Unveiling the Opportunities of Unexplored Use of Cover Crop in Mediterranean Agriculture through Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Literature Selection
- Peer-reviewed papers with experimental studies (only relevant field studies that reported at least one intervention and outcome components described in Table 1 were selected);
- Peer-reviewed papers conducted in field conditions;
- Peer-reviewed papers not involving cover crops in the intercropping with other crops;
- Peer-reviewed papers conducted under Mediterranean climate conditions.
- Reason 1: Peer-reviewed papers comparing cover crops and no cover crops, or comparing cover crop species; performances;
- Reason 2: Peer-reviewed papers whose sites do not belong to the Mediterranean climate conditions (and are not specified in the abstract, otherwise they would be excluded in the first step);
- Reason 3: Peer-reviewed papers comparing agricultural management where cover crops are included as part of, or as a treatment of, the studied factors (management system);
- Reason 4: Peer-reviewed papers with no field experiment, no statement of the experimental design, multi-region experiment, or where results are represented as a model.
2.3. Data Extraction and Qualitative Analysis
3. Results and Discussion
3.1. Literature Selection
3.2. Overview of the 35 Peer-Reviewed Papers
Reference | Study Site | |
---|---|---|
1 | Njeru et al. (2017) [50] | Pise, Italy |
2 | Campiglia et al. (2015) [51] | Tuscia, Italy |
3 | Mancinelli et al. (2015) [52] | Viterbo, Italy |
4 | Abou Chehade et al. (2023) [53] | Pise, Italy |
5 | Antichi et al. (2022) [54] | Pise, Italy |
6 | Njeru et al. (2014) [55] | Pise, Italy |
7 | Farina et al. (2018) [56] | Monsampolo, Italy |
8 | Manici et al. (2018) [57] | Monsampolo, Italy |
9 | Ciaccia et al. (2020) [58] | Monsampolo, Italy |
10 | Ciaccia et al. (2016) [59] | Monsampolo, Italy |
11 | Campanelli et al. (2019) [60] | Monsampolo, Italy |
12 | Sartori et al. (2022) [61] | Legnaro, Italy |
13 | Mauromicale et al. (2010) [62] | Sicily, Italy |
14 | Testani et al. (2023) [63] | Metaponto, Italy |
15 | Diacono et al. (2018) [64] | Metaponto, Italy |
16 | Diacono et al. (2016) [65] | Metaponto, Italy |
17 | Campiglia et al. (2009) [66] | Viterbo, Italy |
18 | Radicetti et al. (2016a) [67] | Viterbo, Italy |
19 | Campiglia et al. (2012) [68] | Viterbo, Italy |
20 | Campiglia et al. (2010) [69] | Viterbo, Italy |
21 | Radicetti et al. (2016b) [70] | Viterbo, Italy |
22 | Radicetti et al. (2013) [71] | Viterbo, Italy |
23 | Alonso-Ayuso et al. (2018) [72] | Aranjuez, Spain |
24 | Alonso-Ayuso et al. (2020) [73] | Aranjuez, Spain |
25 | Cabrera-Pérez et al. (2024) [74] | Raimat, Spain |
26 | Baldivieso-Freitas et al. (2018) [75] | Gallecs, Spain |
27 | Ordóñez-Fernández et al. (2018) [76] | Cordoba, Spain |
28 | Ngouajio et al. (2003) [77] | California, USA |
29 | Araya et al. (2022) [78] | California, USA |
30 | Burak et al. (2024) [79] | Dipni, Turkey |
31 | Coruh et al. (2016) [80] | Erzurum, Turkey |
32 | Perdigao et al. (2021) [81] | Viseu, Portugal |
33 | Garcia et al. (2024) [82] | Montpellier, France |
34 | Saadani et al. (2019) [83] | Monastir, Tunisia |
35 | Le Roux and Swanepoel (2023) [84] | Cape-town, South Africa |
3.3. Distinctive Features of the 35 Peer-Reviewed Papers
3.4. Cover Crop Types and Genera in the 35 Peer-Reviewed Papers
3.5. Cover Crop Combinations with Other Agricultural Practices
- ✓ 14 experiments combine CC with different termination methods.
- ✓ 8 experiments combine CC with some weed management techniques.
- ✓ 8 experiments combine CC with fertilization plans.
- ✓ 4 experiments combine CC with soil management/tillage procedures.
- ✓ 4 experiments combine CC with the effects on different cash crop types.
- ✓ 3 experiments combine CC with their sowing schedules.
- ✓ 3 experiments combine CC with their termination-time planning.
- ✓ 3 experiments combine CC with beneficial micro-organisms.
- ✓ 1 experiment combines CC with orchard-shading density.
- ✓ 1 experiment combines CC with cash crop irrigation system.
