Exploring the Impact of Cultivated Land Utilization Green Transformation on Agricultural Economic Growth: Evidence from Jiangsu Province in China
Abstract
:1. Introduction
2. Theoretical Framework
3. Methodology
3.1. Study Area and Data Source
3.2. Design of Indicator System for CLUGT
3.3. Comprehensive Index Method
3.4. Panel Regression Model
4. Results and Analysis
4.1. Measurement Results of CLUGT
4.2. Spatio-Temporal Pattern of CLUGT
4.3. Impacts of the CLUGT on the AEG
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K. Solution for a cultivated planet. Nature 2011, 478, 10452. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Zhou, W.; Wu, T.; Wang, X.; Xu, J. Spatial-temporal characteristics of cultivated land use eco-efficiency under carbon constraints and its relationship with landscape pattern dynamics. Ecol. Indic. 2022, 141, 109140. [Google Scholar] [CrossRef]
- Chai, C.; Zhang, B.; Li, Y.; Niu, W.; Zheng, W.; Kong, X.; Yu, Q.; Zhao, M.; Xia, X. A new multi-dimensional framework considering environmental impacts to assess green development level of cultivated land during 1990 to 2018 in China. Environ. Impact Assess. Rev. 2023, 98, 106927. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Wang, W.; He, Y. Analyzing the green efficiency of arable land use in China. Technol. Forecast. Soc. Change 2018, 133, 15–28. [Google Scholar] [CrossRef]
- He, N.; Zhou, Y.; Wang, L.; Li, Q.; Zuo, Q.; Liu, J.; Li, M. Spatiotemporal evaluation and analysis of cultivated land ecological security based on the DPSIR model in Enshi autonomous prefecture, China. Ecol. Indic. 2022, 145, 109619. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Y.; Li, Y.; Mo, L.Z. Empirical Investigation of Cultivated Land Green Use Efficiency and Influencing Factors in China, 2000–2020. Land 2023, 12, 1589. [Google Scholar] [CrossRef]
- Hou, X.; Liu, J.; Zhang, D.; Zhao, M.; Xia, C. Impact of urbanization on the eco-efficiency of cultivated land utilization: A case study on the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 238, 117916. [Google Scholar] [CrossRef]
- Lambin, E.A.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Fu, J.; Ding, R.; Zhu, Y.Q.; Du, L.Y.; Shen, S.W.; Peng, L.N.; Zou, J.; Hong, Y.X.; Liang, J.; Wang, K.X.; et al. Analysis of the spatial-temporal evolution of Green and low carbon utilization efficiency of agricultural land in China and its influencing factors under the goal of carbon neutralization. Environ. Res. 2023, 237, 116881. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, L.; Wang, Y. Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years. Land Use Policy 2020, 97, 104794. [Google Scholar] [CrossRef]
- Yang, B.; Chen, X.; Wang, Z.; Li, W.; Zhang, C.; Yao, X. Analyzing land use structure efficiency with carbon emissions: A case study in the Middle Reaches of the Yangtze River, China. J. Clean. Prod. 2020, 274, 123076. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Change 2020, 151, 119874. [Google Scholar] [CrossRef]
- Li, H.; Song, W. Spatial transformation of changes in global cultivated land. Sci. Total Environ. 2023, 859, 160194. [Google Scholar] [CrossRef]
