry | DEA–Malmquist |
Yi [18] | Construction industry in provinces along the “Belt and Road” | Total enterprise assets, number of employees, and technical equipment rate | Total output value and total profit of the construction industry | DEA–Malmquist |
Yuan et al. [19] | Construction industry in China | Number of employees, total enterprise assets, total capacity of machinery, and equipment owned | Gross product of the construction industry and newly built floor area | SE–DEA |
Wang et al. [20] | Construction industry in China | Number of employees, year-end mechanical power, and total assets of the construction industry | Total output value of the construction industry and total construction area | SBM–Malmquist |
References | Research Objects | Influencing Factors |
---|---|---|
Nazarko and Chodakowska [16] | Influencing factors in the European construction industry | GDP |
Yang [22] | Influencing factors in the An Hui construction industry | GDP, new construction area, investment in construction and installation, expenditure on capital construction, and proportion of output in the tertiary industry |
Ustinova and Sirazetdinov [23] | Industry and carbon efficiency in China | Proportion of the total output value of the construction industry of the GDP, new construction area, and construction cost per square meter of new buildings |
Wu [24] | Relationship between industry efficiency and carbon emissions | Carbon emissions |
Shang et al. [25] | Influencing factors in China’s prefabricated construction industry | Population scale, total output value of the construction industry, GDP, new real estate construction area, and carbon dioxide emissions |
Index Name | Unit | ||
---|---|---|---|
Input index | I1 | Number of construction industry employees | Person |
I2 | Number of construction enterprises | set | |
Output index | O1 | Gross output of the construction industry | SAR 100 million |
O2 | Labor productivity of the building industry | SAR/person |
I1 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|
Riyadh | 911,450 | 948,690 | 959,324 | 981,106 | 756,851 | 677,508 | 568,420 | 566,108 | 577,289 | 581,466 |
Mecca | 977,074 | 955,342 | 839,515 | 844,357 | 745,883 | 639,677 | 540,078 | 446,476 | 459,320 | 469,896 |
Eastern | 975,510 | 749,757 | 769,010 | 513,297 | 441,228 | 421,819 | 440,675 | 421,379 | 430,147 | 428,364 |
Al Madinah | 475,247 | 447,860 | 323,196 | 232,995 | 194,776 | 189,459 | 192,202 | 191,841 | 192,366 | 185,465 |
Asir | 413,038 | 330,036 | 329,435 | 228,075 | 196,989 | 190,068 | 195,143 | 182,989 | 195,902 | 187,366 |
Jizan | 298,645 | 261,502 | 253,414 | 168,790 | 144,724 | 139,244 | 142,446 | 139,758 | 144,950 | 140,292 |
Al-Qassim | 276,546 | 273,357 | 242,170 | 170,482 | 159,432 | 147,122 | 147,954 | 143,822 | 147,648 | 141,067 |
