Sustainable Technological Incorporation in Aquaculture: Attitudinal and Motivational Perceptions of Entrepreneurs in the Northwest Region of Mexico
Abstract
:1. Introduction
2. Materials and Methods
- Innovation and competitiveness (18 items);
- Support programmes (6 items).
Sample Size
- Z = 95% confidence level (Z = 1.96);
- p = probability of success, or expected proportion (p = 50%);
- q = probability of failure (q = 50%);
- d = precision = 9.43%.
3. Results
3.1. Statistical Analysis
3.2. Attitudinal and Motivational Profiles for Sustainable Technology Uptake in Aquaculture
Profile of Respondents
3.3. Innovation and Competitiveness
3.4. Support Programmes
3.5. ASF and Cronbach’s Coefficient
4. Discussion
4.1. Innovation and Competitiveness
4.2. Support Programmes
5. Conclusions
Research Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Subcategory: Innovation and Competitiveness |
P1. Innovation enables the introduction of new products, services, processes, sourcing, production and customer or consumer-oriented changes in the aquaculture business. P2. Innovation is part of the production philosophy of fish farmers in the region. P3. The main innovation required is for the improvement of technology to increase environmentally friendly production. P4. There is a need for innovation in aquaculture equipment improvements. P5. Innovation is needed in seeding, culture, maturation process, reproduction, spawning and rearing from egg to post-larvae of farmed shrimp. P6. Innovation is a way to prevent or mitigate virus damage in shrimp farming production. P7. Innovation should be extended to other products such as tilapia, abalone, among others, in addition to shrimp. P8. Innovation is needed in the development of technologies for monitoring physic-chemical and biological parameters of water, as well as in feeding mechanisms for shrimp or other species in farms. |
P9. Innovate to improve the quality of water intakes for efficient and quality supply. P10. Innovation is required to achieve an increase in the commercial value of aquaculture production. P11. Collaboration with other fish farmers is needed to do better business. P12. It is convenient to innovate in processes and products, to offer more attractive products to the market. P13. Innovation is necessary in the commercialisation of products in national and international markets. P14. Technological innovation is necessary for the management of virus attacks on aquaculture products. P15. Innovation is needed in the forms of organisation in aquaculture production activity. P16. There is communication, respect and collaboration between the different hierarchical levels of the people involved in the farm or pond. P18. Innovation should cover short, medium and long-term objectives for shrimp farming and other associated activities. P24. A process for the treatment of water discharged to drains in the pond drainage should be innovated. |
Subcategory: Support Programmes |
P17. There are technical and financial support programmes by the federal, state or municipal government in innovation. P19. There should be investment in innovation in aquaculture research and development. P20. Commercial banks in the region support innovation in the aquaculture sector. P21. Innovation in aquaculture will be achieved through links with biotechnology research centres. P22. There are training programs that allow the transmission or dissemination of new innovation technologies in aquaculture activity. P23. The municipality supports aquaculture innovation activities |
References
- Carrera-Quintana, S.C.; Gentile, P.; Girón-Hernández, J. An overview on the aquaculture development in Colombia: Current status, opportunities and challenges. Aquaculture 2022, 561, 738583. [Google Scholar] [CrossRef]
- FAO. El Estado Mundial de la Pesca y la Acuicultura 2022, 1st ed.; FAO: Rome, Italy, 2022; p. 288. [Google Scholar]
- SADER; CONAPESCA. National Program of Fish and Aquaculture 2020–2024 [Internet]. 2020. p. 73. Available online: https://www.gob.mx/cms/uploads/attachment/file/616554/PROGRAMA_Nacional_de_Pesca_y_Acuacultura_2020-2024baja.pdf%0Ahttps://www.dof.gob.mx/nota_detalle.php?codigo=5609194&fecha=30/12/2020 (accessed on 10 March 2024).
- SADER; SIAP. Panorama Agroalimentario 2022. Sader Servicio de Información Agroalimentaria y Pesquera. 2022. Available online: https://www.gob.mx/siap/prensa/panorama-agroalimentario-2022?idiom=es (accessed on 23 March 2024).
