Utilization of the Fungus Pycnoporus sp. for Remediation of a Sugarcane Industry Effluent
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of the Effluent
3.2. Description of the Fungal Strain
3.3. Fungal Biomass Production
3.4. Efficiency of the Vinasse Remediation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Estadísticas del Centro Azucarero Argentino (2015 a 2021). Available online: https://www.scribd.com/document/588936120/Estadisticas-Azucareras-centro-argentino-2021 (accessed on 12 January 2024).
- Informe Productivo Provincial de Salta 2021. Secretaría de Política Económica. Subsecretaría de Programación Regional y Sectorial. Available online: https://www.argentina.gob.ar/sites/default/files/informe_productivo_salta_oct2021.pdf (accessed on 14 January 2024).
- Nishihara Hun, A.L.; Mele, F.D.; Pérez, G.A. A comparative life cycle assessment of the sugarcane value chain in the province of Tucumán (Argentina) considering different technology levels. Int. J. Life Cycle Assess. 2017, 22, 502–515. [Google Scholar] [CrossRef]
- Alzate, C.E.A. Physicochemical characterization of a stillage resulting of alcohol production through the use of sugar cane in a liquor industry. Ing. USBMed 2015, 6, 36–41. [Google Scholar]
- Rulli, M.M.; Villegas, L.B.; Colin, V.L. Treatment of sugarcane vinasse using an autochthonous fungus from the northwest of Argentina and its potential application in fertigation practices. J. Environ. Chem. Eng. 2020, 8, 104371. [Google Scholar] [CrossRef]
- Ospina León, L.J.; Manotas-Duque, D.; Ramírez-Malule, H. Challenges and opportunities of the sugar cane vinasse. A bibliometric analysis. Ing. Compet. 2023, 25, 2–22. [Google Scholar]
- Tapie Canacuan, W. Evaluación In Vitro del Tratamiento de la Vinaza de Caña de Azúcar Con Pleurotus ostreatus en Producción Animal. Master’s Thesis, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Bogotá, Colombia, 2016. [Google Scholar]
- Carbajo, M.S.; Ojeda Fermoselle, A.C.; Meneguzzi, N.; Canteros, B.I.; Rodríguez, G. Behavior of fungi in media with sugarcane vinasse. In Proceedings of the II Simposio de Residuos Agropecuarios y Agroindustriales del NOA y Cuyo, San Juan, Puerto Rico, 3–5 October 2018; p. 47. [Google Scholar]
- Bermúdez Savon, R.C.; Hoyos-Hernández, J.A.; Rodríguez-Pérez, S. Evaluation of the decrease of the pollutant load of distillery vinasse by anaerobic treatment. Int. J. Environ. Pollut. 2000, 16, 103–107. [Google Scholar]
- Ortegón, G.P.; Arboleda, F.M.; Candela, L.; Tamoh, K.; Valdes-Abellan, J. Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia). Sci. Total Environ. 2016, 539, 410–419. [Google Scholar] [CrossRef]
- Zhang, Y.; Tu, C.; Lin, H.; Hu, Y.; Jia, J.; Shui, S.; Wang, J.; Hu, Y.; Zhang, B. Changes in physicochemical characteristics and microbial diversity of traditional fermented vinasse hairtail. Fermentation 2023, 9, 173. [Google Scholar] [CrossRef]
- Zúñiga Cerón, V.; Gandini Ayerbe, M.A. Environmental characterization of stillage from sugar cane waste from the production of ethanol. Dyna 2013, 80, 124–131. [Google Scholar]
- Ahmed, O.; Sulieman, A.M.E.; Elhardallou, S.B. Physicochemical, chemical and microbiological characteristics of vinasse, A by-product from ethanol industry. Am. J. Biochem. 2013, 3, 80–83. [Google Scholar]
- Tapie, W.A.; Garcia, D.P.; Guerrero, H.S. Biodegradation of sugarcane vinasses by the white-rot fungi Pleurotus ostreatus in a packed bed reactor. Trop. Subtrop. Agroecosyst. 2016, 19, 145–150. [Google Scholar]
- Fuess, L.T.; Rodrigues, I.J.; Garcia, M.L. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization. J. Environ. Sci. Health 2017, 52 Pt A, 1063–1072. [Google Scholar] [CrossRef]
- Comparato, C.N.; de Araujo, M.N.; Sakamoto, I.K.; Fuess, L.; Damianovic, M.H.R.Z.; da Silva, A.J. Melanoidin Content Determines the Primary Pathways in Glucose Dark Fermentation: A Preliminary Assessment of Kinetic and Microbial Aspects. Fermentation 2024, 10, 272. [Google Scholar] [CrossRef]