Tabuk | 177,575 | 189,560 | 189,385 | 116,296 | 105,534 | 97,388 | 101,525 | 99,957 | 104,445 | 99,423 |
Ha’il | 161,806 | 169,930 | 168,461 | 107,986 | 89,411 | 86,578 | 90,854 | 88,911 | 91,352 | 90,542 |
Al Jawf | 146,906 | 143,494 | 146,805 | 94,697 | 75,450 | 74,207 | 73,080 | 72,507 | 74,409 | 72,842 |
Najran | 158,305 | 146,869 | 136,833 | 93,868 | 78,366 | 71,277 | 73,778 | 73,337 | 74,606 | 74,281 |
Northern Borders | 98,457 | 98,715 | 90,416 | 62,154 | 48,327 | 47,332 | 52,357 | 49,927 | 49,374 | 48,329 |
Al Bahah | 108,650 | 98,650 | 98,097 | 62,343 | 50,828 | 45,770 | 50,796 | 50,060 | 51,097 | 50,164 |
I2 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Riyadh | 2069 | 2275 | 2308 | 2923 | 2205 | 2076 | 2013 | 1927 | 2087 | 2228 |
Mecca | 2874 | 2802 | 2569 | 2653 | 2298 | 2060 | 2146 | 1930 | 1982 | 2071 |
Eastern | 2946 | 2383 | 2339 | 1884 | 1743 | 1845 | 2018 | 2085 | 2155 | 2064 |
Al Madinah | 1076 | 1020 | 1192 | 1287 | 1016 | 1093 | 1102 | 1022 | 1166 | 1132 |
Asir | 1053 | 1098 | 1129 | 1188 | 1196 | 1202 | 1235 | 1103 | 1159 | 1157 |
Jizan | 752 | 781 | 775 | 866 | 734 | 701 | 729 | 707 | 743 | 750 |
Al-Qassim | 736 | 741 | 785 | 857 | 809 | 815 | 827 | 801 | 834 | 840 |
Tabuk | 528 | 602 | 611 | 631 | 560 | 523 | 612 | 588 | 587 | 585 |
Ha’il | 453 | 529 | 527 | 537 | 552 | 507 | 541 | 514 | 508 | 526 |
Al Jawf | 478 | 452 | 484 | 462 | 407 | 408 | 432 | 414 | 419 | 421 |
Najran | 368 | 363 | 412 | 449 | 402 | 396 | 384 | 327 | 365 | 362 |
Northern Borders | 325 | 369 | 361 | 296 | 245 | 234 | 269 | 237 | 247 | 256 |
Al Bahah | 326 | 338 | 382 | 291 | 265 | 268 | 284 | 278 | 284 | 275 |
O1 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Riyadh | 31,541 | 37,470 | 38,806 | 42,639 | 43,299 | 42,290 | 43,436 | 42,611 | 44,603 | 45,104 |
Mecca | 23,009 | 30,137 | 34,113 | 39,637 | 40,022 | 39,708 | 40,412 | 39,386 | 40,967 | 41,110 |
Eastern | 16,740 | 20,666 | 23,943 | 25,928 | 26,223 | 27,814 | 29,804 | 27,242 | 30,624 | 32,900 |
Al Madinah | 7987 | 8025 | 8937 | 10,572 | 11,250 | 11,084 | 11,913 | 10,605 | 11,902 | 12,224 |
Asir | 8118 | 9260 | 9921 | 9604 | 9678 | 9750 | 10,214 | 9909 | 10,604 | 10,627 |
Jizan | 5817 | 5912 | 6256 | 6803 | 7022 | 7176 | 7159 | 6932 | 7393 | 7376 |
Al-Qassim | 5685 | 5742 | 5880 | 6328 | 6417 | 6431 | 6860 | 6628 | 7033 | 7014 |
Tabuk | 3525 | 3726 | 4014 | 4179 | 4287 | 4384 | 4467 | 4333 | 4642 | 4651 |
Ha’il | 2934 | 3057 | 3203 | 3497 | 3424 | 3622 | 3746 | 3643 | 3903 | 3918 |
Al Jawf | 2432 | 2770 | 2656 | 2854 | 2885 | 2979 | 3034 | 2932 | 3137 | 3128 |
Najran | 2362 | 2399 | 2409 | 2815 | 2851 | 2836 | 2984 | 2911 | 3096 | 3209 |
Northern Borders | 1088 | 1200 | 1219 | 1561 | 1723 | 1724 | 1886 | 1829 | 1961 | 1961 |