- Comisión Nacional de Acuacultura y Pesca C. CONAPESCA-Gobierno de México. 2019. p. 290. Anuario Estadístico de Acuacultura y Pesca 2019. Available online: https://nube.conapesca.gob.mx/sites/cona/dgppe/2019/ANUARIO_ESTADISTICO_DE_ACUACULTURA_Y_PESCA_2019.pdf (accessed on 15 March 2024).
- López Torres, G.V.; Moreno Moreno, L.R. Acuicultura en Baja California: Redes, Actores y Empresas, 1st ed.; Universidad Autónoma de Baja California: Baja California, México, 2022; p. 303. [Google Scholar]
- Carrazco Escalante, J.C.; León Balderrama, J.I. Capacidad de absorción y competitividad en el cultivo de camarón del municipio de Ahome, Sinaloa. Estud. Soc. Rev. Aliment. Contemp. Y Desarro. Reg. 2017, 27. [Google Scholar] [CrossRef]
- Gong, X.; Wong, W.K.; Peng, Y.; Khamdamov, S.J.; Albasher, G.; Hoa, V.T.; Thanh Nhan, N.T. Exploring an interdisciplinary approach to sustainable economic development in resource-rich regions: An investigation of resource productivity, technological innovation, and ecosystem resilience. Resour. Policy 2023, 87, 104294. [Google Scholar] [CrossRef]
- Zayas Barreras, I. El desarrollo tecnologico y la innovación como ente principal de competitividad en las empresas del sector agropecuario en el municipio de Angostura, Sinaloa. Mex. Agronegocios 2018, 42, 867–877. [Google Scholar]
- Porter, M. La Ventaja Competitiva de las Naciones, 1st ed.; Plaza & Janes Editores: Barcelona, España, 1991; p. 1056. [Google Scholar]
- Instituto Interamericano de Cooperación para la Agricultura (IICA). Evaluación de Diseño Programa de Fomento a la Productividad Pesquera y Acuícola. 2015. Available online: https://www.transparenciapresupuestaria.gob.mx/work/models/PTP/programas/sed/evaluaciones/2016/08s261pcdi16.pdf (accessed on 10 March 2024).
- Díaz-Canel Bermúdez, M. ¿Por qué necesitamos un sistema de gestión del Gobierno basado en ciencia e innovación? An. La Acad. Cienc. Cuba. 2021, 11, 1–14. [Google Scholar]
- Nicheva, S.; Waldo, S.; Nielsen, R.; Lasner, T.; Guillen Garcia, J.; Jackson, E.; Motova, A.; Cozzolino, M.; Lamprakis, A.; Zhelev, K.; et al. Collecting demographic data for the EU aquaculture sector: What can we learn? Aquaculture 2022, 559, 738382. [Google Scholar] [CrossRef]
- De La Torre Valdez, H.C.; Peralta Salazar, Y.; Olivas Valdez, E.; Durazo Bringas, M.G. Factores que determinan la competitividad del Parque Acuícola Cruz de Piedra en Empalme, Sonora, México. Rev. El Col. San Luis 2020, 10, 1–33. [Google Scholar] [CrossRef]
- Guélac Gómez, J.; Sánchez Calle, J.E.; Valles-Coral, M.A. Impacto del uso de herramientas tecnológicas en la producción acuícola. Enfoque UTE 2022, 14, 66–76. [Google Scholar] [CrossRef]
- Del Carpio Gallegos, J.F.; Miralles, F. Análisis cualitativo de los determinantes de la innovación en una economía emergente. Retos 2019, 9, 161–175. [Google Scholar] [CrossRef]
- Osmundsen, T.C.; Olsen, M.S.; Gauteplass, A.; Asche, F. Aquaculture policy: Designing licenses for environmental regulation. Mar. Policy 2022, 138, 104978. [Google Scholar] [CrossRef]
- Yue, K.; Shen, Y. An overview of disruptive technologies for aquaculture. Aquac. Fish 2022, 7, 111–120. [Google Scholar] [CrossRef]
- Ragasa, C.; Agyakwah, S.K.; Asmah, R.; Mensah, E.T.D.; Amewu, S.; Oyih, M. Accelerating pond aquaculture development and resilience beyond COVID: Ensuring food and jobs in Ghana. Aquaculture 2022, 547, 737476. [Google Scholar] [CrossRef]
- Lloret-Segura, S.; Ferreres-Traver, A.; Hernández-Baeza, A.; Tomás-Marco, I. El análisis factorial exploratorio de los ítems: Una guía práctica, revisada y actualizada. An. Psicol./Ann. Psychol. 2014, 30, 1151–1169. [Google Scholar] [CrossRef]
- Cruz, I.J.; Berra Barona, C.; Rodríguez León, Y.J. Efecto de Las Redes Sociales en el Desarrollo de las Habilidades Cognitivas: Análisis Factorial Exploratorio. Univ. Cienc. 2024, 13, (Especial CIVITEC). 83–98. [Google Scholar]
- Pérez, E.; Medrano, L.A. Análisis Factorial Exploratorio: Bases Conceptuales y Metodológicas. Revista Argentina de Ciencias del Comportamiento (RACC), ISSN-e 1852-4206, Volume 2, 2010, pp. 58–66. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=3161108&info=resumen&idioma=ENG (accessed on 29 July 2024).