3.6. Studied Parameters in the 35 Peer-Reviewed Papers
3.7. Forest Plot of Two among All the Studied Parameters in the 35 Peer-Reviewed Papers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Groff, S. The past, present, and future of the cover crop industry. J. Soil Water Conserv. 2015, 70, 130A–133A. [Google Scholar] [CrossRef]
- IPCC. 2023: Climate Change: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; Volume 184. [Google Scholar] [CrossRef]
- Blanco, H. Cover Crops and Soil Ecosystem Services; John Wiley & Sons: Hoboken, NJ, USA, 2023; Volume 196, Available online: https://urlz.fr/rK3z (accessed on 1 August 2024).
- Fernando, M.; Shrestha, A. The potential of cover crops for weed management: A sole tool or component of an integrated weed management system? Plants 2023, 12, 752. [Google Scholar] [CrossRef]
- Schmitt, M.B.; Berti, M.; Samarappuli, D.; Ransom, J.K. Factors. Affecting the Establishment and Growth of Cover Crops Intersown into Maize (Zea mays L.). Agronomy 2021, 11, 712. [Google Scholar] [CrossRef]
- López-Vicente, M.; Gómez, J.A.; Guzmán, G.; Calero, J.; García-Ruiz, R. The role of cover crops in the loss of protected and non-protected soil organic carbon fractions due to water erosion in a Mediterranean olive grove. Soil Tillage Res. 2021, 213, 105119. [Google Scholar] [CrossRef]
- Ali, A.H.A.; Nameer, T.M. Role of cover crop, irrigation systems and different tillage on soil physical properties. Indian J. Ecol. 2022, 49, 733–743. [Google Scholar] [CrossRef]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence en Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- Ranaldo, M.; Carlesi, S.; Costanzo, A.; Bàrberi, P. Functional diversity of cover crop mixtures enhances biomass yield and weed suppression in a Mediterranean agroecosystem. Weed Res. 2020, 60, 96–108. [Google Scholar] [CrossRef]
- Yousefi, M.; Dray, A.; Ghazoul, J. Assessing the effectiveness of cover crops on ecosystem services: A review of the benefits, challenges, and trade-offs. Int. J. Agric. Sustain. 2024, 22, 2335106. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Sindelar, M.; Blanco-Canqui, H.; Jin, V.L.; Ferguson, R. Cover crops and corn residue removal: Impacts on soil hydraulic properties and their relationships with carbon. Soil Sci. Soc. Am. J. 2019, 83, 221–231. [Google Scholar] [CrossRef]
- Ruis, S.J.; Blanco-Canqui, H.; Elmore, R.W.; Proctor, C.; Koehler-Cole, K.; Ferguson, R.B.; Francis, C.A.; Shapiro, C.A. Impacts of cover crop planting dates on soils after four years. Agron. J. 2020, 112, 1649–1665. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. Cover crop impacts on soil physical properties: A review. Soil Sci. Soc. Am. J. 2020, 84, 1527–1576. [Google Scholar] [CrossRef]
- García-González, I.; Hontoria, C.; Gabriel, J.L.; Alonso-Ayuso, M.; Quemada, M. Cover crops to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma 2018, 322, 81–88. [Google Scholar] [CrossRef]
- Möller, K.; Stinner, W.; Leithold, G. Growth, composition, biological N 2 fixation and nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field nitrogen balances and nitrate leaching risk. Nutr. Cycl. Agroecosystems 2008, 82, 233–249. [Google Scholar] [CrossRef]
- Mancinelli, R.; Muleo, R.; Marinari, S.; Radicetti, E. How soil ecological intensification by means of cover crops affects nitrogen use efficiency in pepper cultivation. Agriculture 2019, 9, 145. [Google Scholar] [CrossRef]
- Tian, L.; Wang, T.; Cui, S.; Li, Y.; Gui, W.; Yang, F.; Chen, J.; Dong, R.; Gu, X.; Zhao, X.; et al. Diversified Cover Crops and No-Till Enhanced Soil Total Nitrogen and Arbuscular Mycorrhizal Fungi Diversity: A Case Study from the Karst Area of Southwest China. Agriculture 2024, 14, 1103. [Google Scholar] [CrossRef]
- Singh, A.; Ghimire, R.; Acharya, P. Soil profile carbon sequestration and nutrient responses varied with cover crops in irrigated forage rotations. Soil Tillage Res. 2024, 238, 106020. [Google Scholar] [CrossRef]
- Haque, A.; Ku, S.; Haruna, S.I. Soil thermal properties: Influence of no-till cover crops. Can. J. Soil Sci. 2024, 1–11. [Google Scholar] [CrossRef]
- Bowers, C.; Toews, M.; Liu, Y.; Schmidt, J.M. Cover crops improve early season natural enemy recruitment and pest management in cotton production. Biol. Control. 2020, 141, 104149. [Google Scholar] [CrossRef]
- Gruver, J.; Weil, R.R.; White, C.; Lawley, Y. Radishes: A New Cover Crop for Organic Farming Systems. Michigan State University, MI, 1–14. 2014. Available online: https://www.researchgate.net/publication/233861668_Radishes_-_A_New_Cover_Crop_for_Organic_Farming_Systems (accessed on 26 June 2024).