Al Bahah | 1430 | 1620 | 1626 | 1660 | 1671 | 1698 | 1738 | 1676 | 1789 | 1881 |
O2 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
Riyadh | 0.3292 | 0.5226 | 0.7994 | 1.0918 | 1.3832 | 1.3953 | 1.5283 | 1.5054 | 1.5453 | 1.5514 |
Mecca | 0.1727 | 0.2362 | 0.3129 | 0.6660 | 0.7723 | 0.8756 | 0.9333 | 1.0230 | 1.0408 | 1.0455 |
Eastern | 0.1159 | 0.1263 | 0.3579 | 0.4857 | 0.5490 | 0.5646 | 0.5856 | 0.5719 | 0.6190 | 0.8164 |
Al Madinah | 0.0423 | 0.0604 | 0.1804 | 0.2269 | 0.2368 | 0.2395 | 0.2555 | 0.2764 | 0.2912 | 0.3026 |
Asir | 0.0620 | 0.0868 | 0.1677 | 0.2274 | 0.2571 | 0.2629 | 0.2826 | 0.2773 | 0.2923 | 0.3063 |
Jizan | 0.0225 | 0.0286 | 0.0907 | 0.1209 | 0.1373 | 0.1417 | 0.1508 | 0.1488 | 0.1530 | 0.1577 |
Al-Qassim | 0.0231 | 0.0397 | 0.0830 | 0.1089 | 0.1127 | 0.1205 | 0.1298 | 0.1290 | 0.1334 | 0.1392 |
Tabuk | 0.0210 | 0.0329 | 0.0569 | 0.0983 | 0.0968 | 0.1048 | 0.1100 | 0.1084 | 0.1111 | 0.1170 |
Ha’il | 0.0207 | 0.0252 | 0.0471 | 0.0712 | 0.0842 | 0.0870 | 0.0907 | 0.0901 | 0.0940 | 0.0952 |
Al Jawf | 0.0186 | 0.0237 | 0.0322 | 0.0482 | 0.0591 | 0.0599 | 0.0664 | 0.0647 | 0.0675 | 0.0687 |
Najran | 0.0168 | 0.0184 | 0.0286 | 0.0390 | 0.0456 | 0.0499 | 0.0526 | 0.0516 | 0.0540 | 0.0628 |
Northern Borders | 0.0048 | 0.0072 | 0.0141 | 0.0198 | 0.0235 | 0.0260 | 0.0252 | 0.0247 | 0.0318 | 0.0365 |
Al Bahah | 0.0047 | 0.0066 | 0.0123 | 0.0186 | 0.0218 | 0.0234 | 0.0239 | 0.0234 | 0.0280 | 0.0319 |
Area | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Average |
Riyadh | 0.670 | 0.727 | 0.742 | 0.653 | 0.877 | 0.914 | 1.001 | 1.002 | 1.000 | 1.000 | 0.859 |
Mecca | 0.358 | 0.481 | 0.595 | 0.671 | 0.781 | 0.868 | 0.891 | 0.997 | 1.011 | 0.980 | 0.763 |
Eastern | 0.255 | 0.390 | 0.459 | 0.637 | 0.711 | 0.738 | 0.755 | 0.717 | 0.789 | 0.854 | 0.630 |
Al Madinah | 0.326 | 0.346 | 0.347 | 0.499 | 0.638 | 0.642 | 0.681 | 0.616 | 0.677 | 0.721 | 0.549 |
Asir | 0.341 | 0.381 | 0.398 | 0.465 | 0.547 | 0.574 | 0.592 | 0.617 | 0.613 | 0.653 | 0.518 |
Jizan | 0.342 | 0.339 | 0.362 | 0.446 | 0.537 | 0.571 | 0.556 | 0.549 | 0.564 | 0.580 | 0.485 |
Al-Qassim | 0.343 | 0.345 | 0.337 | 0.411 | 0.446 | 0.481 | 0.510 | 0.507 | 0.524 | 0.545 | 0.445 |
Tabuk | 0.299 | 0.278 | 0.296 | 0.396 | 0.448 | 0.496 | 0.482 | 0.475 | 0.489 | 0.513 | 0.417 |
Ha’il | 0.289 | 0.259 | 0.273 | 0.359 | 0.419 | 0.459 | 0.452 | 0.450 | 0.470 | 0.475 | 0.390 |
Al Jawf | 0.229 | 0.275 | 0.248 | 0.335 | 0.422 | 0.442 | 0.455 | 0.444 | 0.463 | 0.471 | 0.378 |
Najran | 0.283 | 0.292 | 0.262 | 0.333 | 0.402 | 0.438 | 0.447 | 0.444 | 0.461 | 0.480 | 0.384 |
Northern Borders | 0.151 | 0.151 | 0.160 | 0.279 | 0.395 | 0.404 | 0.399 | 0.408 | 0.440 | 0.448 | 0.324 |
