A Prediction Method for City Traffic Noise Based on Traffic Simulation under a Mixed Distribution Probability
Abstract
:1. Introduction
2. Methodology
2.1. Overview of Method
2.2. Headway Simulation Based on Mixture Distribution
2.3. Single-Vehicle Noise Prediction Model
3. Model Validation
4. Case Study
4.1. Information of Case
4.2. Analysis of Results
5. Discussion
5.1. The Temporal Variation Pattern of Noise in Stable Traffic Flow
5.2. The Temporal Variation Pattern of Noise in Unstable Traffic Flow
5.3. The Pattern of Noise Variation with Distance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Ecology and Environment of the People’s Republic of China. China Environmental Noise Prevention and Control Annual Report 2020; Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020. [Google Scholar]
- Tong, H.; Kang, J. Relationships between Noise Complaints and Socio-Economic Factors in England. Sustain. Cities Soc. 2021, 65, 102573. [Google Scholar] [CrossRef]
- World Health Organization. Environment Noise Guidelines for the European Region. Available online: https://www.who.int/europe/publications/i/item/9789289053563 (accessed on 14 February 2023).
- Guski, R.; Schreckenberg, D.; Schuemer, R. WHO environmental noise guidelines for the european region: A systematic review on environmental noise and annoyance. Int. J. Environ. Res. Public Health 2017, 14, 1539. [Google Scholar] [CrossRef] [PubMed]
- Kempen, E.; Casas, M.; Pershagen, G.; Foraster, M. WHO environmental noise guidelines for the european region: A systematic review on environmental noise and cardiovascular and metabolic effects: A summary. Int. J. Environ. Res. Public Health 2018, 15, 397. [Google Scholar] [CrossRef] [PubMed]
- Thacher, J.D.; Poulsen, A.H.; Raaschou-Nielsen, O.; Hvidtfeldt, U.A.; Brandt, J.; Christensen, J.H.; Khan, J.; Levin, G.; Münzel, T.; Sørensen, M. Exposure to Transportation Noise and Risk for Cardiovascular Disease in a Nationwide Cohort Study from Denmark. Environ. Res. 2022, 211, 113106. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yan, X.; Chen, J.; Cai, M. Urban Noise Exposure Assessment Based on Principal Component Analysis of Points of Interest. Environ. Pollut. 2024, 342, 123134. [Google Scholar] [CrossRef] [PubMed]
- Vukić, L.; Mihanović, V.; Fredianelli, L.; Plazibat, V. Seafarers’ Perception and Attitudes towards Noise Emission on Board Ships. Int. J. Environ. Res. Public Health 2021, 18, 6671. [Google Scholar] [CrossRef]
- Muzet, A. Environmental Noise, Sleep and Health. Sleep Med. Rev. 2007, 11, 135–142. [Google Scholar] [CrossRef]
- Fredianelli, L.; Carpita, S.; Licitra, G. A Procedure for Deriving Wind Turbine Noise Limits by Taking into Account Annoyance. Sci. Total Environ. 2019, 648, 728–736. [Google Scholar] [CrossRef]
- Erickson, L.C.; Newman, R.S. Influences of Background Noise on Infants and Children. Curr. Dir. Psychol. Sci. 2017, 26, 451–457. [Google Scholar] [CrossRef]
- Leon Bluhm, G.; Berglind, N.; Nordling, E.; Rosenlund, M. Road Traffic Noise and Hypertension. Occup. Environ.-Ment. Med. 2006, 64, 122–126. [Google Scholar] [CrossRef]
- Dratva, J.; Phuleria, H.C.; Foraster, M.; Gaspoz, J.-M.; Keidel, D.; Künzli, N.; Liu, L.-J.S.; Pons, M.; Zemp, E.; Gerbase, M.W.; et al. Transportation Noise and Blood Pressure in a Population-Based Sample of Adults. Environ. Health Perspect. 2012, 120, 50–55. [Google Scholar] [CrossRef]