- Osterholz, W.R.; Culman, S.W.; Herms, C.; Joaquim de Oliveira, F.; Robinson, A.; Doohan, D. Knowledge gaps in organic research: Understanding interactions of cover crops and tillage for weed control and soil health. Org. Agric. 2021, 11, 13–25. [Google Scholar] [CrossRef]
- Murrell, E.G.; Schipanski, M.E.; Finney, D.M.; Hunter, M.C.; Burgess, M.; LaChance, J.C.; Baraibar, B.; White, C.M.; Mortensen, D.A.; Kaye, J.P. Achieving Diverse Cover Crop Mixtures: Effects of Planting Date and Seeding Rate. Agron. J. 2017, 109, 259. [Google Scholar] [CrossRef]
- Chellem, S.R.; Kishore, C.V.L.; Reddy, G.S.V.; Akshay, D.V.S.; Kalpana, K.; Lavanya, P.; Choragudi, K.H. Symbiotic Relationships between Nitrogen-fixing Bacteria and Leguminous Plants Ecological and Evolutionary Perspectives: A Review. Uttar Pradesh J. Zool. 2024, 45, 145–160. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Alcántara, C.; Sánchez, S.; Pujadas, A.; Saavedra, M. Brassica species as winter cover crops in sustainable agricultural systems in southern Spain. J. Sustain. Agric. 2009, 33, 619–635. [Google Scholar] [CrossRef]
- Finney, D.M.; Murrell, E.G.; White, C.M.; Baraibar, B.; Barbercheck, M.E.; Bradley, B.A.; Cornelisse, S.; Hunter, M.C.; Kaye, J.P.; Mortensen, D.A.; et al. Ecosystem services and disservices are bundled in simple and diverse cover cropping systems. Agric. Environ. Lett. 2017, 2, 170033. [Google Scholar] [CrossRef]
- Chapagain, T.; Lee, E.A.; Raizada, M.N. The potential of multi-species mixtures to diversify cover crop benefits. Sustainability 2020, 12, 2058. [Google Scholar] [CrossRef]
- Akbari, P.; Herbert, S.J.; Hashemi, M.; Barker, A.V.; Zandvakili, O.R. Role of cover crops and planting dates for improved weed suppression and nitrogen recovery in no till systems. Commun. Soil Sci. Plant Anal. 2019, 50, 1722–1731. [Google Scholar] [CrossRef]
- Baraibar, B.; Mortensen, D.A.; Hunter, M.C.; Barbercheck, M.E.; Kaye, J.P.; Finney, D.M.; Curran, W.S.; Bunchek, J.; White, C.M. Growing degree days and cover crop type explain weed biomass in winter cover crops. Agron. Sustain. Dev. 2018, 38, 1–9. [Google Scholar] [CrossRef]
- Wayman, S.; Cogger, C.; Benedict, C.; Burke, I.; Collins, D.; Bary, A. The influence of cover crop variety, termination timing and termination method on mulch, weed cover and soil nitrate in reduced-tillage organic systems. Renew. Agric. Food Syst. 2014, 30, 450–460. [Google Scholar] [CrossRef]
- Eivazi, F.; Pinero, J.; Dolan-Timpe, M.; Doggett, W. Comparison of cover crop termination methods for small-scale organic vegetable production: Effect on soil fertility and health. J. Plant Nutr. 2024, 47, 1378–1389. [Google Scholar] [CrossRef]
- Souissi, I.; Temani, N.; Belhouchette, H. Vulnerability of Mediterranean Agricultural Systems to Climate: From Regional to Field Scale Analysis. Clim. Vulnerability 2013, 2, 89–103. [Google Scholar] [CrossRef]
- Bruni, E.; Chenu, C.; Abramoff, R.Z.; Baldoni, G.; Barkusky, D.; Clivot, H.; Huang, Y.; Kätterer, T.; Pikuła, D.; Spiegel, H.; et al. Multi-modelling predictions show high uncertainty of required carbon input changes to reach a 4‰ target. Eur. J. Soil Sci. 2022, 73, e13330. [Google Scholar] [CrossRef]
- Leonardo, R. PICO: Model for clinical questions. Evid. Based Med. Pract. 2018, 3, 2. [Google Scholar] [CrossRef]
- Clarivate. Web of Science Core Collection. 2024. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 1 July 2024).