Al Bahah | 0.196 | 0.217 | 0.200 | 0.297 | 0.363 | 0.407 | 0.376 | 0.368 | 0.385 | 0.413 | 0.322 |
Annual average | 0.314 | 0.345 | 0.360 | 0.445 | 0.538 | 0.572 | 0.584 | 0.584 | 0.607 | 0.626 | 0.497 |
Area | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|
Riyadh | 0.684 | 0.730 | 0.743 | 0.651 | 0.884 | 0.912 | 1.003 | 1.003 | 1.005 | 1.000 | 0.862 |
Mecca | 0.381 | 0.495 | 0.606 | 0.674 | 0.784 | 0.872 | 0.893 | 1.000 | 1.006 | 0.984 | 0.770 |
Eastern | 0.285 | 0.423 | 0.486 | 0.666 | 0.742 | 0.760 | 0.771 | 0.738 | 0.803 | 0.865 | 0.654 |
Al Madinah | 0.438 | 0.463 | 0.445 | 0.586 | 0.741 | 0.746 | 0.780 | 0.731 | 0.775 | 0.823 | 0.653 |
Asir | 0.456 | 0.490 | 0.502 | 0.558 | 0.660 | 0.690 | 0.703 | 0.738 | 0.724 | 0.768 | 0.629 |
Jizan | 0.514 | 0.506 | 0.529 | 0.584 | 0.697 | 0.737 | 0.718 | 0.716 | 0.722 | 0.742 | 0.646 |
Al-Qassim | 0.520 | 0.520 | 0.506 | 0.550 | 0.594 | 0.639 | 0.665 | 0.667 | 0.677 | 0.704 | 0.604 |
Tabuk | 0.563 | 0.510 | 0.523 | 0.617 | 0.686 | 0.762 | 0.737 | 0.739 | 0.732 | 0.777 | 0.665 |
Ha’il | 0.600 | 0.528 | 0.541 | 0.599 | 0.718 | 0.764 | 0.742 | 0.752 | 0.759 | 0.766 | 0.677 |
Al Jawf | 0.532 | 0.592 | 0.545 | 0.621 | 0.765 | 0.790 | 0.809 | 0.806 | 0.809 | 0.827 | 0.710 |
Najran | 0.668 | 0.683 | 0.611 | 0.628 | 0.736 | 0.801 | 0.799 | 0.863 | 0.819 | 0.839 | 0.745 |
Northern Borders | 0.695 | 0.618 | 0.635 | 0.788 | 0.975 | 1.025 | 0.920 | 1.001 | 1.000 | 1.005 | 0.866 |
Al Bahah | 0.688 | 0.670 | 0.599 | 0.799 | 0.922 | 1.004 | 0.914 | 0.924 | 0.916 | 0.947 | 0.838 |
Annual average | 0.540 | 0.556 | 0.559 | 0.640 | 0.762 | 0.808 | 0.804 | 0.821 | 0.827 | 0.850 | 0.717 |
Area | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Average | Returns to Scale |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Riyadh | 0.980 | 0.996 | 0.999 | 1.002 | 0.993 | 1.002 | 0.997 | 0.999 | 0.995 | 1.000 | 0.996 | - |
Mecca | 0.939 | 0.971 | 0.983 | 0.996 | 0.997 | 0.995 | 0.998 | 0.997 | 1.005 | 0.996 | 0.988 | - |
Eastern | 0.892 | 0.923 | 0.943 | 0.956 | 0.958 | 0.971 | 0.978 | 0.972 | 0.982 | 0.987 | 0.956 | irs |
Al Madinah | 0.746 | 0.747 | 0.781 | 0.852 | 0.862 | 0.861 | 0.873 | 0.843 | 0.874 | 0.877 | 0.831 | irs |
Asir | 0.749 | 0.777 | 0.793 | 0.834 | 0.829 | 0.832 | 0.842 | 0.836 | 0.847 | 0.851 | 0.819 | irs |
Jizan | 0.666 | 0.669 | 0.684 | 0.764 | 0.771 | 0.775 | 0.775 | 0.768 | 0.782 | 0.782 | 0.743 | irs |
Al-Qassim | 0.660 | 0.662 | 0.667 | 0.747 | 0.751 | 0.753 | 0.767 | 0.760 | 0.773 | 0.773 | 0.731 | irs |
Tabuk | 0.531 | 0.546 | 0.566 | 0.641 | 0.654 | 0.652 | 0.654 | 0.643 | 0.667 | 0.660 | 0.621 | irs |
Ha’il | 0.481 | 0.492 | 0.505 | 0.599 | 0.583 | 0.601 | 0.609 | 0.598 | 0.620 | 0.620 | 0.571 | irs |
Al Jawf | 0.431 | 0.465 | 0.454 | 0.539 | 0.551 | 0.560 | 0.562 | 0.551 | 0.573 | 0.570 | 0.526 | irs |