- Petri, D.; Licitra, G.; Vigotti, M.A.; Fredianelli, L. Effects of Exposure to Road, Railway, Airport and Recreational Noise on Blood Pressure and Hypertension. Int. J. Environ. Res. Public Health 2021, 18, 9145. [Google Scholar] [CrossRef]
- Marquis-Favre, C.; Braga, R.; Gourdon, E.; Combe, C.; Gille, L.-A.; Ribeiro, C.; Mietlicki, F. Estimation of Psychoacoustic and Noise Indices from the Sound Pressure Level of Transportation Noise Sources: Investigation of Their Potential Benefit to the Prediction of Long-Term Noise Annoyance. Appl. Acoust. 2023, 211, 109560. [Google Scholar] [CrossRef]
- Lavandier, C.; Regragui, M.; Dedieu, R.; Royer, C.; Can, A. Influence of Road Traffic Noise Peaks on Reading Task Performance and Disturbance in a Laboratory Context. Acta Acust. 2022, 6, 3. [Google Scholar] [CrossRef]
- Huth, C.; Forstreuter, M.; Arlt, R.; Liepert, M. Annoyance at the Point of Emission versus Immission for Impulsive Noises at Train Passings. J. Acoust. Soc. Am. 2020, 148, 2567. [Google Scholar] [CrossRef]
- Licitra, G.; Bolognese, M.; Chiari, C.; Carpita, S.; Fredianelli, L. Noise Source Predominance Map: A New Representation for Strategic Noise Maps. Noise Mapp. 2022, 9, 269–279. [Google Scholar] [CrossRef]
- Bolognese, M.; Fredianelli, L.; Stasi, G.; Ascari, E.; Crifaci, G.; Licitra, G. Citizens’ Exposure to Predominant Noise Sources in Agglomerations. Noise Mapp. 2024, 11, 20240007. [Google Scholar] [CrossRef]
- Ramos-Romero, C.; Asensio, C.; Moreno, R.; de Arcas, G. Urban Road Surface Discrimination by Tire-Road Noise Analysis and Data Clustering. Sensors 2022, 22, 9686. [Google Scholar] [CrossRef]
- Del Pizzo, A.; Teti, L.; Moro, A.; Bianco, F.; Fredianelli, L.; Licitra, G. Influence of Texture on Tyre Road Noise Spectra in Rubberized Pavements. Appl. Acoust. 2020, 159, 107080. [Google Scholar] [CrossRef]
- de León, G.; Del Pizzo, A.; Teti, L.; Moro, A.; Bianco, F.; Fredianelli, L.; Licitra, G. Evaluation of Tyre/Road Noise and Texture Interaction on Rubberised and Conventional Pavements Using CPX and Profiling Measurements. Road Mater. Pavement Des. 2020, 21, S91–S102. [Google Scholar] [CrossRef]
- Karbalaei, S.; Karimi, E.; Naji, H.; Ghasempoori, S.; Hosseini, S.; Abdollahi, M. Investigation of the traffic noise attenuation provided by roadside green belts. Fluct. Noise Lett. 2015, 14, 1550036. [Google Scholar] [CrossRef]
- Ow, L.; Ghosh, S. Urban cities and road traffic noise: Reduction through vegetation. Appl. Acoust. 2017, 120, 15–20. [Google Scholar] [CrossRef]
- Ilgurel, N.; Akdag, N.; Akdag, A. Evaluation of noise exposure before and after noise barriers, a simulation study in Istanbul. Environ. Eng. Manag. J. 2016, 24, 293–302. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Wu, Z.; Hou, Q. Urban Network Noise Control Based on Road Grade Optimization Considering Comprehensive Traffic Environment Benefit. J. Environ. Manag. 2024, 364, 121451. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Shu, L.; Yang, Q.; Zhang, Y.; Huo, Z.; Zhou, Z. Internet of Things for Noise Mapping in Smart Cities: State of the Art and Future Directions. IEEE Netw. 2020, 34, 112–118. [Google Scholar] [CrossRef]
- Wang, H.; Sun, B.; Chen, L. An Optimization Model for Planning Road Networks That Considers Traffic Noise Impact. Appl. Acoust. 2022, 192, 108693. [Google Scholar] [CrossRef]