- Arimi, M.M.; Zhang, Y.; Geißen, S.U. Color removal of melanoidin-rich industrial effluent by natural manganese oxides. Sep. Purif. Technol. 2015, 150, 286–291. [Google Scholar] [CrossRef]
- Santal, A.R.; Singh, N. Biodegradation of melanoidin from distillery effluent: Role of microbes and their potential enzymes. Biodegrad. Hazard. Spec. Prod. 2013, 5, 71–100. [Google Scholar]
- Tejeda, A.; Montoya, A.; Sulbarán-Rangel, B.; Zurita, F. Possible Pollution of Surface Water Bodies with Tequila Vinasses. Water 2023, 15, 3773. [Google Scholar] [CrossRef]
- Hoaraua, J.; Caro, Y.; Grondin, I.; Petit, T. Sugarcane vinasse processing: Toward a status shift from waste to valuable resource. A review. J. Water Process Eng. 2018, 24, 11–25. [Google Scholar] [CrossRef]
- De Chaves, M.G.; Silva, G.G.Z.; Rossetto, R.; Edwards, R.A.; Tsai, S.M.; Navarrete, A.A. Acidobacteria subgroups and their metabolic potential for carbon degradation in sugarcane soil amended with vinasse and nitrogen fertilizers. Front. Microbiol. 2019, 10, 1680. [Google Scholar] [CrossRef]
- Carpanez, T.G.; Moreira, V.R.; Assis, I.R.; Amaral, M.C.S. Sugarcane vinasse as organo-mineral fertilizers feedstock: Opportunities and environmental risks. Sci. Total Environ. 2022, 832, 154998. [Google Scholar] [CrossRef]
- Hammel, K.E. Oxidation of aromatic pollutants by lignin-degrading fungi and their extracellular peroxidases. Met. Ions Biol. Syst. 1992, 28, 41–60. [Google Scholar]
- Montoya, S.; Sánchez, O.J.; Levin, L. Evaluation of endoglucanase, exoglucanase, laccase, and lignin peroxidase activities on ten white-rot fungi. Biotechnol. Agric. Agroind. Sect. 2014, 12, 115–124. [Google Scholar]
- Velázquez-Cedeño, M.A.; Mata, G.; Savoie, J.M. Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: Changes in the production of some lignocellulolytic enzymes. World J. Microbiol. Biotechnol. 2002, 18, 201–207. [Google Scholar] [CrossRef]
- Aguiar, M.M.; Wadt, L.C.; Vilar, D.S.; Hernandez-Macedo, M.L.; Kumar, V.; Monteiro, R.T.; Ferreira, L. Vinasse bio-valorization for enhancement of Pleurotus biomass productivity: Chemical characterization and carbohydrate analysis. Biomass Convers. Biorefinery 2023, 13, 10031–10040. [Google Scholar] [CrossRef]
- Pineda Insuasti, J.A.; Gómez-Andrade, W.E.; Duarte-Trujillo, A.S.; Soto-Arroyave, C.P.; Pineda-Soto, C.A.; Fierro-Ramos, F.J.; Mora-Muñoz, E.S.; Álvarez-Ramos, S.E. Production of Pycnoporus spp. and their secondary metabolites: A review. ICIDCA J. Sugarcane Deriv. 2017, 51, 60–69. [Google Scholar]
- Rivas Rosero, C.A. Comparative study of the action of Pycnoporus sanguineus on three lignocellulosic residues for the production of fungal biomass in solid-state fermentation. SATHIRI 2018, 207–215. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; APHA: Washington, DC, USA, 2017. [Google Scholar]
- MacFarland, T.W.; Yates, J.M.; MacFarland, T.W.; Yates, J.M. Kruskal–Wallis H-test for oneway analysis of variance (ANOVA) by ranks. In Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer: Cham, Switzerland, 2016; pp. 177–211. [Google Scholar]
- Tukey, J.W. Comparing individual means in the analysis of variance. Biometrics 1949, 5, 99–114. [Google Scholar] [CrossRef]
- Robledo, G.L.; Urcelay, C.; Rajchenberg, M.; Domínguez, L. Polypores (Aphyllophorales, Basidiomycota) parasitic and saprophytic on Alnus acuminata in northwestern Argentina. X Bol. Soc. Argent. Bot. 2003, 38, 207–224. [Google Scholar]
- Torres Gaviria, L.F.; Ocampo Vélez, J.C.; Socarrás Cárdenas, A. Reduction of potassium levels in distillery vinasse using ion exchange resins. J. Agric. Environ. Res. 2018, 10, 107–118. [Google Scholar]