Najran | 0.423 | 0.427 | 0.429 | 0.531 | 0.547 | 0.547 | 0.559 | 0.514 | 0.562 | 0.572 | 0.511 | irs |
Northern Borders | 0.217 | 0.245 | 0.252 | 0.355 | 0.405 | 0.394 | 0.433 | 0.407 | 0.440 | 0.446 | 0.359 | irs |
Al Bahah | 0.285 | 0.324 | 0.334 | 0.371 | 0.394 | 0.405 | 0.412 | 0.399 | 0.421 | 0.436 | 0.378 | irs |
Annual average | 0.615 | 0.634 | 0.645 | 0.707 | 0.715 | 0.719 | 0.728 | 0.714 | 0.734 | 0.736 | 0.695 | irs |
Year | Technical Efficiency Change (EC) | Technological Change (TC) | Total Factor Productivity Change (TFP) |
---|---|---|---|
2013–2014 | 1.041 | 1.059 | 1.124 |
2014–2015 | 1.021 | 1.043 | 1.059 |
2015–2016 | 1.228 | 1.063 | 1.293 |
2016–2017 | 1.058 | 1.150 | 1.210 |
2017–2018 | 0.987 | 1.081 | 1.069 |
2018–2019 | 0.918 | 1.109 | 1.015 |
2019–2020 | 0.834 | 1.201 | 1.006 |
2020–2021 | 1.031 | 1.011 | 1.040 |
2021–2022 | 1.052 | 0.984 | 1.029 |
Average annual rate of change | 1.019 | 1.078 | 1.094 |
Variable Name | Coefficient | Standard Deviation | t | p Value |
---|---|---|---|---|
−1.287172 | 0.5432381 | −2.37 | 0.020 *** | |
1.042445 | 0.2616942 | 3.98 | 0.000 *** | |
−0.0364423 | 0.0117636 | −3.1 | 0.002 *** | |
−0.926155 | 0.1229921 | −7.53 | 0.000 *** |
Variables | I | E(I) | Sd(I) | Z | p Value |
---|---|---|---|---|---|
2013 | 0.093 | −0.083 | 0.125 | 1.417 | 0.078 |
2014 | 0.178 | −0.083 | 0.138 | 1.900 | 0.029 |
2015 | 0.147 | −0.083 | 0.153 | 1.511 | 0.065 |
2016 | 0.090 | −0.083 | 0.166 | 1.044 | 0.097 |
2017 | 0.113 | −0.083 | 0.162 | 1.211 | 0.095 |
2018 | 0.118 | −0.083 | 0.161 | 1.245 | 0.093 |
2019 | 0.148 | −0.083 | 0.159 | 1.453 | 0.073 |
2020 | 0.140 | −0.083 | 0.157 | 1.423 | 0.077 |
2021 | 0.130 | −0.083 | 0.160 | 1.340 | 0.090 |
2022 | 0.149 | −0.083 | 0.163 | 1.419 | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Shang, Z.; Wang, F. Analysis of the Current Situation of the Construction Industry in Saudi Arabia and the Factors Affecting It: An Empirical Study. Sustainability 2024, 16, 6756. https://doi.org/10.3390/su16166756
Yu H, Shang Z, Wang F. Analysis of the Current Situation of the Construction Industry in Saudi Arabia and the Factors Affecting It: An Empirical Study. Sustainability. 2024; 16(16):6756. https://doi.org/10.3390/su16166756
Chicago/Turabian StyleYu, Haian, Zufeng Shang, and Fenglai Wang. 2024. "Analysis of the Current Situation of the Construction Industry in Saudi Arabia and the Factors Affecting It: An Empirical Study" Sustainability 16, no. 16: 6756. https://doi.org/10.3390/su16166756
APA StyleYu, H., Shang, Z., & Wang, F. (2024). Analysis of the Current Situation of the Construction Industry in Saudi Arabia and the Factors Affecting It: An Empirical Study. Sustainability, 16(16), 6756. https://doi.org/10.3390/su16166756