- Florence, A.M.; McGuire, A.M. Do diverse cover crop mixtures perform better than monocultures? A systematic review. Agron. J. 2020, 112, 3513–3534. [Google Scholar] [CrossRef]
- Rivière, C.; Béthinger, A.; Bergez, J.E. The effects of cover crops on multiple environmental sustainability indicators—a review. Agronomy 2022, 12, 2011. [Google Scholar] [CrossRef]
- Van Ruymbeke, K.; Ferreira, J.G.; Gkisakis, V.D.; Kantelhardt, J.; Manevska-Tasevska, G.; Matthews, P.; Niedermayr, A.; Schaller, L.; Bańkowska, K.; Mertens, K.; et al. Assessing the Impact of Farm-Management Practices on Ecosystem Services in European Agricultural Systems: A Rapid Evidence Assessment. Sustainability 2023, 15, 12819. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Tyagi, A.; Haritash, A.K. Climate-smart agriculture, enhanced agroproduction, and carbon sequestration potential of agroecosystems in India: A meta-analysis. J. Environ. Stud. Sci. 2024, 1–19. [Google Scholar] [CrossRef]
- FAO. Climate-Smart Agriculture Sourcebook. 2017. Available online: https://www.fao.org/climate-smart-agriculture-sourcebook/about/en/ (accessed on 18 July 2024).
- USDA. Cover Cropping to improve climate resilience. In Factsheet by Northeast Climate Hub of US Department of Agriculture; USDA: Washington, DC, USA, 2018. [Google Scholar]
- Van Dijk, R.; Godfroy, A.; Nadeu, E.; Muro, M. Increasing Climate Change Resilience through Sustainable Agricultural Practices: Evidence for Wheat, Potatoes and Olives’, Research Report, Institute for European Environmental Policy. 2024. Available online: https://ieep.eu/publications/increasing-climate-change-resilience-through-sustainable-agricultural-practices/ (accessed on 1 July 2024).
- Njeru, E.M.; Bocci, G.; Avio, L.; Sbrana, C.; Turrini, A.; Giovannetti, M.; Bàrberi, P. Functional identity has a stronger effect than diversity on mycorrhizal symbiosis and productivity of field grown organic tomato. Eur. J. Agron. 2017, 86, 1–11. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Cover crops and mulches influence weed management and weed flora composition in strip-tilled tomato (Solanum lycopersicum). Weed Res. 2015, 55, 416–425. [Google Scholar] [CrossRef]
- Mancinelli, R.; Marinari, S.; Brunetti, P.; Radicetti, E.; Campiglia, E. Organic mulching, irrigation and fertilization affect soil CO2 emission and C storage in tomato crop in the Mediterranean environment. Soil Tillage Res. 2015, 152, 39–51. [Google Scholar] [CrossRef]
- Abou Chehade, L.; Antichi, D.; Frasconi, C.; Sbrana, M.; Tramacere, L.G.; Mazzoncini, M.; Peruzzi, A. Legume cover crop alleviates the negative impact of no-till on tomato productivity in a Mediterranean organic cropping system. Agronomy 2023, 13, 2027. [Google Scholar] [CrossRef]
- Antichi, D.; Carlesi, S.; Mazzoncini, M.; Bàrberi, P. Targeted timing of hairy vetch cover crop termination with roller crimper can eliminate glyphosate requirements in no-till sunflower. Agron. Sustain. Dev. 2022, 42, 87. [Google Scholar] [CrossRef]
- Njeru, E.M.; Avio, L.; Sbrana, C.; Turrini, A.; Bocci, G.; Bàrberi, P.; Giovannetti, M. First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agron. Sustain. Dev. 2014, 34, 841–848. [Google Scholar] [CrossRef]
- Farina, R.; Testani, E.; Campanelli, G.; Leteo, F.; Napoli, R.; Canali, S.; Tittarelli, F. Potential carbon sequestration in a Mediterranean organic vegetable cropping system. A model approach for evaluating the effects of compost and Agro-ecological Service Crops (ASCs). Agric. Syst. 2018, 162, 239–248. [Google Scholar] [CrossRef]
- Manici, L.M.; Caputo, F.; Nicoletti, F.; Leteo, F.; Campanelli, G. The impact of legume and cereal cover crops on rhizosphere microbial communities of subsequent vegetable crops for contrasting crop decline. Biol. Control. 2018, 120, 17–25. [Google Scholar] [CrossRef]
- Ciaccia, C.; Armengot Martinez, L.; Testani, E.; Leteo, F.; Campanelli, G.; Trinchera, A. Weed functional diversity as affected by agroecological service crops and no-till in a mediterranean Organic vegetable system. Plants 2020, 9, 689. [Google Scholar] [CrossRef]
- Ciaccia, C.; Canali, S.; Campanelli, G.; Testani, E.; Montemurro, F.; Leteo, F.; Delate, K. Effect of roller-crimper technology on weed management in organic zucchini production in a Mediterranean climate zone. Renew. Agric. Food Syst. 2016, 31, 111–121. [Google Scholar] [CrossRef]
- Campanelli, G.; Testani, E.; Canali, S.; Ciaccia, C.; Leteo, F.; Trinchera, A. Effects of cereals as agro-ecological service crops and no-till on organic melon, weeds and N dynamics. Biol. Agric. Hortic. 2019, 35, 275–287. [Google Scholar] [CrossRef]