- Yan, X.; Wu, Z.; Wang, H. Network Noise Control under Speed Limit Strategies Using an Improved Bilevel Programming Model. Transp. Res. Part D Transp. Environ. 2023, 121, 103805. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Chen, J.; Chen, L. Evaluation of Road Traffic Noise Exposure Considering Differential Crowd Characteristics. Transp. Res. Part D Transp. Environ. 2022, 105, 103250. [Google Scholar] [CrossRef]
- Sun, B.; Wang, H.; Hu, L.; Zhang, Q.; Shi, H.; Mao, H. Exploring Vehicle-Centric Strategies for Sustainable Urban Mobility: A Theoretical Framework for Saving Energy and Reducing Noise in Transportation. J. Environ. Manag. 2024, 358, 120798. [Google Scholar] [CrossRef]
- Licitra, G.; Artuso, F.; Bernardini, M.; Moro, A.; Fidecaro, F.; Fredianelli, L. Acoustic Beamforming Algorithms and Their Applications in Environmental Noise. Curr. Pollut. Rep. 2023, 9, 486–509. [Google Scholar] [CrossRef]
- Licitra, G.; Di Marco, B.; Ricardo, M.; Francesco, B.; De Luca, F. CNOSSOS-EU Coefficients for Electric Vehicle Noise Emission. Appl. Acoust. 2023, 211, 109511. [Google Scholar] [CrossRef]
- Bolognese, M.; Carpita, S.; Fredianelli, L.; Licitra, G. Definition of Key Performance Indicators for Noise Monitoring Networks. Environments 2023, 10, 61. [Google Scholar] [CrossRef]
- Shah, S.K.; Tariq, Z.; Lee, J.; Lee, Y. Real-Time Machine Learning for Air Quality and Environmental Noise Detection. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020. [Google Scholar]
- Moreno, R.; Bianco, F.; Carpita, S.; Monticelli, A.; Fredianelli, L.; Licitra, G. Adjusted Controlled Pass-by (CPB) Method for Urban Road Traffic Noise Assessment. Sustainability 2023, 15, 5340. [Google Scholar] [CrossRef]
- Li, F.; Liao, S.S.; Cai, M. A New Probability Statistical Model for Traffic Noise Prediction on Free Flow Roads and Control Flow Roads. Transp. Res. Part D Transp. Environ. 2016, 49, 313–322. [Google Scholar] [CrossRef]
- Stylianos, K.; Marco, P. Common Noise Assessment Methods for Europe (CNOSSOS-EU): Implementation Challenges in the Context of EU Noise Policy Developments and Future Perspectives. In Proceedings of the 23rd Congress on Sound and Vibration, Athens, Greece, 10–14 July 2016. [Google Scholar]
- Givargis, S.; Mahmoodi, M. Converting the UK Calculation of Road Traffic Noise (CORTN) to a Model Capable of Calculating LAeq,1h for the Tehran’s Roads. Appl. Acoust. 2008, 69, 1108–1113. [Google Scholar] [CrossRef]
- Sakamoto, S. Road Traffic Noise Prediction Model “ASJ RTN-Model 2018’’: Report of the Research Committee on Road Traffic Noise. Acoust. Sci. Technol. 2020, 41, 529–589. [Google Scholar] [CrossRef]
- Du, C.; Qiu, X.; Li, F.; Cai, M. A Simulation of Traffic Noise Emissions at a Roundabout Based on a Cellular Automaton Model. Acta Acust. 2021, 5, 42. [Google Scholar] [CrossRef]
- Li, F.; Lin, Y.; Cai, M.; Du, C. Dynamic Simulation and Characteristics Analysis of Traffic Noise at Roundabout and Signalized Intersections. Appl. Acoust. 2017, 121, 14–24. [Google Scholar] [CrossRef]
- Estévez-Mauriz, L.; Forssén, J. Dynamic Traffic Noise Assessment Tool: A Comparative Study between a Roundabout and a Signalised Intersection. Appl. Acoust. 2018, 130, 71–86. [Google Scholar] [CrossRef]
- Yan, X.; Wu, Z.; Wu, Z.; Wang, H. Study on the Network Acoustics Environment Effects of Traffic Management Measures by a Bilevel Programming Model. Sustain. Cities Soc. 2024, 101, 105203. [Google Scholar] [CrossRef]