- Wang, J.; Su, D.; Wu, Q.; Li, G.; Cao, Y. Study on eco-efficiency of cultivated land utilization based on the improvement of ecosystem services and emergy analysis. Sci. Total Environ. 2023, 882, 163489. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, K.; Yang, Q.; Hao, S.; Feng, Z.; Ma, J. Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015. Land Use Policy 2023, 125, 106505. [Google Scholar] [CrossRef]
- Zang, Y.; Hu, S.; Liu, Y. Rural transformation and its links to farmland use transition: Theoretical insights and empirical evidence from Jiangsu, China. Habitat Int. 2024, 149, 103094. [Google Scholar] [CrossRef]
- Gu, Z.; Jin, X.; Liang, X.; Liu, J.; Han, B.; Zhou, Y. Diversification of food production in rapidly urbanizing areas of China, evidence from southern Jiangsu. Sustain. Cities Soc. 2024, 101, 105121. [Google Scholar] [CrossRef]
- Cudjoe, D.; Nketiah, E.; Obuobi, B.; Adjei, M.; Zhu, B.; Adu-Gyamfi, G. Predicting waste sorting intention of residents of Jiangsu Province, China. J. Clean. Prod. 2022, 366, 132838. [Google Scholar] [CrossRef]
- Song, X.; Wang, X.; Hu, S.; Xiao, R.; Scheffran, J. Functional transition of cultivated ecosystems: Underlying mechanisms and policy implications in China. Land Use Policy 2022, 119, 106195. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Hu, Y.; Peng, Y.; Liu, L.; Su, S.; Wang, W.; Wu, J. Multifunctional trade-off/synergy relationship of cultivated land in Guangdong: A long time series analysis from 2010 to 2030. Ecol. Indic. 2023, 154, 110700. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Y.; Wang, Q.; Shao, J.A. Evolutionary characteristics of sloping cultivated land under functional diversification in mountain areas: A case of Fengjie County, China. Glob. Ecol. Conserv. 2024, 50, e02854. [Google Scholar] [CrossRef]
- Alabdali, M.A.; Yaqub, M.Z.; Agarwal, R.; Alofaysan, H.; Mohapatra, A.K. Unveiling green digital transformational leadership: Nexus between green digital culture, green digital mindset, and green digital transformation. J. Clean. Prod. 2024, 450, 141670. [Google Scholar] [CrossRef]
- Chen, D.; Hu, H.; Wang, N.; Chang, C.-P. The impact of green finance on transformation to green energy: Evidence from industrial enterprises in China. Technol. Forecast. Soc. Change 2024, 204, 123411. [Google Scholar] [CrossRef]
- Bianchi, M.; Valle, I.D.; Tapia, C. Measuring eco-efficiency in European regions: Evidence from a territorial perspective. J. Clean. Prod. 2020, 276, 123246. [Google Scholar] [CrossRef]
- Xiao, J.; Qiao, J.; Han, D.; Ma, Y.; Zhu, Q.; Wang, W. Spatial distribution and transformation mechanism of specialized villages in typical agricultural areas: Case study of Henan province, China. Habitat Int. 2024, 146, 103034. [Google Scholar] [CrossRef]