- Zhunio-Falcones, S.E.; Cabrera-Tenecela, P. Análisis factorial exploratorio y confirmatorio de la Escala de Intervención Docente Orientada a Promover la Metacognición en el Aula (EIDOPMA). S. Am. Res. J. 2022, 2. [Google Scholar] [CrossRef]
- Pizarro Romero, K.; Martínez Mora, O. Análisis factorial exploratorio mediante el uso de las medidas de adecuación muestral kmo y esfericidad de bartlett para determinar factores principales. J. Sci. Res. 2020, 5, 903–924. [Google Scholar]
- Sridana, R.; Tomoliyus, T.; Sukamti, E.R.; Prabowo, T.A.; Abrori, R.B. The Effect of Coaching Style on Performance of Athletes through Anxiety as Mediating Variable in Adolescent Swimmers. Retos: Nuevas Tendencias en Educación Física, Deporte y Recreación, ISSN-e 1988-2041, ISSN 1579-1726, Volume 55, 2024, pp. 241–248. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=9420367&info=resumen&idioma=ENG (accessed on 29 July 2024).
- Frías-Navarro, D. Apuntes de estimación de la fiabilidad de consistencia interna de los ítems de un instrumento de medida. Lect. Crítica Y Recom. Para Redactar El Inf. Investig. 2022, 2022, 1–26. [Google Scholar]
- McDonald, R.P. Test Theory: A Unified Treatment. 2013, pp. 1–485. Available online: https://www.taylorfrancis.com/books/mono/10.4324/9781410601087/test-theory-roderick-mcdonald (accessed on 16 June 2024).
- Fernández Santana, O. El Análisis de Cluster: Aplicación, interpretación y validación. Pap. Rev. De Sociol. 1991, 37, 65–76. [Google Scholar] [CrossRef]
- María-José, R.-J.; Mora Catalá, R. Análisis de Cluster o Análisis de Conglomerados. In Publicaciones de la Universidad de Alicante. 2001. Available online: https://rua.ua.es/dspace/handle/10045/12079 (accessed on 29 July 2024).
- Falconí Punguil, D.G.; Gualpa Mendoza, J.N. Método para la Determinación de Similaridad y Distancia Entre Investigadores a Partir de Algoritmos de Clasificación. Universidad Técnica de Cotopaxi. 2019. Available online: https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=falconi+2019+m%C3%A9todo+para+determinar+la+similaridad&btnG=#d=gs_qabs&t=1723522648979&u=%23p%3Dy5JYEmvZJOMJ (accessed on 29 July 2024).
- Rodríguez, M.; Mendivelso, F. Diseño de investigación de Corte Transversal. Rev. Médica Sanitas 2018, 21, 141–146. [Google Scholar] [CrossRef]
- Arias Gonzáles, J.L. Diseño y Metodología de la Investigación, 1st ed.; Enfoques Consulting EIRL: Arequipa, CA, USA, 2021; p. 124. [Google Scholar]
- Grasso, L. Encuestas Elementos Para su Diseño y Análisis; Encuentro Grupo Editor: Córdoba, Argentina, 2016; Volume 3, pp. 49–58. Available online: https://books.google.com.co/books?id=jL_yS1pfbMoC&printsec=frontcover&hl=es#v=onepage&q&f=false (accessed on 7 May 2024).