- Caballero, R.E.; Jiménez, V.; Miranda, M.; Rovira, D.; González, P.; de Pérez, J.R.C. Optimization of conditions for the production of laccase by Trametes villosa (Sw.) Kreisel and its application in the biotreatment of sugar cane vinasse. An. Biol. 2021, 43, 27–37. [Google Scholar] [CrossRef]
- Salomon, K.R.; Lora, E.E.S. Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 2009, 33, 1101–1107. [Google Scholar] [CrossRef]
- García, A.; Rojas, C. Potential uses of vinasse in agriculture according to its mode of action on soils. Tecnicaña 2006, 10, 3–13. [Google Scholar]
- Gil Rolón, M. Biodepuración de Vinazas de Caña de Azúcar por Microorganismos. Master’s Thesis, Natural Resources and Environment, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina, 2018. [Google Scholar]
- Ahmed, P.M. Biorremediación de Vinazas de Destilerías de Alcohol por Microorganismos Autóctonos Aislados de Ambientes Contaminados. Ph.D. Thesis, Consejo de Investigaciones de la Universidad Nacional de Tucumán (CIUNT), Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), CONICET, Tucumán, Argentina, 2016. [Google Scholar]
- Rodríguez, S.; Fernández, M.; Bermúdez, R.C.; Morris, H. Treatment of colored industrial effluents with Pleurotus spp. Rev. Iberoam. Micol. 2003, 20, 164–168. [Google Scholar] [PubMed]
- Ferreira, L.F.; Aguiar, M.; Pompeu, G.; Messias, T.G.; Monteiro, R.R. Selection of vinasse degrading microorganisms. World J. Microbiol. Biotechnol. 2010, 26, 1613–1621. [Google Scholar] [CrossRef]
- Alexopoulos, C.J.; Mims, C.W.; Blackwell, M. Phylum Basidiomycota order Aphyllophorales, polypores, Chantharelles, tooth fungi, coral fungi and corticioids. In Introductory Mycology, 4th ed.; Harris, D., Ed.; Wiley and Sons Inc.: New York, NY, USA, 1996; pp. 563–597. [Google Scholar]
- Eggert, C.; Temp, U.; Eriksson, K.E.L. The lignolytic system of the white-rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Appl. Environ. Microbiol. 1996, 62, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Lomascolo, A.; Uzan-Boukhris, E.; Herpoël-Gimbert, I.; Sigoillot, J.C.; Lesage-Meessen, L. Peculiarities of Pycnoporus species for applications in biotechnology. Appl. Microbiol. Biotechnol. 2011, 92, 1129–1149. [Google Scholar] [CrossRef] [PubMed]
- Pięt, M.; Zając, A.; Paduch, R.; Jaszek, M.; Frant, M.; Stefaniuk, D.; Matuszewska, A.; Grzywnowicz, K. Chemopreventive activity of bioactive fungal fractions isolated from milk-supplemented cultures of Cerrena unicolor and Pycnoporus sanguineus on colon cancer cells. 3 Biotech 2021, 11, 5. [Google Scholar] [CrossRef] [PubMed]
Parameter | Units | Value |
---|---|---|
pH | 4.18 | |
True Color | UPt-Co | 64,200 |
Conductivity | uS/cm | 9242 |
NH3 | mg/L | 520 |
NH4 | mg/L | 310 |
NO3 | mg/L | 100 |
PO4 | mg/L | 39.5 |
SO4 | mg/L | 700 |
COD | mg/L | 45,320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farfán, C.; Lozano, V.L.; Borja, C.N.; Alvarez Dalinger, F.; Muñoz, C.; Moraña, L. Utilization of the Fungus Pycnoporus sp. for Remediation of a Sugarcane Industry Effluent. Sustainability 2024, 16, 7020. https://doi.org/10.3390/su16167020
Farfán C, Lozano VL, Borja CN, Alvarez Dalinger F, Muñoz C, Moraña L. Utilization of the Fungus Pycnoporus sp. for Remediation of a Sugarcane Industry Effluent. Sustainability. 2024; 16(16):7020. https://doi.org/10.3390/su16167020
Chicago/Turabian StyleFarfán, Clara, Verónica Laura Lozano, Claudia Nidia Borja, Florencia Alvarez Dalinger, Camila Muñoz, and Liliana Moraña. 2024. "Utilization of the Fungus Pycnoporus sp. for Remediation of a Sugarcane Industry Effluent" Sustainability 16, no. 16: 7020. https://doi.org/10.3390/su16167020
APA StyleFarfán, C., Lozano, V. L., Borja, C. N., Alvarez Dalinger, F., Muñoz, C., & Moraña, L. (2024). Utilization of the Fungus Pycnoporus sp. for Remediation of a Sugarcane Industry Effluent. Sustainability, 16(16), 7020. https://doi.org/10.3390/su16167020