- Li, F.; Lai, R.; Rong, Y.; Yu, F.; Du, C.; Lan, Z.; Ye, B.; Li, Z. Dynamic Traffic Noise Simulation at Signal-Controlled Intersections Based on Cellular Automata Model. Appl. Acoust. 2024, 224, 110128. [Google Scholar] [CrossRef]
- Hou, G.; Chen, S.; Bao, Y. Development of Travel Time Functions for Disrupted Urban Arterials with Microscopic Traffic Simulation. Phys. A 2022, 593, 126961. [Google Scholar] [CrossRef]
- Li, F.; Xue, W.; Rong, Y.; Du, C.; Tang, J.; Zhao, Y. A Probability Distribution Prediction Method for Expressway Traffic Noise. Transp. Res. Part D Transp. Environ. 2022, 103, 103175. [Google Scholar] [CrossRef]
- Baclet, S.; Khoshkhah, K.; Pourmoradnasseri, M.; Rumpler, R.; Hadachi, A. Near-Real-Time Dynamic Noise Mapping and Exposure Assessment Using Calibrated Microscopic Traffic Simulations. Transp. Res. Part D Transp. Environ. 2023, 124, 103922. [Google Scholar] [CrossRef]
- Eisele, W.L.; Toycen, C.M. Identifying and Quantifying Operational and Safety Performance Measures for Access Management: Micro-Simulation Results; Texas Transportation Institute, The Texas A&M University System: College Station, TX, USA, 2005. [Google Scholar]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Ambros, J.; Turek, R.; Paukrt, J. Road Safety Evaluation Using Traffic Conflicts: Pilot Comparison of Micro-Simulation and Observation. In Proceedings of the Second International Conference on Traffic and Transport Engineering (ICTTE), Belgrade, Serbia, 27–28 November 2014. [Google Scholar]
- Yang, H. Simulation-based evaluation of traffic safety performance using surrogate safety measures. Ph.D. Thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA, 2012. [Google Scholar]
- Caliendo, C.; Guida, M. Microsimulation Approach for Predicting Crashes at Unsignalized Intersections Using Traffic Conflicts. J. Transp. Eng. 2012, 138, 1453–1467. [Google Scholar] [CrossRef]
- Dalla Chiara, B.; Deflorio, F.; Diwan, S. Assessing the Effects of Inter-Vehicle Communication Systems on Road Safety. IET Intell. Transp. Syst. 2009, 3, 225. [Google Scholar] [CrossRef]
- Yang, S.; Du, M.; Chen, Q. Impact of Connected and Autonomous Vehicles on Traffic Efficiency and Safety of an On-Ramp. Simul. Model. Pract. Theory 2021, 113, 102374. [Google Scholar] [CrossRef]
- Brügmann, J.; Schreckenberg, M.; Luther, W. A Verifiable Simulation Model for Real-World Microscopic Traffic Simulations. Simul. Model. Pract. Theory 2014, 48, 58–92. [Google Scholar] [CrossRef]
- Nygren, J.; Boij, S.; Rumpler, R.; O’Reilly, C.J. Vehicle-Specific Noise Exposure Cost: Noise Impact Allocation Methodology for Microscopic Traffic Simulations. Transp. Res. Part D Transp. Environ. 2023, 118, 103712. [Google Scholar] [CrossRef]
- Can, A.; Aumond, P. Estimation of Road Traffic Noise Emissions: The Influence of Speed and Acceleration. Transp. Res. Part D Transp. Environ. 2018, 58, 155–171. [Google Scholar] [CrossRef]
- Saha, P.; Roy, R.; Sarkar, A.K.; Pal, M. Preferred Time Headway of Drivers on Two-Lane Highways with Heterogeneous Traffic. Transp. Lett. 2017, 11, 200–207. [Google Scholar] [CrossRef]
- HJ2.4-2021; Technical Guidelines for Noise Impact Assessment. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2021.
- GB 3096–2008; Environmental Quality Standard for Noise. China’s State Environmental Protection Administration: Beijing, China, 2008.