- Ángela Guadalupe Canto de Gante, L.; Elim Sosa González, W.; Bautista Ortega, J.; Judith Escobar Castillo, I.; Santillán Fernández, A. Escala de Likert: Una alternativa para elaborar e interpretar un instrumento de percepción social. Alta Tecnol. Y Soc. 2020, 38, 38–45. [Google Scholar]
- Moe Føre, H.; Thorvaldsen, T.; Osmundsen, T.C.; Asche, F.; Tveterås, R.; Fagertun, J.T.; Bjelland, H.V. Technological innovations promoting sustainable salmon (Salmo salar) aquaculture in Norway. Aquac. Rep. 2022, 24, 101115. [Google Scholar] [CrossRef]
- Bostock, J.; Lane, A.; Hough, C.; Yamamoto, K. An assessment of the economic contribution of EU aquaculture production and the influence of policies for its sustainable development. Aquac. Int. 2016, 24, 699–733. [Google Scholar] [CrossRef]
- Torres, M.; Paz, K.; Salazar, F. Métodos de Recolección de Datos Para una Investigación; 2006 E-newsletter, 2, 1–13. Available online: http://148.202.167.116:8080/jspui/handle/123456789/2817 (accessed on 12 March 2024).
- Barajas, A.P.; Saldaña, T.M.; Velázquez, M.A.J.; Cue, J.L.G. Política pública para el campo: PROCAMPO en el centro del país. Rev. Mex. Cienc. Agric. 2016, 7, 147–157. [Google Scholar]
- Sepúlveda Hernández, S.; Vizcarra Bordi, I.; Moctezuma Pérez, S.; García Mondragón, D.; Gómez Demetrio, W. desigualdades de género en la innovación inclusiva de la producción trucha-arcoíris, Estado de México. Agric. Soc. Y Desarro. 2023, 19, 493–512. [Google Scholar] [CrossRef]
- Bojórquez Molina, J.A.; López Aranda, L.; Hernández Flores, M.E.; Jiménez López, E. Utilización del alfa de Cronbach para validar la confiabilidad de un instrumento de medición de satisfacción del estudiante en el uso del software Minitab. In Proceedings of the 11th Latin American and Caribbean Conference for Engineering and Technology, Cancún, México, 14–16 August 2013; Available online: https://laccei.org/LACCEI2013-Cancun/RefereedPapers/RP065.pdf (accessed on 15 July 2024).
- Idenyi, J.N.; Eya, J.C.; Nwankwegu, A.S.; Nwoba, E.G. Aquaculture sustainability through alternative dietary ingredients: Microalgal value-added products. Eng. Microbiol. 2022, 2, 100049. [Google Scholar] [CrossRef]
- Gomes da Silva, E.; Castilho-Barros, L.; Henriques, M.B. Economic feasibility of integrated multi-trophic aquaculture (mussel Perna perna, scallop Nodipecten nodosus and seaweed Kappaphycus alvarezii) in Southeast Brazil: A small-scale aquaculture farm model. Aquaculture 2022, 552, 738031. [Google Scholar] [CrossRef]
- Tolentino-Zondervan, F.; Ngoc, P.T.A.; Roskam, J.L. Use cases and future prospects of blockchain applications in global fishery and aquaculture value chains. Aquaculture 2023, 565, 739158. [Google Scholar] [CrossRef]
- Cordeiro, C.M. A corpus-based approach to understanding market access in fisheries and aquaculture international business research: A systematic literature review. Aquac. Fish. 2019, 4, 219–230. [Google Scholar] [CrossRef]
- Jaiswal, S.; Rasal, K.D.; Chandra, T.; Prabha, R.; Iquebal, M.A.; Rai, A.; Kumar, D. Proteomics in fish health and aquaculture productivity management: Status and future perspectives. Aquaculture 2023, 566, 739159. [Google Scholar] [CrossRef]
- Wang, P.; Ji, J.; Zhang, Y. Aquaculture extension system in China: Development, challenges, and prospects. Aquac. Rep. 2020, 17, 100339. [Google Scholar] [CrossRef]