- Yin, Y.; Hou, X.; Liu, J.; Zhou, X.; Zhang, D. Detection and attribution of changes in cultivated land use ecological efficiency: A case study on Yangtze River Economic Belt, China. Ecol. Indic. 2022, 137, 108753. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, L.; Wang, X.; Chang, X.; Zhu, Z. The impact of non-grain conversion of cultivated land on the relationship between agricultural carbon supply and demand. Appl. Geogr. 2024, 162, 103166. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y. Identification of spatial coupling between cultivated land functional transformation and settlements in Three Gorges Reservoir Area, China. Habitat Int. 2020, 104, 102236. [Google Scholar] [CrossRef]
- Ye, S.; Ren, S.; Song, C.; Du, Z.; Wang, K.; Du, B.; Cheng, F.; Zhu, D. Spatial pattern of cultivated land fragmentation in mainland China: Characteristics, dominant factors, and countermeasures. Land Use Policy 2024, 139, 107070. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Sun, R.; Han, B.; Liu, J.; Zhou, Y. A typical phenomenon of cultivated land use in China’s economically developed areas: Anti-intensification in Jiangsu Province. Land Use Policy 2021, 102, 105223. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Lin, J.; Liang, X.; Zhang, X.; Zhou, Y. Identification and characteristic analysis of semi-natural habitats in China’s economically developed areas: New insights to inform cultivated land system ecological conservation. J. Environ. Manag. 2024, 351, 119804. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Yin, Y.; Zhou, X.; Zhao, M.; Yao, L.; Zhang, D.; Wang, X.; Xia, C. Does economic agglomeration affect the sustainable intensification of cultivated land use? Evidence from China. Ecol. Indic. 2023, 154, 110808. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, P.; Liu, Y.; Lu, S.; Wu, G. An analysis of the spatiotemporal evolution and driving force of cultivated land green utilization in karst region of southwest China. J. Clean. Prod. 2024, 434, 140002. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; He, Y.; Li, Z. Suitability evaluation method for preventive maintenance of asphalt pavement based on interval-entropy weight-TOPSIS. Constr. Build. Mater. 2023, 409, 134098. [Google Scholar] [CrossRef]
- Uddin, M.K.; Pan, X.; Saima, U.; Zhang, C. Influence of financial development on energy intensity subject to technological innovation: Evidence from panel threshold regression. Energy 2022, 239, 122337. [Google Scholar] [CrossRef]
- Zhe, D.; Su, N.; Zhu, X.; Mahmoud, H.A.; Akhtar, T. Non-linear relationship between FinTech, natural resources, green innovation and environmental sustainability: Evidence from panel smooth transition regression model. Resour. Policy 2024, 91, 104902. [Google Scholar] [CrossRef]
Target Level | Factor Level | Indicator Level | Interpretation of Indicators | Attribute |
---|---|---|---|---|
Spatial Transformation | Numeral Form | Per Capita Cultivated Land Area | Cultivated Land Area/Total Regional Population | + |
Land Reclamation Rate | Cultivated Land Area/Total Land Area | + | ||
Spatial Pattern | Landscape Fragmentation of Cultivated Land | Number of Cultivated Land Patches/Total Cultivated Land Area | − | |
Functional Transformation | Production Function | Grain Yield Per Unit Area | Total Grain Yield/Area Sown to Food Crops | + |
Replanting Index | Total Sown Area of Crops/Total Cultivated Land Area | + | ||