- Sartori, F.; Piccoli, I.; Polese, R.; Berti, A. Transition to conservation agriculture: How tillage intensity and covering affect soil physical parameters. Soil 2022, 8, 213–222. [Google Scholar] [CrossRef]
- Mauromicale, G.; Occhipinti, A.; Mauro, R.P. Selection of shade-adapted subterranean clover species for cover cropping in orchards. Agron. Sustain. Dev. 2010, 30, 473–480. [Google Scholar] [CrossRef]
- Testani, E.; Ciaccia, C.; Diacono, M.; Fornasier, F.; Ferrarini, A.; Montemurro, F.; Canali, S. Agroecological practices improve soil biological properties in an organic vegetable system. Nutr. Cycl. Agroecosystems 2023, 125, 471–486. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Canali, S.; Montemurro, F. Agronomic performance and sustainability indicators in organic tomato combining different agro-ecological practices. Nutr. Cycl. Agroecosystems 2018, 112, 101–117. [Google Scholar] [CrossRef]
- Diacono, M.; Fiore, A.; Farina, R.; Canali, S.; Di Bene, C.; Testani, E.; Montemurro, F. Combined agro-ecological strategies for adaptation of organic horticultural systems to climate change in Mediterranean environment. Ital. J. Agron. 2016, 11, 85–91. [Google Scholar] [CrossRef]
- Campiglia, E.; Paolini, R.; Colla, G.; Mancinelli, R. The effects of cover cropping on yield and weed control of potato in a transitional system. Field Crops Res. 2009, 112, 16–23. [Google Scholar] [CrossRef]
- Radicetti, E.; Mancinelli, R.; Moscetti, R.; Campiglia, E. Management of winter cover crop residues under different tillage conditions affects nitrogen utilization efficiency and yield of eggplant (Solanum melanogena L.) in Mediterranean environment. Soil Tillage Res. 2016, 155, 329–338. [Google Scholar] [CrossRef]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Weed control strategies and yield response in a pepper crop (Capsicum annuum L.) mulched with hairy vetch (Vicia villosa Roth.) and oat (Avena sativa L.) residues. Crop Prot. 2012, 33, 65–73. [Google Scholar] [CrossRef]
- Campiglia, E.; Mancinelli, R.; Radicetti, E.; Caporali, F. Effect of cover crops and mulches on weed control and nitrogen fertilization in tomato (Lycopersicon esculentum Mill.). Crop Prot. 2010, 29, 354–363. [Google Scholar] [CrossRef]
- Radicetti, E.; Massantini, R.; Campiglia, E.; Mancinelli, R.; Ferri, S.; Moscetti, R. Yield and quality of eggplant (Solanum melongena L.) as affected by cover crop species and residue management. Sci. Hortic. 2016, 204, 161–171. [Google Scholar] [CrossRef]
- Radicetti, E.; Mancinelli, R.; Campiglia, E. Impact of managing cover crop residues on the floristic composition and species diversity of the weed community of pepper crop (Capsicum annuum L.). Crop Prot. 2013, 44, 109–119. [Google Scholar] [CrossRef]
- Alonso-Ayuso, M.; Gabriel, J.L.; García-González, I.; Del Monte, J.P.; Quemada, M. Weed density and diversity in a long-term cover crop experiment background. Crop Prot. 2018, 112, 103–111. [Google Scholar] [CrossRef]
- Alonso-Ayuso, M.; Gabriel, J.L.; Hontoria, C.; Ibáñez, M.Á.; Quemada, M. The cover crop termination choice to designing sustainable cropping systems. Eur. J. Agron. 2020, 114, 126000. [Google Scholar] [CrossRef]
- Cabrera-Pérez, C.; Royo-Esnal, A.; Català, B.; Baraibar, B.; Recasens, J. Cover crops terminated with roller-crimper to manage Cynodon dactylon and other weeds in vineyards. Pest Manag. Sci. 2024, 80, 2162–2169. [Google Scholar] [CrossRef]
- Baldivieso-Freitas, P.; Blanco-Moreno, J.M.; Armengot, L.; Chamorro, L.; Romanyà, J.; Sans, F.X. Crop yield, weed infestation and soil fertility responses to contrasted ploughing intensity and manure additions in a Mediterranean organic crop rotation. Soil Tillage Res. 2018, 180, 10–20. [Google Scholar] [CrossRef]
- Ordóñez-Fernández, R.; de Torres, M.A.R.R.; Márquez-García, J.; Moreno-García, M.; Carbonell-Bojollo, R.M. Legumes used as cover crops to reduce fertilisation problems improving soil nitrate in an organic orchard. Eur. J. Agron. 2018, 95, 1–13. [Google Scholar] [CrossRef]
- Ngouajio, M.; McGiffen, M.E., Jr.; Hutchinson, C.M. Effect of cover crop and management system on weed populations in lettuce. Crop Prot. 2003, 22, 57–64. [Google Scholar] [CrossRef]
- Araya, S.N.; Mitchell, J.P.; Hopmans, J.W.; Ghezzehei, T.A. Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage. Soil 2022, 8, 177–198. [Google Scholar] [CrossRef]
- Burak, K.; Yanardağ, H.; Gómez-López, M.D.; Faz, Á.; Yalçin, H.; Sakin, E.; Ramazanoğlu, E.; Orak, A.B.; Yanardağ, A. The effect of arbuscular mycorrhizal fungi on biological activity and biochemical properties of soil under vetch growing conditions in calcareous soils. Heliyon 2024, 10, e24820. [Google Scholar] [CrossRef]