- González Ochoa, A.L.; Machado Ramírez, J.G.; Talavera Hernández, M.E.; Sevilla Rizo, A. Influencia de las TIC en el proceso administrativo. Rev. Científica FAREM-Estelí 2020, 33, 52–63. [Google Scholar] [CrossRef]
- Oliveira, F.A.; Argentim, D.; Novelli, P.K.; Agostinho, S.M.M.; Agostinho, L.M.; Agostinho, C.A. Automatic feeders for Nile tilapia raised in cages: Productive performance at high feeding frequencies and different rates. Arq. Bras. Med. Vet. E Zootec. 2016, 68, 702–708. [Google Scholar] [CrossRef]
- Yue, G.H.; Tay, Y.X.; Wong, J.; Shen, Y.; Xia, J. Aquaculture species diversification in China. Aquac. Fish. 2024, 9, 206–217. [Google Scholar] [CrossRef]
- Rastegari, H.; Nadi, F.; Lam, S.S.; Ikhwanuddin, M.; Kasan, N.A.; Rahmat, R.F.; Mahari, W.A.W. Internet of Things in aquaculture: A review of the challenges and potential solutions based on current and future trends. Smart Agric. Technol. 2023, 4, 100187. [Google Scholar] [CrossRef]
- Ariza, F.G.; Rodriguez, E.M. Tecnología Biofloc (BFT), una alternativa sostenible para el desarrollo de la acuicultura: Revisión. Ing. Y Región 2019, 21, 2–11. [Google Scholar] [CrossRef]
- Martínez Córdova, L.R.; Martínez Porchas, M.; Robles Porchas, G.R.; Garibay Valdez, E. Alternativas de Acuacultura Sostenible: Aspectos Nutricionales. In Investigación e Innovación en Nutrición Acuícola, 1st ed.; Cruz Suárez, L.E., Tapia Salazar, M., Nieto López, M.G., Villarreal Cavazos, D.A., Gamboa Delgado, J., Martínez Palacios, C.A., Eds.; Universidad Autónoma de Nuevo León: Monterrey, Mexico, 2022; pp. 245–262. [Google Scholar]
- García-Ulloa, M.; Hernandez-Llamas, A.; Armenta-Soto, S.J.; Rodríguez-González, H. Substituting fishmeal with mixtures of wheat, corn and soya bean meals in diets for the white leg shrimp, Litopenaeus vannamei (Boone): Effect on production parameters and preliminary economic assessment. Aquac. Res. 2017, 48, 4864–4873. [Google Scholar] [CrossRef]
- Goda, A.; Saad, A.; Hanafy, M.; Sharawy, Z.; El-Haroun, E. Dietary effects of Azolla pinnata combined with exogenous digestive enzyme (DigestinTM) on growth and nutrients utilization of freshwater prawn, Macrobrachium rosenbergii (de Man 1879). J. Ocean. Limnol. 2018, 36, 1434–1441. [Google Scholar] [CrossRef]
- Arriaga-Hernández, D.; Hernández, C.; Martínez-Montaño, E.; Ibarra-Castro, L.; Lizárraga-Velázquez, E.; Leyva-López, N.; Chávez-Sánchez, M.C. Fish meal replacement by soybean products in aquaculture feeds for white snook, Centropomus viridis: Effect on growth, diet digestibility, and digestive capacity. Aquaculture 2021, 530, 735823. [Google Scholar] [CrossRef]
- Llanes, J.; Parisi, G. Substitution of a high percentage of fishmeal for silages of fishery by-products in extruded diets for Clarias gariepinus. Cuba. J. Agric. Sci. 2021, 55, 1–8. [Google Scholar]
- Sánchez-Alcade, M.C.; García-Ulloa, M.; Martínez Montaño, E.; Castro-Martínez, C.; Álvarez-Ruíz, P.; Rodríguez González, H. Use of Enzyme Mixtures in Diets Based on Animal and Plant Ingredients for Litopenaeus vannamei: Effect on Digestibility, Growth, and Enzyme Activity. Turk. J. Fish. Aquat. Sci. 2023, 23, TRJFAS21999. [Google Scholar] [CrossRef]
- Midhun, S.J.; Arun, D. Alternative feed technology in aquaculture. Recent Adv. Aquac. Microb. Technol. 2023, 291–306. [Google Scholar] [CrossRef]