Livelihood Function | Per Capita Guaranteed Quantity of Food | Grain Yield/Total Regional Population | + | |
Proportion of Agricultural Employees | Numbers of Agricultural Employees/Total Labor Force | + | ||
Per Capita Total Mechanical Power | Total Mechanical Power/Total Regional Population | + | ||
Ecological Function | Proportion of Cultivated Land to Ecological Land | Total Cultivated Land Area/(Total Land Area–Construction Land Area) | + | |
Mode Transformation | Intensive Utilization | Ratio of the Area of Facility Agriculture | Facility Agriculture Area/Cultivated Land Area | + |
Green Production | Area-averaged Fertilizer Non-point Source Pollution | Total Amount of Fertilizer Application/Cultivated Land Area | − | |
Technical Advancement | Ratio of Effective Irrigated Area | Effective Irrigated Area/Total Cultivated Land Area | + | |
Agricultural Machinery Inputs | Total Power of Agricultural Machinery/Cultivated Land Area | + |
Indicator | Unit | Maximum Value | Minimum Value | Average | Standard Deviation | Coefficient of Variation | Weights |
---|---|---|---|---|---|---|---|
Cultivated Land Area Per Capita | hm2/person | 0.10422 | 0.01728 | 0.06034 | 0.2087 | 0.0245 | 0.0728 |
Land Reclamation Ratio | — | 0.6007 | 0.1522 | 0.4334 | 0.0994 | 0.0125 | 0.0413 |
Landscape Fragmentation of Cultivated Land | pcs/m2 | 5.5000 | 0.0600 | 0.9189 | 1.0587 | 0.0079 | 0.0212 |
Grain Yield Per Unit Area | ton/hm2 | 19.419 | 0.707 | 6.548 | 0.1577 | 0.0058 | 0.0220 |
Replanting Index | — | 2.3987 | 0.1408 | 1.5815 | 0.2500 | 0.0039 | 0.0096 |
Per Capita Total Mechanical Power | kw/person | 0.8892 | 0.0999 | 0.4587 | 0.2198 | 0.0431 | 0.1218 |
Proportion of Cultivated Land to Ecological Land | — | 0.5979 | 0.0242 | 0.2207 | 0.1298 | 0.0178 | 0.0520 |
Ratio of the Area of Facility Agriculture | — | 1.2078 | 0.1735 | 0.5479 | 0.2501 | 0.0112 | 0.2848 |
Per Capita Guaranteed Quantity of Food | ton/person | 1.0214 | 0.1669 | 0.4692 | 0.1307 | 0.0426 | 0.1212 |
Proportion of Agricultural Employees | — | 0.0978 | 0.0021 | 0.0124 | 0.0139 | 0.0416 | 0.1279 |
Area-averaged Fertilizer Non-point Source Pollution | ton/hm2 | 11.321 | 0.154 | 0.725 | 0.0887 | 0.0021 | 0.0033 |
Ratio of Effective Irrigated Area | — | 0.9207 | 0.5490 | 0.8763 | 0.0880 | 0.0089 | 0.0238 |
Agricultural Machinery Inputs | kw/hm2 | 19.323 | 4.709 | 9.152 | 0.2633 | 0.0428 | 0.0983 |
2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | |
---|---|---|---|---|---|---|---|
Nanjing | 0.4080 | 0.4113 | 0.3921 | 0.3929 | 0.2990 | 0.3114 | 0.3013 |
Suzhou | 0.3549 | 0.3523 | 0.3129 | 0.3054 | 0.2690 | 0.2682 | 0.2474 |
Wuxi | 0.3606 | 0.3660 | 0.3248 | 0.3233 | 0.2748 | 0.2745 | 0.2662 |
Changzhou | 0.4530 | 0.4569 | 0.4297 | 0.4248 | 0.3476 | 0.4494 | 0.3442 |
Zhenjiang | 0.4261 | 0.4392 | 0.4090 | 0.4158 | 0.3581 | 0.3664 | 0.3541 |
Yangzhou | 0.3663 | 0.3572 | 0.3433 | 0.3506 | 0.3395 | 0.3466 | 0.3342 |
Taizhou | 0.3925 | 0.3965 | 0.3755 | 0.3818 | 0.3675 | 0.3794 | 0.3581 |
Nantong | 0.3561 | 0.3716 | 0.3494 | 0.3514 | 0.3387 | 0.3424 | 0.3255 |
Xuzhou | 0.3983 | 0.4242 | 0.3827 | 0.4318 | 0.3811 | 0.3958 | 0.3686 |