- Coruh, I.; Tan, M. The effects of seeding time and companion crop on yield of alfalfa (Medicago sativa L.) and weed growth. Turk. J. Field Crops 2016, 21, 184–189. [Google Scholar] [CrossRef]
- Perdigao, A.; Pereira, J.L.; Moreira, N.; Trindade, H.; Coutinho, J. A 3-year field study to assess winter cover crops as nitrogen sources for an organic maize crop in Mediterranean Portugal. Eur. J. Agron. 2021, 128, 126302. [Google Scholar] [CrossRef]
- Garcia, L.; Krafft, G.; Enard, C.; Bouisson, Y.; Metay, A. Adapting service crop termination strategy in viticulture to increase soil ecosystem functions and limit competition with grapevine. Eur. J. Agron. 2024, 156, 127161. [Google Scholar] [CrossRef]
- Saadani, O.; Jebara, S.H.; Fatnassi, I.C.; Chiboub, M.; Mannai, K.; Zarrad, I.; Jebara, M. Effect of Vicia faba L. var. minor and Sulla coronaria (L.) Medik associated with plant growth-promoting bacteria on lettuce cropping system and heavy metal phytoremediation under field conditions. Environ. Sci. Pollut. Res. 2019, 26, 8125–8135. [Google Scholar] [CrossRef]
- Le Roux, S.; Swanepoel, A. Lucerne establishment in dryland conditions: Effects of crop residues and wheat as a nurse crop. Afr. J. Range Forage Sci. 2023, 41, 147–152. [Google Scholar] [CrossRef]
- Melchior, I.C.; Newig, J. Governing Transitions towards Sustainable Agriculture—Taking Stock of an Emerging Field of Research. Sustainability 2021, 13, 528. [Google Scholar] [CrossRef]
- Aglasan, S.; Roderick, M.R.; Stephen, H.; William, S. Cover Crops, Crop Insurance Losses, and Resilience to Extreme Weather Events. Am. J. Agric. Econ. 2024, 106, 1410–1434. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, L.; Jacinthe, P.-A.; Ren, W. Global synthesis of cover crop impacts on main crop yield. Field Crops Res. 2024, 310, 109343. [Google Scholar] [CrossRef]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Wittwer, R.A.; van der Heijden, M.G.A. Cover crops as a tool to reduce reliance on intensive tillage and nitrogen fertilization in conventional arable cropping systems. Field Crops Res. 2020, 249, 107736. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover crops for sustainable cropping systems: A review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Myers, R.L.; Wilson, K.R. Farmer perspectives about cover crops by non-adopters. Front. Sustain. Food Syst. 2023, 7, 1011201. [Google Scholar] [CrossRef]
- Chami, B.; Niles, M.T.; Parry, S.; Mirsky, S.B.; Ackroyd, V.J.; Ryan, M.R. Incentive programs promote cover crop adoption in the northeastern United States. Agric. Environ. Lett. 2023, 8, e20114. [Google Scholar] [CrossRef]
- Bergtold, J.S.; Ramsey, S.; Maddy, L.; Williams, J.R. A review of economic considerations for cover crops as a conservation practice. Renew. Agric. Food Syst. 2019, 34, 62–76. [Google Scholar] [CrossRef]
- Schnitkey, G.D.; Sellars, S.C.; Gentry, L.F. Cover Crops, Farm Economics, and Policy. Appl. Econ. Perspect. Policy 2024, 46, 595–608. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, Y.; DeLaune, P.B.; Mubvumba, P.; Park, S.C.; Bevers, S.J. Economic analysis of adopting no-till and cover crops in irrigated cotton production under risk. Agrono My J. 2020, 112, 395–405. [Google Scholar] [CrossRef]
- Hao, X.; Najm, M.A.; Steenwerth, K.L.; Nocco, M.A.; Basset, C.; Daccache, A. Are there universal soil responses to cover cropping? A systematic review. Sci. Total Environ. 2023, 861, 160600. [Google Scholar] [CrossRef]
- Strickland, M.S.; Thomason, W.E.; Avera, B.; Franklin, J.; Minick, K.; Yamada, S.; Badgley, B.D. Short-term effects of cover crops on soil microbial characteristics and biogeochemical processes across actively managed farms. Agrosystems Geosci. Environ. 2019, 2, 1–9. [Google Scholar] [CrossRef]
- Getahun, E.; Keefer, L.L. Assessing the Effectiveness of Winter Cover Crops for Controlling Agricultural Nutrient Losses. J. Am. Water Resour. Assoc. 2023, 59, 510–522. [Google Scholar] [CrossRef]
- Silvestri, N.; Grossi, N.; Mariotti, M.; Arduini, I.; Guglielminetti, L.; Raffaelli, M.; Cardelli, R. Cover Crop Introduction in a Mediterranean Maize Cropping System. Eff. Soil Var. Yield. Agron. 2021, 11, 549. [Google Scholar] [CrossRef]
- Bogie, N.A.; Hess, R.J. Does Growing Winter Cover Crops Make Sense in a Mediterranean Climate? Simulations of Water Balance Using Soil and Weather Data in California Across Wet and Dry Years. AGU Fall Meeting Abstracts 2023. 2023. Available online: https://ui.adsabs.harvard.edu/abs/2023AGUFMGC53G0888B (accessed on 1 July 2024).