- Rodríguez-Leal, O.V.; Arceo-Díaz, S.; Bricio-Barrios, E.E.; Amezcua-Valdovinos, I.; Alfredo, S.-G.B. Propuesta de diseño de un alimentador automatizado para la acuicultura. Difu100ci@ Rev. Difusión Científica Ing. Y Tecnol. 2021, 15, 124–131. [Google Scholar]
- Cristiano, S.; Baarset, H.; Bruckner, C.; Johansen, J.; Pastres, R. Emergy assessment to assess the ecological sustainability of smolt production and innovative options for the reuse and valorisation of aquaculture discards. Ecol. Indic. 2023, 146, 109850. [Google Scholar] [CrossRef]
- Rowan, N.J. The role of digital technologies in supporting and improving fishery and aquaculture across the supply chain—Quo Vadis? Aquac. Fish. 2023, 8, 365–374. [Google Scholar] [CrossRef]
- Joffre, O.M.; Klerkx, L.; Dickson, M.; Verdegem, M. How is innovation in aquaculture conceptualized and managed? A systematic literature review and reflection framework to inform analysis and action. Aquaculture 2017, 470, 129–148. [Google Scholar] [CrossRef]
- Kamali, S.; Ward, V.C.A.; Ricardez-Sandoval, L. Dynamic modeling of recirculating aquaculture systems: Effect of management strategies and water quality parameters on fish performance. Aquac. Eng. 2022, 99, 102294. [Google Scholar] [CrossRef]
- Sampaio, F.G.; Araújo, C.A.S.; Dallago, B.S.L.; Stech, J.L.; Lorenzzetti, J.A.; Alcântara, E.; Losekann, M.E.; Marin, D.B.; DionísioLeão, J.A.; Bueno, G.W. Unveiling low-to-high-frequency data sampling caveats for aquaculture environmental monitoring and management. Aquac. Rep. 2021, 20, 100764. [Google Scholar] [CrossRef]
- Liu, J.; Yi, N.K.; Wang, S.; Lu, L.J.; Huang, X.F. Impact of plant species on spatial distribution of metabolic potential and functional diversity of microbial communities in a constructed wetland treating aquaculture wastewater. Ecol. Eng. 2016, 94, 564–573. [Google Scholar] [CrossRef]
- Fedorova, G.; Grabic, R.; Grabicová, K.; Turek, J.; Van Nguyen, T.; Randak, T.; Brooks, B.W.; Zlabek, V. Water reuse for aquaculture: Comparative removal efficacy and aquatic hazard reduction of pharmaceuticals by a pond treatment system during a one year study. J. Hazard Mater. 2022, 421, 126712. [Google Scholar] [CrossRef]
- Sun, X.; Li, X.; Tang, S.; Lin, K.; Zhao, T.; Chen, X. A review on algal-bacterial symbiosis system for aquaculture tail water treatment. Sci. Total Environ. 2022, 847, 157620. [Google Scholar] [CrossRef]
- Sonnenholzner-Varas, J.I. Where is echinoderm aquaculture heading in Latin America? Potential, challenges and opportunities. Rev. Biol. Trop. 2021, 69 (Suppl. S1), S514–S549. [Google Scholar] [CrossRef]
- Torres Valderrama, P.I. El modelo de la triple hélice como propuesta para incorporar innovación en la acuicultura nacional. Rev. Electrónica Gestión Las Pers. Y Tecnol. 2019, 12, 59–75. [Google Scholar]
- Goswami, M.; Trudeau, V.L.; Lakra, W.S. Biotechnology in modern aquaculture: Innovations, advancements, and challenges. Front. Aquac. Biotechnol. 2023, 1–13. [Google Scholar] [CrossRef]
- Wiber, M.G.; Mather, C.; Knott, C.; Gómez, M.A.L. Regulating the Blue Economy? Challenges to an effective Canadian aquaculture act. Mar. Policy 2021, 131, 104700. [Google Scholar] [CrossRef]
- Berger, C. La Acuicultura y su Potencial en el Contexto del Desarrollo Sostenible del Perú. Universidad Científica del Sur [Internet]. 2020, 1. Available online: https://revistas.cientifica.edu.pe/index.php/southsustainability/article/view/585 (accessed on 2 January 2024).