Lianyungang | 0.4150 | 0.4322 | 0.4032 | 0.4176 | 0.4107 | 0.4251 | 0.4146 |
Suqian | 0.4342 | 0.4468 | 0.4022 | 0.4324 | 0.4188 | 0.4405 | 0.4290 |
Huaian | 0.4266 | 0.4505 | 0.3996 | 0.4213 | 0.4096 | 0.4234 | 0.4069 |
Yancheng | 0.4101 | 0.4274 | 0.3961 | 0.4058 | 0.3978 | 0.4137 | 0.3903 |
2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | |
Nanjing | 0.3107 | 0.3102 | 0.3209 | 0.3245 | 0.3321 | 0.3322 | 0.3357 |
Suzhou | 0.2468 | 0.2438 | 0.2527 | 0.2520 | 0.2539 | 0.2519 | 0.2489 |
Wuxi | 0.2509 | 0.2490 | 0.2529 | 0.2460 | 0.2466 | 0.2452 | 0.2417 |
Changzhou | 0.3419 | 0.3594 | 0.3585 | 0.3642 | 0.3716 | 0.3718 | 0.3663 |
Zhenjiang | 0.3762 | 0.4249 | 0.3753 | 0.3765 | 0.3830 | 0.4037 | 0.4001 |
Yangzhou | 0.3606 | 0.4844 | 0.3975 | 0.3855 | 0.4003 | 0.4077 | 0.4108 |
Taizhou | 0.3809 | 0.4995 | 0.3963 | 0.3917 | 0.4079 | 0.4109 | 0.4136 |
Nantong | 0.3432 | 0.4267 | 0.3408 | 0.3529 | 0.3706 | 0.3747 | 0.3690 |
Xuzhou | 0.4106 | 0.4600 | 0.4046 | 0.4301 | 0.4485 | 0.4438 | 0.4479 |
Lianyungang | 0.4428 | 0.5341 | 0.4679 | 0.4989 | 0.5305 | 0.5421 | 0.5639 |
Suqian | 0.5109 | 0.5407 | 0.5239 | 0.5421 | 0.5198 | 0.5197 | 0.5319 |
Huaian | 0.4506 | 0.5926 | 0.4596 | 0.4874 | 0.5037 | 0.5281 | 0.5461 |
Yancheng | 0.4400 | 0.5541 | 0.4253 | 0.4525 | 0.4654 | 0.4727 | 0.4857 |
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |
Nanjing | 0.3396 | 0.3567 | 0.3340 | 0.3342 | 0.3171 | 0.3297 | 0.3776 |
Suzhou | 0.2531 | 0.2588 | 0.2508 | 0.2429 | 0.2370 | 0.2533 | 0.2520 |
Wuxi | 0.2283 | 0.2509 | 0.2327 | 0.2341 | 0.2179 | 0.2264 | 0.2145 |
Changzhou | 0.3544 | 0.3676 | 0.3293 | 0.3395 | 0.3190 | 0.3368 | 0.4087 |
Zhenjiang | 0.3893 | 0.4072 | 0.3907 | 0.3916 | 0.3849 | 0.3969 | 0.4063 |
Yangzhou | 0.4172 | 0.4363 | 0.4126 | 0.4142 | 0.4137 | 0.4226 | 0.4223 |
Taizhou | 0.4175 | 0.4404 | 0.4161 | 0.4132 | 0.4089 | 0.4150 | 0.4195 |
Nantong | 0.3756 | 0.3904 | 0.3744 | 0.3757 | 0.3727 | 0.3809 | 0.3868 |
Xuzhou | 0.4541 | 0.4824 | 0.4634 | 0.4601 | 0.4597 | 0.4661 | 0.4691 |
Lianyungang | 0.5716 | 0.5975 | 0.5782 | 0.5862 | 0.5882 | 0.5973 | 0.5507 |
Suqian | 0.5407 | 0.5623 | 0.5448 | 0.5532 | 0.5615 | 0.5663 | 0.5601 |
Huaian | 0.5664 | 0.5851 | 0.5711 | 0.5767 | 0.5851 | 0.5853 | 0.5877 |
Yancheng | 0.4934 | 0.5145 | 0.4926 | 0.4988 | 0.5098 | 0.5120 | 0.5167 |
Type of Test | Statistic | p Value | Selection | |
---|---|---|---|---|
Jiangsu Province | F-test | 18.55 | 0.000 *** | FE model |
Breusch–Pagan test | 421.738 | 0.000 *** | RE model | |
Hausman test | 5.445 | 0.020 ** | FE model |
Type of Test | Statistic | p Value | Selection | |
---|---|---|---|---|
Southern Jiangsu | F-test | 6.784 | 0.000 *** | FE model |
Breusch–Pagan test | 12.337 | 0.015 ** | RE model | |
Hausman test | 10.055 | 0.018 ** | FE model | |
Central Jiangsu | F-test | 11.588 | 0.000 *** | FE model |
Breusch–Pagan test | 13.112 | 0.011 ** | RE model | |
Hausman test | 4.661 | 0.198 | RE model | |
Northern Jiangsu | F-test | 36.865 | 0.000 *** | FE model |
Breusch–Pagan test | 214.723 | 0.000 *** | RE model | |
Hausman test | −27.274 | 1.000 | RE model | |