- Rath, D.; Bogie, N.; Deiss, L.; Parikh, S.J.; Wang, D.; Ying, S.; Tautges, N.; Berhe, A.A.; Ghezzehei, T.A.; Scow, K.M. Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage. Soil 2022, 8, 59–83. [Google Scholar] [CrossRef]
- WPTC. World Production Estimate of Tomato for Processing. 2018. Available online: https://www.wptc.to/wp-content/uploads/2023/02/WPTC-World-Production-estimate-as-of-17-February-2023.pdf (accessed on 1 October 2018).
- Wittwer, R.; Dorn, B.; Jossi, W.; van der Heijden, M.G.A. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 2017, 7, 41911. [Google Scholar] [CrossRef]
- Gómez, J. Sustainability using cover crops in Mediterranean tree crops, olives and vines—Challenges and current knowledge. Hung. Geogr. Bulletin. 2017, 66, 13–28. [Google Scholar] [CrossRef]
- Ansari, M.A.; Burhan, U.C.; Jayanta, L.; Anup, D.; Rattan, L.; Vinay, K.M. Green manuring and crop residue management: Effect on soil organic carbon stock, aggregation, and system productivity in the foothills of Eastern Himalaya (India). Soil Tillage Res. 2022, 218, 105318. [Google Scholar] [CrossRef]
- Mendis, S.S.; Udawatta, R.P.; Anderson, S.H.; Nelson, K.A.; Cordsiemon, R.L., II. Effects of cover crops on soil moisture dynamics of a corn cropping system. Soil Secur. 2022, 8, 100072. [Google Scholar] [CrossRef]
- Rouge, A.; Adeux, G.; Busset, H.; Hugard, R.; Martin, J.; Matejicek, A.; Moreau, D.; Guillemin, J.-P.; Cordeau, S. Carry-over effects of cover crops on weeds and crop productivity in no-till systems. Field Crops Res. 2023, 295, 108899. [Google Scholar] [CrossRef]
- Ball, K.R.; Baldock, J.A.; Penfold, C.; Power, S.A.; Woodin, S.J.; Smith, P.; Pendall, E. Soil organic carbon and nitrogen pools are increased by mixed grass and legume cover crops in vineyard agroecosystems: Detecting short-term management effects using infrared spectroscopy. Geoderma 2020, 379, 114619. [Google Scholar] [CrossRef]
- Flower, K.C.; Cordingley, N.; Ward, R.; Weeks, C. Nitrogen, weed management and economics with cover crops in conservation agriculture in a Mediterranean climate. Field Crops Res. 2012, 132, 63–75. [Google Scholar] [CrossRef]
- Lavergne, S.; Vanasse, A.; Thivierge, M.N.; Halde, C. Pea-based cover crop mixtures have greater plant belowground biomass, but lower plant aboveground biomass than a pure stand of pea. Agric. Ecosyst. Environ. 2021, 322, 107657. [Google Scholar] [CrossRef]
- Novara, A.; Catania, V.; Tolone, M.; Gristina, L.; Laudicina, V.A.; Quatrini, P. Cover Crop Impact on Soil Organic Carbon, Nitrogen Dynamics and Microbial Diversity in a Mediterranean Semiarid Vineyard. Sustainability 2020, 12, 3256. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 2009, 34, 71–125. [Google Scholar] [CrossRef]
- Magagnoli, S.; Depalo, L.; Masetti, A.; Campanelli, G.; Canali, S.; Leteo, F.; Burgio, G. Influence of agro-ecological service crop termination and synthetic biodegradable film covering on Aphis gossypii Glover (Rhynchota: Aphididae) infestation and natural enemy dynamics. Renew. Agric. Food Syst. 2017, 33, 386–392. [Google Scholar] [CrossRef]
- Haruna, S.I.; Anderson, S.H.; Udawatta, R.P.; Gantzer, C.J.; Phillips, N.C.; Cui, S.; Gao, Y. Improving soil physical properties through the use of cover crops: A review. Agrosystems Geosci. Environ. 2020, 3, e20105. [Google Scholar] [CrossRef]
- Pott, C.A.; Conrado, M.; Rampim, L.; Umburanas, R.C.; Conrado, A.M.C.; Outeiro, V.H.; Müller, M.M.L. Mixture of winter cover crops improves soil physical properties under no-tillage system in a subtropical environment. Soil Tillage Res. 2023, 234, 105854. [Google Scholar] [CrossRef]
PICO Components | Description | Script |
---|---|---|