- Britsch, M.L.; Leslie, H.M.; Stoll, J.S. Diverse perspectives on aquaculture development in Maine. Mar. Policy 2021, 131, 104697. [Google Scholar] [CrossRef]
- Gentry, R.R.; Rassweiler, A.; Ruff, E.O.; Lester, S.E. Global pathways of innovation and spread of marine aquaculture species. One Earth 2023, 6, 20–30. [Google Scholar] [CrossRef]
- Naylor, R.; Fang, S.; Fanzo, J. A global view of aquaculture policy. Food Policy 2023, 116, 102422. [Google Scholar] [CrossRef]
- Kvalvik, I.; Robertsen, R. Inter-municipal coastal zone planning and designation of areas for aquaculture in Norway: A tool for better and more coordinated planning? Ocean. Coast Manag. 2017, 142, 61–70. [Google Scholar] [CrossRef]
- Gangnery, A.; Bacher, C.; Boyd, A.; Liu, H.; You, J.; Strand, Ø. Web-based public decision support tool for integrated planning and management in aquaculture. Ocean. Coast Manag. 2021, 203, 105447. [Google Scholar] [CrossRef]
Production | Sustainability | Administration | Competitiveness | Programmes | |
---|---|---|---|---|---|
Production | 1.00 | 0.413 | 0.343 | 0.250 | 0.049 |
Sustainability | 0.418 | 1.000 | 0.502 | 0.471 | 0.015 |
Administration | 0.343 | 0.502 | 1.000 | 0.399 | 0.111 |
Competitiveness | 0.250 | 0.471 | 0.399 | 1.000 | 0.480 |
Programmes | 0.049 | 0.015 | 0.111 | 0.480 | 1.000 |
Potential Technologies | Percentage (%) |
---|---|
Underwater feeding | 2.78% |
boat | 0.93% |
Electricity from land-based grid | 8.33% |
Power supply | 7.41% |
Integrated in float/platform. | 1.85% |
Own energy production | 11.11% |
Power technology. | 67.59% |
Priority Technological | Percentage (%) |
---|---|
Ensuring the structural integrity of the farm. | 1.85% |
Quantity and quality of incoming water. | 22.22% |
Production management. | 12.96% |
Optimising farm management. | 2.78% |
Preventing infection by viruses, bacteria, parasites, etc. | 46.30% |
Promoting activities to strengthen shrimp welfare. | 4.63% |
Collection of pollutant waste. | 1.85% |
Treatment during aquaculture production. | 6.48% |
Surveillance. | 0.93% |
Level of Agreement | Percentage |
---|---|
Strongly agree | 15.74% |
Agree | 82.41% |
Neither agree nor disagree | 1.85% |
Disagree | 0.00% |
Strongly disagree | 0.00% |
Level of Agreement | Percentage |
---|---|
Strongly agree | 17.59% |
Agree | 53.70% |
Neither agree nor disagree | 16.67% |
Disagree | 7.41% |
Strongly disagree | 4.63% |
Level of Agreement | Percentage |
---|---|
Strongly agree | 9.26% |
Agree | 28.70% |
Neither agree nor disagree | 21.30% |
Disagree | 25.93% |
Strongly disagree | 14.81% |
Level of Agreement | Percentage |
---|---|
Strongly agree | 45.37% |
Agree | 44.44% |
Neither agree nor disagree | 5.56% |
Disagree | 3.70% |
Strongly disagree | 0.93% |
Construct | Innovation and Competitiveness | Support Programs | |
---|---|---|---|
Asymmetry | −0.540 | 0.162 | 0.200 |
kurtosis | −0.152 | −1.023 | 0.194 |
Statistics | Motivation to Innovate in Aquaculture | Innovation and Competitiveness | Support Programmes | |