Refs. | Simulation Packages or Method | Major Variables Used | Weaknesses |
---|---|---|---|
Eisele and Toycen [49], Essa and Sayed [50] | VISSIM (v4.3) | Flow, Vehicle composition, Speed, Desired speed, Turning and main lanes movement, Acceleration and Deceleration, Lane configurations, Driveway configuration, Signal timing, Braking rate, Gap-acceptance and rejection, Headway, Standing distance, Red light running, Level of service, Signal phase, etc. | data coding and input process is challenging and time-consuming |
Ambros et al. [51], Yang [52] | PARAMICS (v6.4.1) | Flow, Speed, Vehicle composition, Directional Flow, Acceleration and deceleration, Position, Pedestrian Reaction time, Walking speed, Pedestrian capacity, Vehicle trajectory, Geometry, Signal Plans, Queue length, etc. | Numerous parameters and time-consuming |
Caliendo and Guida [53], Chiara et al. [54] | AIMSUN Next 23 | Flow, Segment information, Speed, Deceleration, Stopping distance, Relative speed, Headway, Distance headway, Reaction time, Vehicle and road condition, Occupancy, Density, Travel time, etc. | Total link delays not explicitly calculated; much greater effort and time required for coding a network; traffic signal coding methodology is more confusing; less user-friendly |
Yang [55] | Cellular automaton models | Flow, Size of cellular, Counts of cellular, Speed, Distances for safety, Deceleration, etc. | Applicable to small-scale areas or specific sections of roads |
Brügmann [56] | OLSIMv4 (v4.2) | Flow, Speed, Speed limit, traffic signal lights, variable message signs, overtaking restrictions, lane closure or merging | The preliminary preparation work is complex and time-consuming, data collection and processing are complicated and difficult, and portability is poor |
Traffic Flow | ||||
---|---|---|---|---|
200 | 0.34 | 2.65 | 0.73 | 5.78 |
400 | 0.33 | 2.45 | 0.82 | 4.32 |
600 | 0.31 | 2.17 | 0.87 | 5.14 |
700 | 0.28 | 1.87 | 0.82 | 4.22 |
800 | 0.27 | 2.13 | 0.81 | 3.11 |
1000 | 0.25 | 1.65 | 0.71 | 4.78 |
1200 | 0.25 | 1.89 | 0.79 | 3.98 |
1400 | 0.26 | 2.01 | 0.86 | 4.11 |
1600 | 0.27 | 2.15 | 0.75 | 4.62 |
1800 | 0.28 | 1.88 | 0.73 | 3.54 |
2000 | 0.29 | 2.01 | 0.76 | 4.78 |
Class | Vehicle Types |
---|---|
Small | Passenger car, minivan, mini truck, light commercial vehicle, micro truck |
Medium | Medium-sized passenger vehicle, medium-sized truck, large-sized passenger vehicle |
Large | Large-sized truck, heavy-duty truck |
Observation Station | Road Class | Acceptance Point and Road Distance (m) | Noise Value (dB(A)) | Traffic Volume (veh/15 min) | Vehicle Speed (km/h) | Simulation Value (dB(A)) |
---|---|---|---|---|---|---|
a | trunk road | 20 | 62.7 | 4/51/330 | 30.3/31.9/34.1 | 58.3 |
60 | 59.3 | 54.9 | ||||
90 | 55.2 | 50.9 | ||||
b | secondary trunk road | 20 | 60.1 | 3/40/378 | 25.8/28.4/30.2 | 56.1 |
60 | 58.1 | 54.3 | ||||
90 | 54.8 | 51.1 | ||||