Population (P) | Agricultural cropping systems under a Mediterranean climate using cover crops | (agriculture OR “organic farm*” OR “organic agriculture*” OR “organic horticulture” OR agroecology OR “conservation agriculture” OR “conservation farm*” OR “conservation horticulture” OR “regenerative agriculture” OR “regenerative farm*” OR “regenerative horticulture”) |
Intervention (I) | Factors and agricultural practices that can be used in combination with cover crops (e.g., cover crop species, sowing time, termination time and methods, irrigation, crop rotation, tillage practices) | (specie* OR mixture* OR Irrigation OR “water management” OR “crop* rotation” OR “termination method*” OR “termination technique*” OR “termination time” OR “planting time”) |
Comparison (C) | Cover crop species used alone | (“cover crop*” OR “catch crop*” OR “companion crop*” OR “green manure”) |
Outcome (O) | Cover crop performance, soil quality, weed control, and cash crop yield parameters | (weed* OR “cash crop*” OR “subsequent crop*” OR “crop* yield” OR (Soil AND (fertility OR health OR quality OR “biological propert*” OR “chemical propert*” OR “nutrient* cycling” OR “physical propert*” OR structur* OR “organic carbon” OR “organic matter”))). |
Number of Peer-Reviewed Paper | Cropping System | Cover Crop Season | Cash Crop | Experiment Duration |
---|---|---|---|---|
1 | Organic | Winter | Tomato | 3 |
2 | Conventional * | Winter | Tomato | 2 |
3 | Conventional | Winter | Tomato | 2 |
4 | Organic | Winter | Tomato | 2 |
5 | Conventional | Winter | Sunflower | 3 |
6 | Organic | Winter | Maize | 3 |
7 | Organic | Winter | Melon | 2 |
8 | Organic | Winter | Tomato/Zucchini | 2 |
9 | Organic | Winter | Melon | 2 |
10 | Organic | Winter | Zucchini | 2 |
11 | Organic | Winter | Melon | 2 |
12 | Conventional | Winter | Maize | 2 |
13 | Conventional | Winter | Lemon/Grapes | 2 |
14 | Organic | Winter | Tomato | 2 |
15 | Organic | Winter | Tomato | 2 |
16 | Organic | Winter | Cauliflower/Tomato | 1 |
17 | Organic | Winter | Potato | 2 |
18 | Conventional | Winter | Eggplant | 2 |
19 | Conventional | Winter | Pepper | 2 |
20 | Conventional | Winter | Tomato | 2 |
21 | Conventional | Winter | Eggplant | 2 |
22 | Conventional | Winter | Pepper | 2 |
23 | Conventional | Winter | Maize/Sunflower | 2 |
24 | Conventional | Winter | Maize | 3 |
25 | Organic | Winter | Grapes | 2 |
26 | Organic | Winter | 4 years rotation | 4 |
27 | Organic | Winter | Olives | 4 |
28 | Conventional | Summer | Lettuce | 2 |
29 | Conventional | Winter | Sorghum | 8 |
30 | Conventional | Winter | - | 1 |
31 | Conventional | Summer | - | 2 |
32 | Organic | Winter | Maize | 3 |
33 | Conventional | Winter | Grapes | 2 |
34 | Conventional | Winter | Lettuce | 2 |
35 | Conventional | Summer | Wheat | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziche, Z.I.; Mezzapesa, G.N.; Dragonetti, G.; Piscitelli, L. Unveiling the Opportunities of Unexplored Use of Cover Crop in Mediterranean Agriculture through Systematic Review and Meta-Analysis. Sustainability 2024, 16, 7362. https://doi.org/10.3390/su16177362
Ziche ZI, Mezzapesa GN, Dragonetti G, Piscitelli L. Unveiling the Opportunities of Unexplored Use of Cover Crop in Mediterranean Agriculture through Systematic Review and Meta-Analysis. Sustainability. 2024; 16(17):7362. https://doi.org/10.3390/su16177362
Chicago/Turabian StyleZiche, Zakaria Islem, Giuseppe Natale Mezzapesa, Giovanna Dragonetti, and Lea Piscitelli. 2024. "Unveiling the Opportunities of Unexplored Use of Cover Crop in Mediterranean Agriculture through Systematic Review and Meta-Analysis" Sustainability 16, no. 17: 7362. https://doi.org/10.3390/su16177362
APA StyleZiche, Z. I., Mezzapesa, G. N., Dragonetti, G., & Piscitelli, L. (2024). Unveiling the Opportunities of Unexplored Use of Cover Crop in Mediterranean Agriculture through Systematic Review and Meta-Analysis. Sustainability, 16(17), 7362. https://doi.org/10.3390/su16177362