---|---|---|---|---|
Mean | 1.80 | 1.57 | 2.49 | |
Standard error of the mean | 0.03 | 0.03 | 0.06 | |
Median | 1.83 | 1.53 | 2.50 | |
Mode | 1.83 | 1.28 | 2.67 | |
Standard deviation | 0.33 | 0.33 | 0.66 | |
Variance | 0.11 | 0.11 | 0.44 | |
Skewness | −0.05 | 0.16 | 0.20 | |
Standard error of skewness | 0.23 | 0.23 | 0.23 | |
Kurtosis | −0.15 | −1.02 | 0.19 | |
Standard error of kurtosis | 0.46 | 0.46 | 0.46 | |
Range | 1.58 | 1.33 | 3.33 | |
Minimum | 1.04 | 1.00 | 1.00 | |
Maximum | 2.63 | 2.33 | 4.33 | |
Sum | 194.42 | 169.61 | 268.83 | |
Percentiles | 25 | 1.58 | 1.28 | 2.00 |
50 | 1.83 | 1.53 | 2.50 | |
75 | 2.04 | 1.89 | 2.83 |
Item | σc | Item | σc | Item | σc |
---|---|---|---|---|---|
1 | 0.297 | 9 | 0.669 | 17 | 0.626 |
2 | 0.530 | 10 | 0.577 | 18 | 0.476 |
3 | 0.453 | 11 | 0.381 | 19 | 0.569 |
4 | 0.648 | 12 | 0.634 | 20 | 0.630 |
5 | 0.477 | 13 | 0.431 | 21 | 0.565 |
6 | 0.699 | 14 | 0.477 | 22 | 0.587 |
7 | 0.529 | 15 | 0.432 | 23 | 0.611 |
8 | 0.538 | 16 | 0.657 | 24 | 0.471 |
Description | Cronbach’s Alpha | Number of Items | |
---|---|---|---|
Construct | Motivation to innovate in aquaculture | 0.811 | 24 |
Subcategory | Innovation and competitiveness | 0.833 | 18 |
Subcategory | Support programmes | 0.733 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urías-Camacho, A.; Peinado Guevara, H.J.; Rodríguez-Montes de Oca, G.A.; Peinado-Guevara, V.M.; Herrera Barrientos, J.; Sánchez Alcalde, M.C.; González-Félix, G.K.; Cuadras-Berrelleza, A.A. Sustainable Technological Incorporation in Aquaculture: Attitudinal and Motivational Perceptions of Entrepreneurs in the Northwest Region of Mexico. Sustainability 2024, 16, 6995. https://doi.org/10.3390/su16166995
Urías-Camacho A, Peinado Guevara HJ, Rodríguez-Montes de Oca GA, Peinado-Guevara VM, Herrera Barrientos J, Sánchez Alcalde MC, González-Félix GK, Cuadras-Berrelleza AA. Sustainable Technological Incorporation in Aquaculture: Attitudinal and Motivational Perceptions of Entrepreneurs in the Northwest Region of Mexico. Sustainability. 2024; 16(16):6995. https://doi.org/10.3390/su16166995
Chicago/Turabian StyleUrías-Camacho, Alejandro, Héctor José Peinado Guevara, Gustavo Alejandro Rodríguez-Montes de Oca, Víctor Manuel Peinado-Guevara, Jaime Herrera Barrientos, Mary Cruz Sánchez Alcalde, Griselda Karina González-Félix, and Aldo Alan Cuadras-Berrelleza. 2024. "Sustainable Technological Incorporation in Aquaculture: Attitudinal and Motivational Perceptions of Entrepreneurs in the Northwest Region of Mexico" Sustainability 16, no. 16: 6995. https://doi.org/10.3390/su16166995
APA StyleUrías-Camacho, A., Peinado Guevara, H. J., Rodríguez-Montes de Oca, G. A., Peinado-Guevara, V. M., Herrera Barrientos, J., Sánchez Alcalde, M. C., González-Félix, G. K., & Cuadras-Berrelleza, A. A. (2024). Sustainable Technological Incorporation in Aquaculture: Attitudinal and Motivational Perceptions of Entrepreneurs in the Northwest Region of Mexico. Sustainability, 16(16), 6995. https://doi.org/10.3390/su16166995