c | branch | 20 | 59.2 | 3/8/150 | 33.2/36.8/40.2 | 55.1 |
60 | 56.4 | 52.8 | ||||
90 | 52.5 | 48.8 |
Road Numbers | 8:15–8:30 a.m. | 8:30–8:45 a.m. | ||
---|---|---|---|---|
Traffic Volume (veh/h) | Vehicle Speed (km/h) | Traffic Volume (veh/h) | Vehicle Speed (km/h) | |
1 | 115/907/1621 | 67.9/71/77.9 | 200/563/1185 | 64.1/69.5/73.3 |
2 | 66/173/355 | 37/44.2/43.7 | 54/136/261 | 30.6/37.9/39.8 |
3 | 70/191/388 | 49.9/56.4/59.1 | 68/180/355 | 46.1/50/54.2 |
4 | 86/224/451 | 25.4/34.5/36.5 | 84/190/368 | 38.5/41.3/51.5 |
5 | 215/473/955 | 37.6/44.6/45.4 | 174/389/779 | 33.5/40.1/43.5 |
6 | 145/325/654 | 40.5/46.5/49.5 | 63/134/257 | 31.2/39.3/40.4 |
7 | 68/148/282 | 44/52.9/56 | 69/149/283 | 37.5/39.4/44.6 |
8 | 88/195/366 | 48.9/52/59.9 | 67/150/275 | 45.1/50/52.1 |
9 | 120/260/504 | 62.1/64.1/72.3 | 61/150/303 | 45.2/50/56.2 |
10 | 85/221/458 | 55.1/63.1/64.2 | 63/179/357 | 44.2/51.8/52.8 |
11 | 89/229/476 | 33.9/37/45.2 | 85/189/368 | 37.1/40/49.1 |
12 | 118/260/516 | 49.7/53.5/58.6 | 119/273/531 | 37.5/39.5/45.5 |
13 | 158/352/696 | 36.2/42/48.9 | 152/333/657 | 32.9/37.6/46.4 |
14 | 134/290/579 | 24.3/30.5/32.6 | 142/309/606 | 23.5/32.2/34.5 |
15 | 150/338/667 | 23/27.9/34 | 129/292/572 | 26/27.4/35.3 |
16 | 128/290/565 | 16.5/19.4/25.5 | 106/229/457 | 14.3/20.3/26.3 |
17 | 404/908/1852 | 65.1/67.2/74.3 | 274/621/1261 | 57/57/67 |
18 | 212/467/944 | 22.6/31.1/31.8 | 172/391/783 | 22.4/29.7/29.8 |
19 | 223/502/1021 | 20.3/25.4/31.2 | 203/458/916 | 22.8/32/30.6 |
20 | 110/252/487 | 28.5/36.5/41.4 | 117/267/517 | 29.7/37.4/42.2 |
21 | 134/288/570 | 26.6/37.5/36.4 | 84/215/446 | 29.4/34.3/40.3 |
22 | 48/131/256 | 35.8/44.8/46.7 | 62/131/238 | 20.8/24/29.2 |
23 | 194/431/861 | 22.9/29.9/34.8 | 105/295/606 | 16.9/19.6/29.9 |
24 | 43/120/223 | 17.9/25.1/30.8 | 36/80/149 | 16.4/20.5/25.5 |
25 | 44/102/199 | 12.3/17.9/23.3 | 35/68/112 | 13.3/21.2/26.1 |
26 | 160/356/718 | 28.4/31.8/38.7 | 125/273/550 | 20.9/24.2/32.2 |
27 | 262/589/1195 | 72.4/80.4/85.2 | 334/764/1543 | 64.1/72.6/73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wu, Z.; Chen, J. A Prediction Method for City Traffic Noise Based on Traffic Simulation under a Mixed Distribution Probability. Sustainability 2024, 16, 7065. https://doi.org/10.3390/su16167065
Wang H, Wu Z, Chen J. A Prediction Method for City Traffic Noise Based on Traffic Simulation under a Mixed Distribution Probability. Sustainability. 2024; 16(16):7065. https://doi.org/10.3390/su16167065
Chicago/Turabian StyleWang, Haibo, Zhaolang Wu, and Jincai Chen. 2024. "A Prediction Method for City Traffic Noise Based on Traffic Simulation under a Mixed Distribution Probability" Sustainability 16, no. 16: 7065. https://doi.org/10.3390/su16167065
APA StyleWang, H., Wu, Z., & Chen, J. (2024). A Prediction Method for City Traffic Noise Based on Traffic Simulation under a Mixed Distribution Probability. Sustainability, 16(16), 7065. https://doi.org/10.3390/su16167065