Jiangsu Province | F-test | 25.463 | 0.000 *** | FE model |
Breusch–Pagan test | 611.212 | 0.000 *** | RE model | |
Hausman test | −5.252 | 1.000 | RE model |
FE Model | ||||||
---|---|---|---|---|---|---|
Variant | Coefficient | Standard Deviation | t-Value | p-Value | R2-Value | F-Value |
Constant | −0.109 | 0.027 | −4.060 | 0.000 *** | within = 0.412 between = 0.268 overall = 0.251 | F = 114.894 P = 0.000 *** |
CLUGT Index | 0.575 | 0.054 | 10.719 | 0.000 *** |
Region | Variant | Coefficient | Standard Deviation | t-Value | p-Value | R2-Value | F-Value |
---|---|---|---|---|---|---|---|
Southern Jiangsu (FE Model) | Constant | 0.384 | 0.064 | 5.983 | 0.000 *** | within = 0.524 between = 0.04 overall = 0.146 | F = 11.577 P = 0.000 *** |
Spatial Transformation Index | −0.229 | 0.110 | −2.088 | 0.039 ** | |||
Functional Transformation Index | −0.300 | 0.144 | −2.093 | 0.039 ** | |||
Mode Transformation Index | 0.251 | 0.122 | 2.06 | 0.042 ** | |||
Central Jiangsu (RE Model) | Constant | 0.259 | 0.086 | 2.996 | 0.004 *** | within = 0.554 between = 0.221 overall = 0.513 | F = 20.691 P = 0.000 *** |
Spatial Transformation Index | −0.368 | 0.131 | −2.808 | 0.007 *** | |||
Functional Transformation Index | 0.038 | 0.120 | 0.311 | 0.757 | |||
Mode Transformation Index | 0.391 | 0.129 | 3.044 | 0.003 *** | |||
Northern Jiangsu (RE Model) | Constant | 0.022 | 0.052 | 0.431 | 0.668 | within = 0.5 between = 0.643 overall = 0.552 | F = 6.264 P = 0.001 *** |
Spatial Transformation Index | 0.160 | 0.092 | 1.745 | 0.084 * | |||
Functional Transformation Index | 0.022 | 0.153 | 0.142 | 0.887 | |||
Mode Transformation Index | 0.365 | 0.144 | 2.537 | 0.013 ** | |||
Jiangsu Province (RE Model) | Constant | −0.065 | 0.029 | −2.211 | 0.028 ** | within = 0.466 between = 0.223 overall = 0.621 | F = 73.162 P = 0.000 *** |
Spatial Transformation Index | −0.169 | 0.036 | −4.652 | 0.000 *** | |||
Functional Transformation Index | 0.390 | 0.101 | 3.863 | 0.000 *** | |||
Mode Transformation Index | 0.308 | 0.058 | 5.309 | 0.000 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Wang, Q.; Tian, M.; Ji, A. Exploring the Impact of Cultivated Land Utilization Green Transformation on Agricultural Economic Growth: Evidence from Jiangsu Province in China. Sustainability 2024, 16, 7032. https://doi.org/10.3390/su16167032
Yu X, Wang Q, Tian M, Ji A. Exploring the Impact of Cultivated Land Utilization Green Transformation on Agricultural Economic Growth: Evidence from Jiangsu Province in China. Sustainability. 2024; 16(16):7032. https://doi.org/10.3390/su16167032
Chicago/Turabian StyleYu, Xiaodong, Qi Wang, Minji Tian, and An Ji. 2024. "Exploring the Impact of Cultivated Land Utilization Green Transformation on Agricultural Economic Growth: Evidence from Jiangsu Province in China" Sustainability 16, no. 16: 7032. https://doi.org/10.3390/su16167032
APA StyleYu, X., Wang, Q., Tian, M., & Ji, A. (2024). Exploring the Impact of Cultivated Land Utilization Green Transformation on Agricultural Economic Growth: Evidence from Jiangsu Province in China. Sustainability, 16(16), 7032. https://doi.org/10.3390/su16167032